


SOBOLEV SPACES 

Second Edition 



To Anne and Frances 

who had to put  up with it all 

This is volume 140 in the PURE AND APPLIED MATHEMATICS series 
Founding Editors: Paul A. Smith and Samuel Eilenberg 



SOBOLEV SPACES 

Second Edition 

Robert A. Adams and John J. F. Fournier 

Department of Mathematics 
The University of British Columbia 

Vancouver, Canada 

~ ACADEMIC PRESS 
An imprint of Elsevier Science 

Amsterdam Boston Heidelberg London New York Oxford 

Paris San Diego San Francisco Singapore Sydney Tokyo 



ELSEVIER B.V. ELSEVIER Inc. ELSEVIER Ltd ELSEVIER Ltd 
Radarweg 29 525 B Street The Boulevard 84 Theobalds Road 
P.O. Box 211, 1000 AE Suite 1900, San Diego Langford Lane, Kidlington, London WC1X 8RR 
Amsterdam, The Netherlands CA 92101-4495, USA Oxford OX5 1GB, UK UK 

�9 2003 Elsevier Ltd. All rights reserved. 

This work is protected under copyright by Elsevier Ltd, and the following terms and conditions apply to its use: 

Photocopying 
Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. 
Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple 
or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document 
delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit 
educational classroom use. 

Permissions may be sought directly from Elsevier's Rights Department in Oxford, UK: phone: (+44) 
1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com. Requests may also be completed 
on-line via the Elsevier homepage (http://www.elsevier.corn/locate/permissions). 

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 
222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+ 1) (978) 7508400, fax: (+ 1) (978) 7504744, and 
in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham 
Court Road, London W1P 0LP, UK; phone: (+44) 20 7631 5555; fax: (+44) 20 7631 5500. Other countries 
may have a local reprographic rights agency for payments. 

Derivative Works 
Tables of contents may be reproduced for internal circulation, but permission of the Publisher is required for 
external resale or distribution of such material. Permission of the Publisher is required for all other derivative 
works, including compilations and translations. 

Electronic Storage or Usage 
Permission of the Publisher is required to store or use electronically any material contained in this work, 
including any chapter or part of a chapter. 

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted 
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior 
written permission of the Publisher. Address permissions requests to: Elsevier's Rights Department, at the 
fax and e-mail addresses noted above. 

Notice 
No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter 
of products liability, negligence or otherwise, or from any use or operation of any methods, products, instruc- 
tions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in partic- 
ular, independent verification of diagnoses and drug dosages should be made. 

Second edition 2003 
Reprinted 2005 

Brit i sh  L i b r a r y  C a t a l o g u i n g  in Pub l i ca t ion  D a t a  
A catalogue record is available from the British Library. 

L i b r a r y  o f  C o n g r e s s  C a t a l o g i n g  in Publ i ca t ion  D a t a  
A catalog record is available from the Library of Congress. 

ISBN: 0-12-044143-8 

Working together to grow 
libraries in developing countries 

www.elsevier.com I www.bookaid.org I www.sabre.org 

- BOOK AID - - J 1 :LSEVIER , ...... - ..... i ..... ~ ."Sabre l 'oundat  o 

@ The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 
(Permanence of Paper). Printed in The Netherlands. 



CONTENTS 

I I  

11 

Preface 

List of Spaces and Norms 

PRELIMINARIES 
Notation 
Topological Vector Spaces 
Normed Spaces 
Spaces of Continuous Functions 
The Lebesgue Measure in/t~" 
The Lebesgue Integral 
Distributions and Weak Derivatives 

THE LEBESGUE SPACES Lp(g~) 

Definition and Basic Properties 
Completeness of L P (f2) 
Approximation by Continuous Functions 
Convolutions and Young's Theorem 
Mollifiers and Approximation by Smooth Functions 
Precompact Sets in L P (f2) 
Uniform Convexity 
The Normed Dual of L p (~) 
Mixed-Norm L p Spaces 
The Marcinkiewicz Interpolation Theorem 

ix 

n l  

XI I  

1 
3 
4 

10 
13 
16 
19 

23 

23 
29 
31 
32 
36 
38 
41 
45 
49 
52 



vi Contents 

3. THE SOBOLEV SPACES W~,P(g2) 
Definitions and Basic Properties 
Duality and the Spaces W -m'p' (~"2) 
Approximation by Smooth Functions on f2 
Approximation by Smooth Functions on ItS" 
Approximation by Functions in C~ (f2) 
Coordinate Transformations 

4. THE SOBOLEV IMBEDDING THEOREM 

11 

11 

Geometric Properties of Domains 
Imbeddings by Potential Arguments 
Imbeddings by Averaging 
Imbeddings into Lipschitz Spaces 
Sobolev's Inequality 
Variations of Sobolev's Inequality 
W m'p (~"2) as  a Banach Algebra 
Optimality of the Imbedding Theorem 
Nonimbedding Theorems for Irregular Domains 
Imbedding Theorems for Domains with Cusps 
Imbedding Inequalities Involving Weighted Norms 
Proofs of Theorems 4.51-4.53 

INTERPOLATION, EXTENSION, AND APPROXIMATION 
THEOREMS 
Interpolation on Order of Smoothness 
Interpolation on Degree of Sumability 
Interpolation Involving Compact Subdomains 
Extension Theorems 
An Approximation Theorem 
Boundary Traces 

COMPACT IMBEDDINGS OF SOBOLEV SPACES 
The Rellich-Kondrachov Theorem 
Two Counterexamples 
Unbounded Domains m Compact Imbeddings of Wo 'p (f2) 
An Equivalent Norm for Wo 'p (f2) 
Unbounded Domains m Decay at Infinity 
Unbounded Domains ~ Compact Imbeddings of W m,p (~"2) 
Hilbert-Schmidt Imbeddings 

59 

59 
62 
65 
67 
70 
77 

79 

81 
87 
93 
99 

101 
104 
106 
108 
111 
115 
119 
131 

135 

135 
139 
143 
146 
159 
163 

167 
167 
173 
175 
183 
186 
195 
200 

vi 



Contents vii 

11 FRACTIONAL ORDER SPACES 
Introduction 
The Bochner Integral 
Intermediate Spaces and Interpolat ion-  The Real Method 
The Lorentz Spaces 
Besov Spaces 
Generalized Spaces of H61der Continuous Functions 
Characterization of Traces 
Direct Characterizations of Besov Spaces 
Other Scales of Intermediate Spaces 
Wavelet Characterizations 

8. ORLICZ SPACES AND ORLICZ-SOBOLEV SPACES 
Introduction 
N-Functions 
Orlicz Spaces 
Duality in Orlicz Spaces 
Separability and Compactness Theorems 
A Limiting Case of the Sobolev Imbedding Theorem 
Orlicz-Sobolev Spaces 
Imbedding Theorems for Orlicz-Sobolev Spaces 

References 

Index 

205 
205 
206 
208 
221 
228 
232 
234 
241 
247 
256 

261 
261 
262 
266 
272 
274 
277 
281 
282 

295 

301 

vii 



This Page Intentionally Left Blank



PREFACE 

This monograph presents an introductory study of of the properties of certain Ba- 
nach spaces of weakly differentiable functions of several real variables that arise in 
connection with numerous problems in the theory of partial differential equations, 
approximation theory, and many other areas of pure and applied mathematics. 
These spaces have become associated with the name of the late Russian mathe- 
matician S. L. Sobolev, although their origins predate his major contributions to 
their development in the late 1930s. 

Even by 1975 when the first edition of this monograph was published, there was 
a great deal of material on these spaces and their close relatives, though most of it 
was available only in research papers published in a wide variety of journals. The 
monograph was written to fill a perceived need for a single source where graduate 
students and researchers in a wide variety of disciplines could learn the essential 
features of Sobolev spaces that they needed for their particular applications. No 
attempt was made even at that time for complete coverage. To quote from the 
Preface of the first edition: 

The existing mathematical literature on Sobolev spaces and their 
generalizations is vast, and it would be neither easy nor particularly 
desirable to include everything that was known about such spaces 
between the covers of one book. An attempt has been made in this 
monograph to present all the core material in sufficient generality to 
cover most applications, to give the reader an overview of the subject 
that is difficult to obtain by reading research papers, and finally . . .  
to provide a ready reference for someone requiring a result about 
Sobolev spaces for use in some application. 

This remains as the purpose and focus of this second edition. During the interven- 
ing twenty-seven years the research literature has grown exponentially, and there 
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are now several other books in English that deal in whole or in part with Sobolev 
spaces. (For example, see [Ad2], [Bul], [Mzl ], [Trl ], [Tr3], and [Tr4].) However, 
there is still a need for students in other disciplines than mathematics, and in other 
areas of mathematics than just analysis to have available a book that describes 
these spaces and their core properties based only a background in mathematical 
analysis at the senior undergraduate level. We have tried to make this such a book. 

The organization of this book is similar but not identical to that of the first edition: 

Chapter 1 remains a potpourri of standard topics from real and functional analysis, 
included, mainly without proofs, because they provide a necessary background 
for what follows. 

Chapter 2 on the Lebesgue Spaces L p (~) is much expanded and reworked from the 
previous edition. It provides, in addition to standard results about these spaces, a 
brief treatment of mixed-norm L p spaces, weak-L p spaces, and the Marcinkiewicz 
interpolation theorem, all of which will be used in a new treatment of the Sobolev 
Imbedding Theorem in Chapter 4. For the most part, complete proofs are given, 
as they are for much of the rest of the book. 

Chapter 3 provides the basic definitions and properties of the Sobolev spaces 
W ",p (S2) and W o  'p (S2). There are minor changes from the first edition. 

Chapter 4 is now completely concerned with the imbedding properties of Sobolev 
Spaces. The first half gives a more streamlined presentation and proof of the var- 
ious imbeddings of Sobolev spaces into LP spaces, including traces on subspaces 
of lower dimension, and spaces of continuous and uniformly continuous functions. 
Because the approach to the Sobolev Imbedding Theorem has changed, the roles 
of Chapters 4 and 5 have switched from the first edition. The latter part of Chapter 
4 deals with situations where the regularity conditions on the domain S2 that are 
necessary for the full Sobolev Imbedding Theorem do not apply, but some weaker 
imbedding results are still possible. 

Chapter 5 now deals with interpolation, extension, and approximation results for 
Sobolev spaces. Part of it is expanded from material in Chapter 4 of the first 
edition with newer results and methods of proof. 

Chapter 6 deals with establishing compactness of Sobolev imbeddings. It is only 
slightly changed from the first edition. 

Chapter 7 is concerned with defining and developing properties of scales of spaces 
with fractional orders of smoothness, rather than the integer orders of the Sobolev 
spaces themselves. It is completely rewritten and bears little resemblance to 
the corresponding chapter in the first edition. Much emphasis is placed on real 
interpolation methods. The J-method and K-method are fully presented and used 
to develop the theory of Lorentz spaces and Besov spaces and their imbeddings, 
but both families of spaces are also provided with intrinsic characterizations. A 
key theorem identifies lower dimensional traces of functions in Sobolev spaces 
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as constituting certain Besov spaces. Complex interpolation is used to introduce 
Sobolev spaces of fractional order (also called spaces of Bessel potentials) and 
Fourier transform methods are used to characterize and generalize these spaces to 
yield the Triebel Lizorkin spaces and illuminate their relationship with the Besov 
spaces. 

Chapter 8 is very similar to its first edition counterpart. It deals with Orlicz 
and Orlicz-Sobolev spaces which generalize L p and W m'p spaces by allowing 
the role of the function t p to be assumed by a more general convex function 
A( t ) .  An important result identifies a certain Orlicz space as a target for an 
imbedding of W m'p (~'2) in a limiting case where there is an imbedding into L p (~2) 
for 1 < p < ec but not into L~(f2). 

This monograph was typeset by the authors using TE X on a PC running Linux- 
Mandrake 8.2. The figures were generated using the mathematical graphics soft- 
ware package M G  developed by R. B. Israel and R. A. Adams. 

RAA & J J F F  

Vancouver, August 2002 
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1 
PRELIMINARIES 

1.1 (Introduction) Sobolev spaces are vector spaces whose elements are 
functions defined on domains in n-dimensional Euclidean space R ~ and whose 
partial derivatives satisfy certain integrability conditions. In order to develop and 
elucidate the properties of these spaces and mappings between them we require 
some of the machinery of general topology and real and functional analysis. We 
assume that readers are familiar with the concept of a vector space over the real or 
complex scalar field, and with the related notions of dimension, subspace, linear 
transformation, and convex set. We also expect the reader will have some famil- 
iarity with the concept of topology on a set, at least to the extent of understanding 
the concepts of an open set and continuity of a function. 

In this chapter we outline, mainly without any proofs, those aspects of the theories 
of topological vector spaces, continuity, the Lebesgue measure and integral, and 
Schwartz distributions that will be needed in the rest of the book. For a reader 
familiar with the basics of these subjects, a superficial reading to settle notations 
and review the main results will likely suffice. 

Notation 

1.2 Throughout this monograph the term domain and the symbol fl will be 
reserved for a nonempty open set in n-dimensional real Euclidean space I~ n . We 
shall be concerned with the differentiability and integrability of functions defined 
on fl; these functions are allowed to be complex-valued unless the contrary is 
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explicitly stated. The complex field is denoted by C. For c 6 C and two functions 
u and v, the scalar multiple cu, the sum u + v, and the product u v are always 
defined pointwise: 

(cu)(x) =cu(x) ,  

(u + v)(x) = u(x) + v(x), 

(uv)(x) = u(x)v(x) 

at all points x where the fight sides make sense. 

A typical point in I~ n is denoted by x = (xl . . . . .  x,,); its norm is given by 
n 

Ixl = (Y~q=l x2) 1/2 The inner product of two points x and y in I~ ~ is 

x "y -- E ; = I  x jy j .  

If O/ = (O/1 . . . . .  O/n) is an n-tuple of nonnegative integers O/j, we call O/a multi- 
19/1 Ofn which has degree I~1 = ~ ] = 1  ~J. index and denote by x ~ the monomial  x 1 .. �9 x~ , 

Similarly, if Dj = O~ Oxj, then 

D ~ _ DI '  . . . D n  ~" 

denotes a differential operator of order IO/I. Note that D (~ ..... ~ = u. 

If O/ and 13 are two multi-indices, we say that /3  < O/ provided flj < O/j for 

1 < j < n. In this case O / -  fl is also a multi-index, and Io/-/31 + I/~1 - Iot l. We 
also denote 

O/! -- O/I!'' 'O/n! 

and if fl < O/, 

(13/t 13/' (13/1) (O/n) 
/~ /~!(O/ -- /~) ! /~1 /~n 

The reader may wish to verify the Leibniz formula 

(~ D'~(uv) (x )  = Z fl D ~ u ( x ) D ~  

valid for functions u and v that are I~1 times continuously differentiable near x. 

1.3 If G C R n is nonempty, we denote by G the closure of G in I1~ n . We shall 

write G ~ fl if G C f2 and G is a compact  (that is, closed and bounded) subset of 

IR n . If u is a function defined on G, we define the support  of u to be the set 

supp (u) - {x ~ G " u ( x )  :fi 0}. 

We say that u has compac t  support  in f2 if supp (u) ~ f2. We denote by "bdry G" 

the boundary of G in I~ n , that is, the set G N G c, where G c is the complement  of 
G i n I ~ n ; G  c - I t {  n - G  = {x 6 IR n " x C G}. 
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If x 6 I~ n and G C ~n, we denote by "dist(x, G)" the distance from x to G, that 
is, the number infy~G Ix -- y I- Similarly, if F, G C/~n are both nonempty, 

dist(F, G) -- inf dist(y, G) = inf lY - x I. 
y ~ F  x~G 

y~F 

Topological Vector Spaces 
1.4 (Topological Spaces) If X is any set, a topology on X is a collection tY of 
subsets of X which contains 

(i) the whole set X and the empty set 0, 

(ii) the union of any collection of its elements, and 

(iii) the intersection of any finite collection of its elements. 

The pair (X, 0 )  is called a topological space and the elements of tY are the open 

sets of that space. An open set containing a point x in X is called a neighbourhood 

of x. The complement X - U - {x ~ X �9 x r U} of any open set U is called a 
closed set. The closure S of any subset S C X is the smallest closed subset of X 
that contains S. 

Let O1 and 62 be two topologies on the same set X. If 61 C 6 2 ,  we say that 62 
is stronger than 61,  or that O1 is weaker than 62. 

A topological space (X, 6 )  is called a Hausdorf f  space if every pair of distinct 
points x and y in X have disjoint neighbourhoods. 

The topological product of two topological spaces (X, tYx) and (Y, tYv) is the 
topological space (X • Y, 6 ) ,  where X • Y -- {(x, y) �9 x ~ X, y ~ Y} is the 
Cartesian product of the sets X and Y, and 6 consists of arbitrary unions of sets 
of the form {Ox • Or " Ox E Gx, Or  ~ Or}. 

Let (X, tYx) and (Y, tYv) be two topological spaces. A function f from X into Y 
is said to be continuous if  the preimage f - l ( o )  -- {x ~ X �9 f ( x )  6 O} belongs 
to tYx for every 0 E Gy. Evidently the stronger the topology on X or the weaker 
the topology on Y, the more such continuous functions f there will be. 

1.5 (Topological Vector Spaces) We assume throughout this monograph that 
all vectors spaces referred to are taken over the complex field unless the contrary 
is explicitly stated. 

A topological vector space, hereafter abbreviated TVS, is a Hausdorff topological 
space that is also a vector space for which the vector space operations of addition 
and scalar multiplication are continuous. That is, if X is a TVS, then the mappings 

(x, y) --+ x + y and (c, x) --+ cx 
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from the topological product spaces X • X and C • X, respectively, into X are 
continuous. (Here C has its usual topology induced by the Euclidean metric.) 

X is a locally convex TVS if each neighbourhood of the origin in X contains a 
convex neighbourhood of the origin. 

We outline below those aspects of the theory of topological and normed vector 
spaces that play a significant role in the study of Sobolev spaces. For a more 
thorough discussion of these topics the reader is referred to standard textbooks on 
functional analysis, for example [Ru 1 ] or [Y]. 

1.6 (Functionals) A scalar-valued function defined on a vector space X is 
called a functional. The functional f is linear provided 

f (ax + by) = a f  (x) + b f  (y), x, y E X, a, b E C. 

If X is a TVS, a functional on X is continuous if it is continuous from X into C 
where C has its usual topology induced by the Euclidean metric. 

The set of all continuous, linear functionals on a TVS X is called the dual of X 
and is denoted by X'. Under pointwise addition and scalar multiplication X' is 
itself a vector space: 

( f  -q- g)(x) = f (x) + g(x), (c f )(x)  = c f  (x), f ,  g E X ' ,  x E X ,  c E C .  

X' will be a TVS provided a suitable topology is specified for it. One such 
topology is the weak-star topology, the weakest topology with respect to which 
the functional Fx, defined on X' by Fx( f )  = f ( x )  for each f 6 X', is continuous 
for each x 6 X. This topology is used, for instance, in the space of Schwartz 
distributions introduced in Paragraph 1.57. The dual of a normed vector space 
can be given a stronger topology with respect to which it is itself a normed space. 
(See Paragraph 1.11.) 

Normed Spaces 
1.7 (Norms) A norm on a vector space X is a real-valued function f on X 
satisfying the following conditions: 

(i) f ( x )  > 0 for all x E X and f ( x )  = 0 if and only if x = 0, 

(ii) f ( c x )  = ]clf(x) for every x ~ X and c ~ C, 

(iii) f (x + y) < f (x) + f (y) for every x, y E X. 

A normed space is a vector space X provided with a norm. The norm will be 
denoted I1" ; x II except where other notations are introduced. 

If r > 0, the set 

nr(x) = {y ~ S : I lY- x ; S l l  < r} 
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is called the open ball of radius r with center at x E X. Any subset A C X is 
called open if for every x 6 A there exists r > 0 such that Br (x) Q A. The open 
sets thus defined constitute a topology for X with respect to which X is a TVS. 
This topology is the norm topology on X. The closure of Br(x) in this topology is 

Br(x) - -  {y E X : I l y -  x ; X I I  ~ r}. 

A TVS X is normable if its topology coincides with the topology induced by some 
norm on X. Two different norms on a vector space X are equivalent if they induce 
the same topology on X. This is the case if and only if there exist two positive 
constants a and b such that, 

a Ilxlll ~ Ilxll2 ~ b Ilxlll 

for all x E X, where IIx Ill and IIx 112 are the two norms. 

Let X and Y be two normed spaces. If there exists a one-to-one linear operator 

L mapping X onto Y having the property I lL (x )  ; Yll - IIx ; Xll  for every x 6 X, 
then we call L an isometric isomorphism between X and Y, and we say that X and 
Y are isometrically isomorphic. Such spaces are often identified since they have 
identical structures and only differ in the nature of their elements. 

1.8 A sequence {Xn} in a normed space X is convergent to the limit x0 if and 
only if l i m n ~  I I x n  - x 0 ;  X ll - 0 in R. The norm topology of X is completely 
determined by the sequences it renders convergent. 

A subset S of a normed space X is said to be dense in X if each x 6 X is the limit 
of a sequence of elements of S. The normed space X is called separable if it has 
a countable dense subset. 

1.9 (Banach Spaces) A sequence {Xn} in a normed space X is called a Cauchy 
sequence if and only if for every e > 0 there exists an integer N such that 
IIXm - xn ; X ll < e holds whenever m, n > N. We say that X is complete and a 
Banach space if every Cauchy sequence in X converges to a limit in X. Every 
normed space X is either a Banach space or a dense subset of a Banach space Y 

called the completion of X whose norm satisfies 

Ilx ; Y II : IIx ; x II for every x E X. 

1.10 (Inner Product Spaces and Hilbert Spaces) If X is a vector space, a 
functional (., ")x defined on X • X is called an inner product on X provided that 
for every x, y ~ X and a, b E C 

(i) (x, Y)x = (y, X)x, (where ~ denotes the complex conjugate of c ~ C) 

(ii) (ax + by, z)x = a(x, z)x + b(y, z)x, 
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(iii) (x, x)x = 0 if and only if x - 0, 

Equipped with such a functional, X is called an inner product space, and the 
functional 

IIx ; Sll = v/(x,  x )x  (1) 

is, in fact, a norm on X If X is complete (i.e. a Banach space) under this norm, 
it is called a Hilbert space. Whenever the norm on a vector space X is obtained 
from an inner product via (1), it satisfies the parallelogram law 

IIx + y;  Xll 2 4- IIx - y ;  XII 2 = 2 IIx; Xll 2 + 2 Ily; Xll 2 �9 (2) 

Conversely, if the norm on X satisfies (2) then it comes from an inner product as 
in (1). 

1.11 (The N o r m e d  Dual) A norm on the dual X' of a normed space X can be 
defined by setting 

IIx'; X' II - sup{ix'(x)l �9 ]Ix; x II < 1 }, 

for each x'  ~ X'. Since C is complete, with the topology induced by this norm 
X' is a Banach space (whether or not X is) and it is called the normed dual of X. 
If X is infinite dimensional, the norm topology of X' is stronger (has more open 
sets) than the weak-star topology defined in Paragraph 1.6. 

The following theorem shows that if X is a Hilbert space, it can be identified with 
its normed dual. 

1.12 THEOREM (The Riesz Representation Theorem) Let X be aHilbert 
space. A linear functional x' on X belongs to X' if and only if there exists x ~ X 
such that for every y ~ X we have 

x'(y) = (y, x)x, 

and in this case IIx'; x'll = llx ;Xl l .  Moreover, x is uniquely determined by 
x'  ~ X'. 1 

A vector subspace M of a normed space X is itself a normed space under the norm 
of X, and so normed is called a subspace of X. A closed subspace of a Banach 

space is itself a Banach space. 

1.13 THEOREM (The Hahn-Banach Extension Theorem) Let M be a 
subspace of the normed space X. If m' ~ M',  then there exists x'  ~ X' such that 

[I x'; x '  II - II m'; M' l[ and x ' (m) - m' (m) for every m ~ M. I 

1.14 (Reflexive Spaces) A natural linear injection of a normed space X into 
its second dual space X" = (X') '  is provided by the mapping J whose value Jx 
at x E X is given by 

Jx (x ' )  = x ' (x) ,  x '  �9 X'.  
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Since IJx(x ') l  ~ II '; s'll IIx "Xll, we have 

II x-II IIx ; X l l .  

However, the Hahn-Banach Extension Theorem assures us that for any x 6 X we 

can find x' ~ X' such that IIx'; x'll - 1 and x'(x) - IIx ; Xll. Therefore J is an 
isometric isomorphism of X into X". 

If the range of the isomorphism J is the entire space X", we say that the normed 
space X is reflexive. A reflexive space must be complete, and hence a Banach 
space. 

1.15 T H E O R E M  Let X be a normed space. X is reflexive if and only if X' is 
reflexive. X is separable if X' is separable. Hence if X is separable and reflexive, 
so is X'. 1 

1.16 (Weak Topologies and Weak Convergence) The weak topology on a 
normed space X is the weakest topology on X that still renders continuous each 
x' in the normed dual X' of X. Unless X is finite dimensional, the weak topology 
is weaker than the norm topology on X. It is a consequence of the Hahn-Banach 
Theorem that a closed, convex set in a normed space is also closed in the weak 
topology of that space. 

A sequence convergent with respect to the weak topology on X is said to converge 
weakly. Thus Xn converges weakly to x in X provided x'(xn) ~ x'(x) in C 
for every x' ~ X'. We denote norm convergence of a sequence {x,,} to x in 
X by x~ --~ x, and we denote weak convergence by Xn ---" x. Since we have 

Ix'<Xn - -  x)l <_ Ilx', x '  l llxn --  x , X l l ,  we see that X n - - >  X implies X n ....x X .  The 
converse is generally not true (unless X is finite dimensional). 

1.17 (Compact Sets) A subset A of a normed space X is called compact if 
every sequence of points in A has a subsequence converging in X to an element of 
A. (This definition is equivalent in normed spaces to the definition of compactness 
in a general topological space; A is compact if whenever A is a subset of the union 
of a collection of open sets, it is a subset of the union of a finite subcollection 
of those sets.) Compact sets are closed and bounded, but closed and bounded 
sets need not be compact unless X is finite dimensional. A is called precompact 
in X if its closure A in the norm topology of X is compact. A is called weakly 
sequentially compact if every sequence in A has a subsequence converging weakly 
in X to a point in A. The reflexivity of a Banach space can be characterized in 
terms of this property. 

1.18 T H E O R E M  A Banach space is reflexive if and only if its closed unit 
ball B] (0) = {x ~ X : Ilx; XI] _< 1 } is weakly sequentially compact. I 
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1.19 T H E O R E M  A set A is precompact in a Banach space X if and only if 
for every positive number E there is a finite subset N, of points of X such that 

A C  U B,(y). 
ycNE 

A set N, with this property is called a finite e-net for A. l 

1.20 (Uniform Convexity) Any normed space is locally convex with respect 
to its norm topology. The norm on X is called uniformly convex if for every number 
E satisfying 0 < e < 2, there exists a number 8(E) > 0 such that if x, y 6 X 

satisfy IIx ; Xll - lay; Xll = 1 and IIx - y ;  Xll >_ E, then II(x + y ) / 2 ;  Xll _ 
1 - 6(e). The normed space X itself is called "uniformly convex" in this case. It 
should be noted, however, that uniform convexity is a property of the n o r m m X  
may have another equivalent norm that is not uniformly convex. Any normable 
space is called uniformly convex if it possesses a uniformly convex norm. The 
parallelogram law (2) shows that a Hilbert space is uniformly convex. 

1.21 T H E O R E M  A uniformly convex Banach space is reflexive. | 

The following two theorems will be used to establish the separability, reflexivity, 
and uniform convexity of the Sobolev spaces introduced in Chapter 3. 

1.22 T H E O R E M  Let X be a Banach space and M a subspace of X closed 
with respect to the norm topology of X. Then M is also a Banach space under the 
norm inherited from X. Furthermore 

(i) M is separable if X is separable, 

(ii) M is reflexive if X is reflexive, 

(iii) M is uniformly convex if X is uniformly convex. | 

The completeness, separability, and uniform convexity of M follow easily from 
the corresponding properties of X. The reflexivity of M is a consequence of 
Theorem 1.18 and the fact that M, being closed and convex, is closed in the weak 
topology of X. 

1.23 T H E O R E M  For j - 1, 2 . . . . .  n let Xj be a Banach space with norm 
n II'llj. The Cartesian product X = I-Ij=l xj ,  consisting of points ( X l , . . . ,  Xn) with 

xj ~ Xj, is a vector space under the definitions 

x + y - -  ( X l  -+- Yl . . . . .  Xn + Yn), CX - -  ( C X l  . . . . .  r  

and is a Banach space with respect to any of the equivalent norms 

P l < p < c ~ ,  ll ll  ) = , - 

j = l  

- m . x  

l<j<n 
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Furthermore, 

(i) if Xj is separable for 1 ___ j _< n, then X is separable, 

(ii) if Xj is reflexive for 1 < j _< n, then X is reflexive, 

(iii) if Xj is uniformly convex for 1 _< j < n, then X is uniformly convex. More 
precisely, 1[. ]l (p) is a uniformly convex norm on X provided 1 < p < oc. I 

The functionals I]'l[(p), 1 _< p _< oc, are norms on X, and X is complete with 
respect to each of them. Equivalence of these norms follows from the inequalities 

I lxll(~) ___ Ilxll(p)___ Ilxll(1)_< n Ilxll(~) �9 

The separability and uniform convexity of X are readily deduced from the corre- 
sponding properties of the spaces Xj. The reflexivity of X follows from that of 
Xj, 1 <_ j <_ n, via Theorem 1.18 or via the natural isomorphism between X' and 

l-I]=, 
1.24 (Operators)  Since the topology of a normed space X is determined by 
the sequences it renders convergent, an operator f defined on X into a topological 
space Y is continuous if and only if f (xn) -+ f (x) in Y whenever xn ~ x in X. 
Such is also the case for any topological space X whose topology is determined 
by the sequences it renders convergent. (These are called first countable spaces.) 

Let X, Y be normed spaces and f an operator from X into Y. We say that f is 
compact if f ( A )  is precompact in Y whenever A is bounded in X. (A bounded 
set in a normed space is one which is contained in the ball B R(O) for some R.) 
If f is continuous and compact, we say that f is completely continuous. We say 
that f is bounded if f (A) is bounded in Y whenever A is bounded in X. 

Every compact operator is bounded. Every bounded linear operator is continuous. 
Therefore, every compact linear operator is completely continuous. The norm of 

a linear operator f is sup{ II f (x)" Y II �9 IIx" x II _< 1 }. 

1.25 (Imbeddings) We say the normed space X is imbedded in the normed 
space Y, and we write X --~ Y to designate this imbedding, provided that 

(i) X is a vector subspace of Y, and 

(ii) the identity operator I defined on X into Y by Ix  - x for all x ~ X is 
continuous. 

Since I is linear, (ii) is equivalent to the existence of a constant M such that 

I l Ix  ; r II _< M IIx ; x II, x ~ x .  

Sometimes the requirement that X be a subspace of Y and I be the identity map 
is weakened to allow as imbeddings certain canonical transformations of X into 
Y. Examples are trace imbeddings of Sobolev spaces as well as imbeddings of 
Sobolev spaces into spaces of continuous functions. See Chapter 5. 

We say that X is compactly imbedded in Y if the imbedding operator I is compact. 



10 Preliminaries 

Spaces of Continuous Functions 

1.26 Let f2 be a domain in I~ n . For any nonnegative integer m let C m (~"2) 
denote the vector space consisting of all functions ~p which, together with all their 
partial derivatives D~b  of orders Ic~l _< m, are continuous on f2. We abbreviate 
C~ - C(f2). Let C ~ ( f 2 )  - [")m~=O cm( f2 ) .  

The subspaces C0(f2) and C~( f2 )  consist of all those functions in C(f2) and 
C ~ (f2), respectively, that have compact  support in f2. 

1.27 (Spaces of Bounded, Continuous Functions) Since f2 is open, functions 
in c m ( ~ )  need not be bounded on ~ .  We define C~ ([2) to consist of those 
functions tp e c m ( f 2 )  for which D~u is bounded on ~ f o r 0  _< I~l _ m. C~' (~)  
is a Banach space with norm given by 

< )11 : max sup I D ~b(x)[ .  
O<ot<m xef2 

1.28 (Spaces of Bounded, Uniformly Continuous Functions) If ~b e C(f2) 
is bounded and uniformly continuous on ~2, then it possesses a unique, bounded, 
continuous extension to the closure f2 of ~2. We define the vector space C m (s to 
consist of all those functions ~b e C m (~ )  for which D ~tp is bounded and uniformly 
continuous on ~2 for 0 < I~l _< m. (This convenient abuse of notation leads to 
ambiguities if f~ is unbounded; e.g., C m (~" )  ~= C m (R n ) even though R n -- Nn .) 

m C m (~2) is a closed subspace of C 8 (f2), and therefore also a Banach space with 
the same norm 

II cm II - max sup I D~tp (x)l. 
O<~<m xe~2 

1.29 (Spaces of Hiilder Continuous Functions) If 0 < )~ _< 1, we define 
C m'z (-~) to be the subspace of C m (-~) consisting of those functions ~b for which, 
for 0 _< ot _< m, D ~ q~ satisfies in ~2 a H61der condition of exponent )~, that is, there 
exists a constant K such that 

ID~b(x)  - D=~b(y)l ~ K I x  - yl ~, x ,  y e f 2 .  

C m,)~ ( ~ )  is a Banach space with norm given by 

I1 ; Cm')~(~) II - I1 ; cm( > II + max sup 
0_<l~l_<m x,y~ 

x#y 

ID~q~(x ) -  D~q~(y)l 

Ix - yl ~ 

It should be noted that for 0 < v < ~ _< 1, 

cm, )~ (-~) ~ C m'v (~"~) ~ C m (~"~). 
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Since Lipschitz continuity (that is, H61der continuity of exponent 1) does not imply 
everywhere differentiability, it is clear that C m'l(-~) ~ C m+l(~). In general, 
C 'n+l (~) q~ C m'l(~) either, but the inclusion is possible for many domains f2, 
for instance convex ones as can be seen by using the Mean-Value Theorem. (See 
Theorem 1.34.) 

1.30 If f2 is bounded, the following two well-known theorems provide useful 
criteria for the denseness and compactness of subsets of C (f2). If 4) �9 C(f2), we 
may regard 4~ as defined on S2, that is, we identify ~b with its unique continuous 
extension to the closure of f2. 

1.31 T H E O R E M  (The Stone-Weierstrass Theorem) Let [2 be a bounded 
domain in IR n . A subset ~r of C (~)  is dense in C (~2) if it has the following four 
properties" 

(i) If q~, 7t e ~r and c e C, then ~p + 7t, 4~gt, and c~b all belong to ~ ' .  

(ii) If cp e s~r then ~b e s~', where q~ is the complex conjugate of ~b. 

(iii) If x, y e g2 and x 7~ y, there exists q~ e ~ such that ~b(x) ~= ~b(y). 

(iv) If x e ~2, there exists ~b e ~r such that ~p (x) 7~ 0. I 

1.32 C O R O L L A R Y  If S2 is bounded in I~ n , then the set P of all polynomials 
in x - (Xl . . . . .  Xn) having rational-complex coefficients is dense in C (s (A 
rational-complex number is a number of the form C l + ic2 where C l and c2 are 
rational numbers.) Hence C (f2) is separable. 

Proof. The set of all polynomials in x is dense in C ([2) by the Stone-Weierstrass 
Theorem. Any polynomial can be uniformly approximated on the compact set f2 
by elements of the countable set P, which is therefore also dense in C (f2). 1 

1.33 THEOREM (The Ascoli-Arzela Theorem) Let f2 be a bounded do- 
main in IR n . A subset K of C ([2) is precompact in C (~)  if the following two 
conditions hold" 

(i) There exists a constant M such that I~(x)l _< M holds for every cp e K 
and x e f2. 

(ii) For every E > 0 there exists 8 > 0 such that if ~b �9 K, x, y �9 f2, and 

]x - Yl < ~, then 14~(x) -~b(y)]  < e. I 

The following is a straightforward imbedding theorem for the various continuous 
function spaces introduced above. It is a preview of the main attraction, the 
Sobolev imbedding theorem of Chapter 5. 

1.34 T H E O R E M  Let m be a nonnegative integer and let 0 < v < )~ _< 1. 
Then the following imbeddings exist: 

C m+l (-~) --"> C m (~), (3) 
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m 

C m'v (~'2) ~ C m (~'2), (4) 
C m'A'(-~) ---+ C m'v (~). (5) 

If f2 is bounded, then imbeddings (4) and (5) are compact. If f2 is convex, we 
have the further imbeddings 

cm+l  (-~) ~ C m, 1 (~),  
C m+l (-~) ~ C m,A. (~'-,~). 

(6) 

(7) 

If ~ is convex and bounded, then imbeddings (3) is compact, and so is (7) if)~ < 1. 

Proof.  The existence of imbeddings (3) and (4) follows from the obvious in- 
equalities 

II ~; Cm (-~) II -< II ~; c m + l ( ~ ) I I ,  

I1.; Cm (~) [I ~< II ~; Cm'A" (~) II 
To establish (5) we note that for I~1 _ m, 

ID~4~(x)-  D~qS(y)l ID~4~(x)-  D~4~(y)l 
sup < sup 
~ , ~  Ix - y l  ~' - x,yEf2 I x -  y l  x 

0<lx-yl<l 

and 
ID~4~(x) - D~4~(y)l 

sup < 2 sup ID a4~ (x)l, 
x,yEf2 I x --  YI" X~a 

Ix-yl>l 

from which we conclude that 

II 0; cm'v (r2) II _< 2 I1.; cm'L ('~) II- 

If f2 is convex and x, y 6 f2, then by the Mean-Value Theorem there is a point 
z ~ f2 on the line segment joining x and y such that D'~ck(x)  - D ~  is given 
by (x  - y )  . VD~ where V u  - ( D l U  . . . . .  D n u ) .  Thus 

IO~qS(x) - O~4~(y)l ~ n i x  - Yl limb ; cm+l(~)l[ , (8) 

and so 
[l*; Cm' 1(~)[[ < n 11 ~b; C m + l ( ~ )  [[. 

Thus (6) is proved, and (7) follows from (5) and (6). 

Now suppose that f2 is bounded. If A is a bounded set in C ~ (f2), then there exists 

M suchthat 114~; c~ _ M forall4~ ~ A. Butthen 14~(x)-4~(y)l < M l x - y l  x 

for all 4~ ~ A and all x, y a f2, whence A is precompact in C (f2) by the Ascoli- 
Arzela Theorem 1.33. This proves the compactness of (4) for m - 0. If m > 1 and 
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A is bounded in C m')~ (~), then A is bounded in C ~ (~)  and there is a sequence 
{0j} C A such that 0j --+ 0 in C(f2). But {D10j} is also bounded in C~ 
so there exists a subsequence of {4~j } which we again denote by {0j } such that 
D10j --+ 7rl in C (f2). Convergence in C (f2) being uniform convergence on f2, we 
have 7tl - D10. We may continue to extract subsequences in this manner until we 
obtain one for which D ' ~ j  --+ D'~O in C (f2) for each ot satisfying 0 < Iotl < m. 
This proves the compactness of (4). For (5) we argue as follows: 

ID~O(x) - D~O(y)I ( ID~O(x) - D~O(y)l ) ~/z 
Ix - yl ~ = Ix -- yi Z IO~0(x) - O~dp(Y)ll-v/x 

<_ const lD~dp(x) - D~dp(y)l 1-~/z (9) 

for all 0 in a bounded subset of cm'k(~'2). Since (9) shows that any sequence 
bounded in C m,z (~)  and converging in C m (~)  is Cauchy and so converges in 
C m'~ (f2), the compactness of (5) follows from that of (4). 

Finally, if f2 is both convex and bounded, the compactness of (3) and (7) follows 
from composing the continuous imbedding (6) with the compact imbeddings (4) 
and (5) for the case )~ - 1. | 

1.35 The existence of imbeddings (6) and (7), as well as the compactness of (3) 
and (7), can be obtained under less restrictive hypotheses than the convexity of ~.  
For instance, if every pair of points x, y 6 ~2 can be joined by a rectifiable arc in 
S2 having length not exceeding some fixed multiple of Ix - y 1, then we can obtain 
an inequality similar to (8) and carry out the proof. We leave it to the reader to 
show that (6) is not compact. 

The Lebesgue Measure in ~'~ 

1.36 Many of the vector spaces considered in this monograph consist of functions 
integrable in the Lebesgue sense over domains in I~ n. While we assume that 
most readers are familiar with Lebesgue measure and integration, we nevertheless 
include here a brief discussion of that theory, especially those aspects of it relevant 
to the study of the L p spaces and Sobolev spaces considered hereafter. All proofs 
are omitted. For a more complete and systematic discussion of the Lebesgue 
theory, as well as more general measures and integrals, we refer the reader to any 
of the books [Fo], [Ro], [Ru2], and [Sx]. 

1.37 (Sigma Algebras)  A collection E of subsets of IR n is called a a-algebra 
if the following conditions hold: 

(i) I~ " c E .  

(ii) If A ~ E, then its complement A c ~ E. 
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(iii) If Aj a E, j = 1, 2 , . . . ,  then Uj~__l E ~]. 

It follows from (i)-(iii) that: 

(iv) The empty set 0 ~ E. 

(v) If Aj E E, j = 1, 2 . . . . .  then r]j~=l E E. 

(vi) If A, B E E ,  t h e n A - B = A r q B  c E E .  

1.38 (Measures)  By a measure tx on a a-algebra E we mean a function on E 
taking values in either It~ U { + ~ }  (a positive measure) or C (a complex measure) 
which is countably additive in the sense that 

# Aj -- ~ # ( A j )  
--1 j--1 

whenever Aj E E, j ----- 1, 2 . . . .  and the sets Aj are pairwise disjoint, that is, 
Aj A A~ = 0 for j 7(= k. For a complex measure the series on the right must 
converge to the same sum for all permutations of the indices in the sequence 
{A j}, and so must be absolutely convergent. If # is a positive measure and if 
A, B E E and A C B, then/~(A) _< # (B) .  Also, if Aj E ]E, j = l,  2 . . . .  and 

(u ) Aa C A2 C . . . ,  t hen /~  j=~ Aj  = l i m j ~  #(Aj) .  

1.39 T H E O R E M  (Existence of Lebesgue Measure)  There exists a a -  
algebra ]E of subsets of I$ " and a positive measure/x on Z having the following 

properties: 

(i) Every open set in I~ ~ belongs to ]E. 

(ii) If A C B, B e Y], and/x(B) = 0, then A e 1~ and #(A)  = 0. 

(iii) I f A  = {x 6 R " : aj < xj < bj, j = 1,2 . . . . .  n } , t h e n A  6 Y; and 
/I 

#(A) = 1--Ij=l (bj - aj). 
(iv) /~ is translation invariant. This means that if x E ~n and A E ~ ,  then 

x + A = { x W y  : y E A } E  ~ , a n d # ( x W A ) = / ~ ( A ) .  ] 

The elements of ]E are called (Lebesgue) measurable subsets of R ~ , and # is called 
the (Lebesgue) measure in I~ ~ . (We normally suppress the word "Lebesgue" in 

these terms as it is the measure on ~ we mainly use.) For A ~ Y~ we call # (A)  the 
measure of A or the volume of A, since Lebesgue measure is the natural extension 
of volume in ~3. While we make no formal distinction between "measure" and 
"volume" for sets that are easily visualized geometrically, such as balls, cubes, 
and domains, and we write vol(A) in place of/z(A) in these cases. Of course the 

terms length and area are more appropriate in R 1 and I~ 2 . 

The reader may wonder whether in fact all subsets of ~ are Lebesgue measurable. 
The answer depends on the axioms of one's set theory. Under the most common 
axioms the answer is no; it is possible using the Axiom of Choice to construct a 
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nonmeasurable set. There is a version of set theory where every subset of ~n is 
measurable, but the Hahn-Banach theorem 1.13 becomes false in that version. 

1.40 (Almost Everywhere) If B C A C •n and # ( B )  = 0, then any condi- 
tion that holds on the set A - B is said to hold almost everywhere (abbreviated 
a.e.) in A. It is easily seen that any countable set in ~n has measure zero. The 
converse is, however, not true. 

1.41 (Measurable Functions) A function f defined on a measurable set and 
having values in IR U {-cx~, +o~} is itself called measurable if the set 

{x : f (x) > a} 

is measurable for every real a. Some of the more important aspects of this 
definition are listed in the following theorem. 

1.42 T H E O R E M  (a) If f is measurable, so is If[. 

(b) If f and g are measurable and real-valued, so are f + g and f g .  

(c) If {j~ } is a sequence of measurable functions, then supj j~, infj j~, 
lim s u p j ~  j~, and lim i n f j ~  j~ are measurable. 

(d) If f is continuous and defined on a measurable set, then f is measurable. 

(e) If f is continuous on I~ into I~ and g is measurable and real-valued, then 
the composition f o g defined by f o g (x) = f ((g (x)) is measurable. 

(f) (Lusin's Theorem) If f is measurable and f ( x )  = 0 for x E A r where 
/z (A) < cx~, and if ~ > 0, then there exists a function g E Co (R n ) such that 
supx~R, g(x) < supx~R,, f ( x )  and # ({x 6 It~ n : f ( x )  :/: g(x)}) < E. | 

1.43 (Character is t ic  and Simple Functions)  Let A C I~ n. The function XA 

defined by 
1 i f x ~ A  

Xa(X)=  0 i fx  ~ 'A 

is called the characwristicfunction of A. A real-valued function s on IR n is called 
a simple function if its range is a finite set of real numbers. If for every x, we have 
s(x) E {al . . . . .  an}, then s = zjm=l XAj (X), where Aj -- {x E R '~ �9 s(x) = aj}, 
and s is measurable if and only if A1, A2 . . . . .  Am are all measurable. Because of 
the following approximation theorem, simple functions are a very useful tool in 
integration theory. 

1.44 T H E O R E M  Given a real-valued function f with domain A C I~ n there 
is a sequence {sj} of simple functions converging pointwise to f on A. If f 
is bounded, {sj } may be chosen so that the convergence is uniform. If f is 
measurable, each sj may be chosen measurable. If f is nonnegative-valued, the 
sequence {sj } may be chosen to be monotonically increasing at each point. | 
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The Lebesgue Integral 
1.45 We are now in a position to define the (Lebesgue) integral of a measurable, 
real-valued function defined on a measurable subset A C ~ .  For a simple 
function s -- ~jm 1 aj XAj, where Aj C A, Aj measurable, we define 

s(x) dx - E aj#(Aj). (10) 
j=l  

If f is measurable and nonnegative-valued on A, we define 

fa f (x )dx  -- sUP faS(X)dx, (11) 

where the supremum is taken over measurable, simple functions s vanishing 
outside A and satisfying 0 _< s(x) <_ f(x) in A. If f is a nonnegative simple 
function, then the two definitions of fA f (x) dx given by (1 O) and (11) coincide. 
Note that the integral of a nonnegative function may be +cx~. 

If f is measurable and real-valued, we set f = f + - f - ,  where f + = max(f ,  O) 
and f -  = - min(f,  O) are both measurable and nonnegative. We define 

fA f (X) dX = fA f+(x) dx -- fA f - (x )  dx 

provided at least one of the integrals on the right is finite. If both integrals are finite, 
we say that f is (Lebesgue) integrable on A. The class of integrable functions on 
A is denoted L1 (A). 

1.46 T H E O R E M  Assume all of the functions and sets appearing below are 
measurable. 

(a) If f is bounded on A and #(A) < oo, then f 6 L I(A). 

(b) If a < f (x) _< b for all x E A and if/~ (A) < oe, then 

#(a) < fa f (x) dx < b I~(a). Cl 

(c) If f (x) < g (x) for all x E A, and if both integrals exist, then 

(d) If f, g E LI(A), then f + g ~ LI(A) and 
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(e) If f E LI (A)and  c E IL then cf  E LI(A)and  

fa( Cf) (X) dx -- c fA f (X) dx. 

(f) If f E LI(A), then Ifl E LI(A) and 

f f(x) dx fA If(x)l dx. 

(g) If f E LI(A) and B C A, then f E LI(B). If, in addition, f ( x )  > 0 for 
all x E A, then 

f s  f (x) dx < fa f (x) dx. 

(h) If # ( a )  = 0, then fa f (x) dx = O. 

(i) I f f  E LI(A) and f8 f (x )  - 0 forevery B C A, then f ( x )  -- 0a.e. onA. l 

One consequence of part (i) and the additivity of the integral is that sets of 
measure zero may be ignored for purposes of integration. That is, if f and g are 
measurable on a and if f (x )  = g(x) a.e. on A, then fa f ( x ) d x  = fa g(x)dx. 
Accordingly, two elements of L I(A) are considered identical if they are equal 
almost everywhere. Thus the elements of L I(A) are actually not functions but 
equivalence classes of functions; two functions belong to the same element of 
L 1 (A) if they are equal a.e. on A. Nevertheless, we will continue to refer (loosely) 
to the elements of L1 (A) as functions on A. 

1.47 T H E O R E M  If f is either an element of L I(I~ n) or measurable and 
nonnegative on I~", then the set function ,k defined by 

~(A) -- fa f (x) dx 

is countably additive, and hence a measure on the o--algebra of Lebesgue measur- 
able subsets of ~". I 

The following three theorems are concerned with the interchange of integration 
and limit processes. 

1.48 THEOREM (The Monotone Convergence Theorem) Let A C ~n 
be measurable and let {j~} be a sequence of measurable functions satisfying 
0 <_ fl(x) <_ f2(x) <_ ... for every x E A. Then 

,im f f (lira dx, 
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1.49 THEOREM (Fatou's Lemma) Let A C 1~ n be measurable and let 
{/~ } be a sequence of nonnegative measurable functions. Then 

fA(liminf]dx<_liminffAfJ(x)dx.I 
\ j-'+~ ,,I j-">'~ 

1.50 THEOREM (The Dominated Convergence Theorem) Let A C R ~ 
be measurable and let {fj } be a sequence of measurable functions converging to a 
limit pointwise on A. If there exists a function g ~ L 1 (A) such that If/(x)l _< g (x) 
for every j and all x ~ A, then 

limfAfJ(x)dX=fA(limfj(x)) dx.I j-+cr \j--+cr 

1.51 (Integrals of Complex-Valued Functions) The integral of a complex- 
valued function over a measurable set A C I~ '~ is defined as follows. Set f = i + i  v, 
where u and v are real-valued and call f measurable if and only if u and v are 
measurable. We say f is integrable over A, and write f ~ L I(A), provided 
Ifl - (/,/2 ..~ l )2)1/2  belongs to L 1 (A) in the sense described in Paragraph 1.45. For 
f 6 LI(A), and only for such f ,  the integral is defined by 

fAf(X)dx=~u(x)dx+i~v(x)  dx. 

It is easily checked that f ~ LI(A) if and only if u, v ~ LI(A). Theorem 
1.42(a,b,d-f), Theorem 1.46(a,d-i), Theorem 1.47 (assuming f ~ L I(]~ n )), and 
Theorem 1.50 all extend to cover the case of complex f .  

The following theorem enables us to express certain complex measures in terms 
of Lebesgue measure/~. It is the converse of Theorem 1.47. 

1.52 THEOREM (The Radon-Nikodym Theorem) Let )~ be a complex 
measure defined on the a-algebra Z of Lebesgue measurable subsets of ~n. 
Suppose that ~(A) = 0 for every A ~ Z for which/~(A) = 0. Then there exists 
f ~ L 1 (~n) such that for every A ~ Z 

~.(A) = fa f (x) dx. 

The function f is uniquely determined by )~ up to sets of measure zero. 1 

1.53 If f is a function defined on a subset A of ~ + m ,  we may regard f as 
depending on the pair of variables (x, y) with x 6 ~ and y E ~m. The integral 
of f over A is then denoted by 

fa f (x, y) dx dy 
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or, if it is desired to have the integral extend over all of ~n+m, 

fR f (x, y) (x, y) dx dy, Xa 
n + m  

where XA is the characteristic function of A. In particular, if A C ~n, we may 
write 

fA f (X) dX = fa f (Xl . . . . .  xn) dXl " " dxn. 

1.54 T H E O R E M  (Fubini 's Theorem) Let f be a measurable function on 
Em+,, and suppose that at least one of the integrals 

11 - f If(x, y)] dx, dy, 
JR n + m  

exists and is finite. For 12, we mean by this that there is an integrable function g 
on R n such that g (y) is equal to the inner integral for almost all y, and similarly 
for 13. Then 

(a) f (., y) 6 L 1 (i~n) for almost all y 6 ~m. 

(b) f (x, .) E L 1 (•m) for almost all x E ~n. 

(c) fRm f (', y) dy E L 1 (R n). 

(d) fR,, f ( x '  .) dx ~ L I(R m). 

(e) 11 = 12 = 13. 

Distributions and Weak Derivatives 

1.55 We require in subsequent chapters some of the basic concepts and tech- 
niques of the Schwartz theory of distributions [Sch], and we present here a brief 
description of those aspects of the theory that are relevant for our purposes. Of 
special importance is the notion of weak or distributional derivative of an inte- 
grable function. One of the standard definitions of Sobolev spaces is phrased 
in terms of such derivatives. (See Paragraph 3.2.) Besides [Sch], the reader is 
referred to [Rul] and [Y] for more complete treatments of the spaces ~(f2) and 
~ '  (f2) introduced below, as well as useful generalizations of these spaces. 

1.56 (Test Functions) Let g2 be a domain in En. A sequence {~bj } of functions 
belonging to C~(~2) is said to converge in the sense of the space ~(~2) to the 
function ~b ~ C ~  (~2) provided the following conditions are satisfied: 
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(i) there exists K @ f2 such that supp (~bj - ~) C K for every j ,  and 

(ii) l imj.oo D ~ j ( x )  = DUck(x) uniformly on K for each multi-index or. 

There is a locally convex topology on the vector space C~ (f2) which respect to 
which a linear functional T is continuous if and only if T(ckj) --~ T(ck) in C 
whenever ~j -~ ~ in the sense of the space ~(f2). Equipped with this topology, 
C~(f2) becomes a TVS called ~(f2) whose elements are called test functions. 
~(f2) is not a normable space. (We ignore the question of uniqueness of the 
topology asserted above. It uniquely determines the dual of ~(f2) which is 
sufficient for our purposes.) 

1.57 (Schwartz Distributions) The dual space ~ ' (f2)  of ~(g2) is called the 
space of(Schwartz) distributions on f2. ~ '  (f2) is given the weak-star topology as 
the dual of ~(f2), and is a locally convex TVS with that topology. We summarize 
the vector space and convergence operations in ~ ' (f2)  as follows: if S, T, Tj 
belong to ~ ' ( f2)  and c ~ C, then 

(S + T)(~p) -- S(~b) + T(~b), ~b E ~(f2), 

(cT)(dp) = c T (~b), ~b ~ ~( f l ) ,  

Tj ~ T in ~ ' (f2)  if and only if Tj (cp) ~ T(~b) in C for every ~b E ~(f2). 

1.58 (Locally Integrable Functions) A function u defined almost everywhere 
on f2 is said to be locally integrable on fl provided u E L I (u )  for every open 
U @ f2. In this case we write u ~ L~o c (f2). Corresponding to every u E L~o c (f2) 
there is a distribution Tu E ~ '  (f2) defined by 

T~(cp) = f u(x),(x)dx, , ~ ~(f2). (13) 

Evidently Tu, thus defined, is a linear functional on ~(f2). To see that it is 
continuous, suppose that ~j --~ ~p in ~(f2). Then there exists K @ f2 such that 
supp (~bj - ~b) C K for all j .  Thus 

- Tu(~)l < sup Iq~j(x) - ~(x)l f lu(x)l dx. ITu(r 
x EK JK 

The right side of the above inequality tends to zero as j ~ oo since @ ~ 
uniformly on K. 

1.59 Not every distribution T ~ ~ ' ( f l )  is of the form T~ defined by (13) for 
some u ~ L~o ~ (fl). Indeed, if 0 ~ r ,  there can be no locally integrable function 
on ~2 such that for every q~ ~ ~ (fl) 

ff2 3 (x)dp (x) dx -- dp (0). 
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However, the linear functional 6 defined on 5~(f2) by 

6(~b) = ~b(O) (14) 

is easily seen to be continuous and hence a distribution on f2. It is called a Dirac 
distribution. 

1.60 (Derivatives of Distributions) Let u E C 1 (~'2) and ~p ~ ~(f2).  Since ~p 
vanishes outside some compact subset of f2, we obtain by integration by parts in 
the variable xj 

0 0 

Similarly, if u E C I~1 (~ ) ,  then integration by parts [c~[ times leads to 

f (D~u(x) )cp(x)dx  -- (-1)1~1 f~ u ( x ) D ~ O ( x ) d x .  

This motivates the following definition of the derivative D~T of a distribution 
T E ~'(ff2): 

(D'~T)(cP) = (-1)i '~IT(D~P). (15) 

Since D'~cp ~ ~(ff2) whenever ~p E ~(ff2), D'~T is a functional on ~(ff~), and it is 
clearly linear. We show that it is continuous, and hence a distribution on if2. To 
this end suppose cpj --~ cp in ~ (if2). Then 

supp (D '~ (Oj - ~)) C supp (Oj - ~) C K 

for some K C f2. Moreover, 

D t~ (D a (r - 0)) -- D~+a (q~j - 0) 

converges to zero uniformly on K as j --+ ~ for each multi-index ft. Hence 
D~ckj --+ DUck in ~(~2). Since T E ~ ' ( f2)  it follows that 

D'~T(Oj) -- (_l)i~lT(D~dpj) -+ ( -1) l~ iT(D~p)  -- D'~T(cp) 

in C. Thus D ~ T E ~ ' ( f2) .  

We have shown that every distribution in ~ '  (f2) possesses derivatives of all orders 
in ~ ' ( f2)  in the sense of definition (15). Furthermore, the mapping D ~ from 
~ ' ( f2)  into 5~' (f2) is continuous; if Tj --+ T in ~ '  (fl) and q~ 6 ~( f2) ,  then 

D~Tj(cp) = (-1)l~lTj(D'~cp) ~ (-1)l '~lT(D~p) = O~ 
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1.61 EXAMPLES 

1. I f0  E f2 and 8 E ~ ' ( f2 )  is the Dirac distribution defined by (14), then D~ 
is given by 

D~8(~p) = (-1)lc~lo~p(0). 

2. If f2 = I~ (i.e., n -- 1) and H 6 L]o c (I~) is the Heaviside function defined 
by 

1 i f x > 0  
H ( x ) - -  0 i f x < 0 ,  

then the derivative (T/-/)' of the corresponding distribution T/-/is 8. To see 
this, let 4~ 6 ~ (R)  have support in the interval [ - a ,  a]. Then 

f0 a ( T H ) ' ( O )  - -  - - T M ( O ' )  = - -  O ' ( x )  d x  = 4 ) ( 0 )  - -  ~ ( 4 ) ) .  

1.62 (Weak Derivatives) We now define the concept of a function being the 
weak derivative of another function. Let u 6 L~oc(f2). There may or may not 
exist a function v~ 6 L~oc(f2) such that Tv~ -- D~Tu in ~ ' ( f2) .  If such a v~ exists, 
it is unique up to sets of measure zero and is called the weak or distributional 
partial derivative of u, and is denoted by D ~ u. Thus D~u = v~ in the weak (or 
distributional) sense provided v~ 6 L~o c (~2) satisfies 

f a  u ( x ) D ~ ( x )  dx - (-1)l~l ~ v~(x)4)(x) dx 

for every q~ E ~ (~).  

If u is sufficiently smooth to have a continuous partial derivative D~u in the usual 
(classical) sense, then D~u is also a weak partial derivative of u. Of course, D~u 
may exist in the weak sense without existing in the classical sense. We shall show 
in Theorem 3.17 that certain functions having weak derivatives (those in Sobolev 
spaces) can be suitably approximated by smooth functions. 

1.63 Let us note in conclusion that distributions in ~2 can be multiplied by smooth 
functions. If r E ~ '  (f2) and co E C ~ (f2), the product coT E ~ '  (f2) is defined by 

(coT)(~b) = T(co~b), ~b E ~(f2) .  

If T -- T, for some u E L~o c (~) ,  then coT = T~o,. The Leibniz rule (see Paragraph 
1.2) is easily checked to hold for D ~ (coT). 
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THE LEBESGUE SPACES LP(Jg) 

Definition and Basic Properties 

2.1 (The Space L P ( I 2 ) )  Let f2 be a domain in E n and let p be a positive real 
number. We denote by L p (~)  the class of all measurable functions u defined on 
f2 for which 

f lu(x)l p d x  < c~. (1) 

We identify in L p (~)  functions that are equal almost everywhere in S2; the elements 
of L p ( ~ )  are thus equivalence classes of measurable functions satisfying (1), two 
functions being equivalent if they are equal a.e. in S2. For convenience, we ignore 
this distinction, and write u E L P ( ~ )  if u satisfies (1), and u -- 0 in L P ( ~ )  

if u ( x )  - 0 a.e. in f2. Evidently cu E L P ( ~ )  if u E L P ( ~ )  and c E C. To 
confirm that L p (~)  is a vector space we must show that if u, v E L p (~) ,  then 
u + v E L p (if2). This is an immediate consequence of the following inequality, 
which will also prove useful later on. 

2.2 L E M M A  I f l  < p < c ~ a n d a ,  b > 0 ,  then 

(a + b) p < 2 p-1 (a p + bP). (2) 

Proof.  If p - 1, then (2) is an obvious equality. For p > 1, the function t p is 
convex on [0, cx~); that is, its graph lies below the chord line joining the points 
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(a, a p) and (b, bP). Thus 

(a-+-b)  p a p - I - b p <  
2 - 2 ' 

f rom which (2) follows at once. 1 

If u, v ~ L p (~) ,  then integrating 

lu(x) + v(x)l p < (lu(x)l + Iv(x)l) p _< 2p-l(lu(x)l p --i-Iv(x)l p) 

over f2 confirms that u + v E LP (f2). 

2.3 (The L ,  N o r m )  We shall verify presently that the functional [l" lip defined 
by 

(f )l/p Ilullp - [u(x)Pdx 

is a norm on L p (~)  provided 1 < p < oe. (It is not a norm if 0 < p < 1.) In 
arguments where confusion of domains may occur, we use II" II p,a in place of II" II p. 
It is clear that Ilullp > 0 and Ilullp - 0 if and only if u - 0 in LP(~). Moreover,  

IIcullp - I c l  Ilullp, c e C. 

Thus we will have shown that II'llp is a norm o n  LP(~) once we have verified the 
triangle inequality 

Ilu + vllp _ Ilullp + Ilvllp, 

which is known as Minkowski's inequality. We verify it in Paragraph 2.8 below, 
for which we first require H61der's inequality. 

2.4 T H E O R E M  (Hii lder 's  Inequal i ty )  Let 1 < p < oe and let p '  denote 
the conjugate exponent defined by 

p 1 1 
p '  = that is ~ = 1 

p -  1' p pl 

which also satisfies 1 < p '  < 1. If u E LP(f'I)and v ~ L p'(~), then uv E L I(f2), 
and 

f lu(x)v(x)ldx <_ Ilullp IIvllp,. (3) 

Equality holds if and only if lu (x) l  p and Iv(x)l p' are proportional i.e. in f2. 

Proof. Let a, b > 0 and let A = ln(a p) and B = ln(bP'). Since the exponential  
function is strictly convex, exp((A/p) + (B/p'))  <_ ( l / p )  exp A + (1 /p ' )  exp B, 
with equality only if A = B. Hence 

ab < (aP/p) + (bP'/p'), 
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with  equality occurring if  and  only if  a p - -  b p ' .  If  e i ther  Ilu lip -- 0 or II v lip, -- 0, 
then u ( x ) v ( x )  = 0 a.e. in g2, and (3) is satisfied. Otherwise we can substitute 
a -- lu(x) l / I lu l lp  and b - Iv(x)l /I lvl lp,  in the above inequality and integrate over 
f2 to obtain (3). l 

2.5 C O R O L L A R Y  If p > 0, q > 0 and r > 0 satisfy ( l / p )  + ( i / q )  - 1/r ,  
and if u e LP(f2) and v ~ L q (~), then uv ~ L r (~) and Iluvllr < Ilullp Ilvllq. 
To see this, we can apply H61der's inequality to lulrlvl r with exponents p / r  and 
q / r  = ( p / r ) ' .  I 

2.6 C O R O L L A R Y  H61der's inequality can be extended to products of more 
than two functions. Suppose u -- uN=I Uj where uj E L pj (~2), 1 <_ j <_ N,  

where pj > O. I f  ~ N = l ( 1 / p j )  - 1 /q ,  then u ~ L q (~'2)and ]]Ullq < uN=I IIujll   
This follows from the previous corollary by induction on N. I 

2.7 L E M M A  (A Converse of Hiilder's Inequality) 
u belongs to LP (~)  if and only if 

A measurable function 

s u p { / ~ l u ( x ) l v ( x ) d x  v ( x ) > O o n ~ ,  Ilvllp,~ 1} (4) 

is finite, and then that supremum equals Ilu IIp. 

Proof. This is obvious if Ilu lip - O. If 0 < II u lip < oc, then for nonnegative v 
with II v lip, __ 1 we have, by H61der's inequality, 

f l u ( x ) l v ( x ) d x  ~ Ilullp Ilvllp, ~ Ilullp, 

and equality holds if v = ( lu l / I lu l lp )  pip', for which Ilvllp, - 1. 

Conversely, if Ilullp - oo we can find an increasing sequence sj of nontrivial 

simple functions satisfying 0 _< sj (x) <_ l u (x)l on a for which II sj --, If 

)P/P', then - ( ,sj l / Il sj 

dx  xa(x> a(x> dx  - Ilsj 

so the supremum (4) must be infinite, l 

2.8 T H E O R E M  (Minkowski 's  Inequali ty) If 1 _< p < oo, then 

Ilu + vllp ~ Ilullp + Ilvllp. (5) 
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Proof. Inequality (5) certainly holds if p = 1 since 

f l u ( x ) + v ( x ) l d x < f l u ( x ) l d x + f l v ( x ) l d x .  

For 1 < p < cx~ observe that for w > 0, Ilwllp, ~ 1 we have, by H61der's 
inequality, 

f (lu(x)l + Iv(x)l)w(x) dx <_ f~z lu(x)lw(x) dx + f~ Iv(x)lw(x) dx 

_< Ilullp + Ilvllp, 

whence Ilu + vllp ~ Ilullp -+- Ilollp follows by Lemma 2.7. 1 

2.9 T H E O R E M  (Minkowski's Inequality for Integrals) Let 1 < p < cx~. 
Suppose that f is measurable on I~ m x ]~n, that f (., y) ~ L p (I~ m ) for almost all 
y ~ ~n, and that the function y ~ Ilf(', Y) llp,Rm belongs to Ll(~n).  Then the 
function x ~ fR, f (x, y) dy belongs to L p (R m ) and 

(Lm ~ f(x, y)dy n 
p ) l / P  f R ( f  R ) l /p  dx < If(x, y)IP dx dy. n m 

That is, 

~ f (., y) dy 
p,R m 

L~ Ilf(', Y ) II p,Rm d y . 

Proof. Suppose initially that f > 0. When p = 1, the inequalities above 
become equalities given in Fubini's theorem. When p > 1, use a nonnegative 
function Ilwll in the unit ball of LP(s as in Theorem 2.8. By Fubini's theorem 
and H61der's inequality, 

f R f R f ( x ' y ) d y w ( x ) d x - f  R m  n m+n f (x ,y)w(x)dxdy 

< ~~ [[Wllp',Rm Ilf(', Y) llp,Rm dy 

< fR, [If(', Y ) I I p , R  m dy. 

This case now follows by Lemma 2.7. For a general function f as above, split f 
into real and imaginary parts and split these as differences of nonnegative functions 
satisfying the hypotheses. It follows that the function mapping x to fR, f (x, y) dy 
belongs to LP (g m). To get the norm estimate, replace f by [fl. 1 
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2.10 (The  Space  L ~ ( I 2 ) )  A function u that is measurable  on f2 is said to be 
essentially bounded on f2 if there is a constant  K such that lu(x)l  _< K a.e. on f2. 

The greatest  lower bound of such constants K is called the essential supremum of 

lul on f2, and is denoted by ess SUpxea lu(x)l. We denote by L ~ ( f 2 )  the vector 

space of all functions u that are essentially bounded on f2, functions being once 

again identified if they are equal a.e. on f2. It is easily checked that the functional 

I1"11~ defined by 

II u II ~ - ess sup l u (x)l  
xEf2 

is a norm on L ~ (f2). Moreover ,  H61der's inequali ty (3) and its corollaries extend 

to cover the two cases p = 1, p '  -- cx~ and p -- oc, p '  -- 1. 

2.11 T H E O R E M  (An I n t e r p o l a t i o n  Inequa l i t y )  Let  1 < p < q < r,  so 

that 
1 0 1 - 0  

- -  ~ ~ - - ~ -  - -  

q p r 

for some 0 satisfying 0 < 0 < 1. If u ~ L p (~) 0 L r (f2), then u E L q (~) and 

Ilullq ~ Ilull~ Ilull~ -~  �9 

Proof .  L e t s  -- p / (Oq) .  T h e n s  > 1 a n d s ' -  s / ( s -  1) -- r / ( ( 1 - 0 ) q ) i f  
r < ec. In this case, by H61der's inequali ty 

t "  
Ilull~ - .t,~ lu(x)l~176 dx  

(f. )l/s(f. ),is, < lu(x)l ~ dx  lu(x)l  (1-~ dx  Oq Ilu I(1-O)q = Ilullp ,r 

and the result  follows at once. The proof  if r = cx~ is similar. 1 

The fol lowing two theorems establish reverse forms of H61der's and Minkowski ' s  

inequalit ies for the case 0 < p < 1. The latter inequality, which indicates that 

II-lip is not a norm in this case, will be used to prove the Clarkson inequalit ies in 
Theorem 2.38. 

2.12 THEOREM (A Reverse Hiilder Inequality) 
p'  - p / ( p  - 1) < 0. If f E LP(f2) and 

then 

0 < fs2 Ig(x ) lP 'dx  < ~ '  

L e t O < p  < 1, s o t h a t  

fff2 tfff2 tl/Ptfff2 PI tl/P' I f  ( x )g (x ) l  dx  >_ ] f  (x)l p dx  Ig(x)l dx  . ( 6 )  
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Proof.  We can assume f g  ~ Ll(f2);  otherwise the left side of (6) is infinite. 
Let ~b = Ig[ -p  and ~p - I f g l  p so that 4~P - I f l  p. Then ~p 6 Lq(~) ,  where 
q = 1 / p  > 1, and since p '  = - p q '  where q' -- q / ( q  - 1), we have 4) 6 Lq' (f2). 
By the direct form of H61der's inequality (3) we have 

L I f ( x ) l  p d x  - .I~ ~ ( x ) ~ ( x ) d x  
f 

<_ il~Pilq II~iiq, 

(f. P' )l-p - I f ( x ) g ( x ) l  d x  Ig(x)l d x  

Taking pth roots and dividing by the last factor on the right side we obtain (6). 1 

2.13 THEOREM 
u, v E L p (~2), then 

(A Reverse Minkowski Inequality) 

Illul + Ivlllp ~ Ilullp + Ilvllp. 

L e t 0 <  p < 1. If 

(7) 

Proof. In u - v -- 0 in L p (f2), then the right side of (7) is zero. Otherwise, the 
left side is greater than zero and we can apply the reverse H61der inequality (6) to 
obtain 

[[lul-1-1131liP -- L(lu(x)l-Jr-II)(x)l) p-l(lu(x)l --1-[l)(x)l)dx 

(f. )l/p' > (lu(x)l n t- Iv(x)[) p d x  

= ili.i + i lil / ' (li.ii  + ii ii ) 

(llullp + Ilvllp) 

and (7) follows by cancellation, l 

Here is a useful imbedding theorem for L p spaces over domains with finite volume. 

2.14 THEOREM (An Imbedding Theorem for L p Spaces) Suppose that 
vol(f2) - f a  1 d x  < oo and 1 _< p _ q ___ e~. If u ~ L q (~) ,  then u ~ L P ( f 2 ) a n d  

(8) Ilullp ~ (vol([2)) (1/p)-(1/q) Ilullq. 

Hence 

If u 6 L ~ (f2), then 

L q ( ~ )  ~ L p (~) .  (9) 

lim II u II p -- II u II ~ .  (1 O) p-+cx~ 
Finally, if u ~ LP (f2) for 1 _< p < .c~ and if there exists a constant K such that 
for all such p 

Ilulip _< K, (11) 
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then u �9 L ~c (g2) and 

Ilu I1~ ~< K. (12) 

P r o o f .  If  p -  q o r q  - cx~ , (8 )  and (9)  are trivial. I f l  < p < q < ~ a n d  

u �9 L q (~ ) ,  H61der's inequality gives 

lu(x)l  p d x  < lu(x)l  q d x  1 d x  

1-(p/q) 

from which (8) and (9) follow immediately.  If u �9 L ~ (f2), we obtain from (8) 

lim sup II u II p ~< II u II ~ .  (13) 
p--> (x) 

On the other hand, for any ~ > 0 there exists a set A C f2 having positive measure 
/z (A) such that 

l u ( x ) l _  I l u l l ~ -  E if x �9 A. 

Hence 

fl u(x )  p d x  > f a  lu(x)lP d x  > #(A) ( l lu l l~  - E) p. 

It follows that Ilullp >__ (# (A) ) I /P ( I lu I I~  - E), whence 

l imin f  Ilullp >_ I lu l l~ ,  (14)  p - - + ~  

Equation (10) now follows from (13) and (14). 

Now suppose (11) holds for 1 < p < oc. If u r L cr (~2) or else if (12) does not 
hold, then we can find a constant K1 > K and a set A C g2 with # ( A )  > 0 such 
that for x �9 A, lu(x)l >_ K1. The same argument  used to obtain (14) now shows 
that 

lim inf II u lip >__ K1 
p----~ <x~ 

which contradicts (11). I 

2.15 C O R O L L A R Y  L p (f2) C L~o c (f2) for 1 < p < cx~ and any domain f2. 

Completeness of Lp(O) 

2.16 T H E O R E M  L p (f2) is a Banach space if 1 ~ p < cr 

Proof .  First assume 1 < p < cx~ and let {b/n} be a Cauchy sequence in L p (~ ) .  
There is a subsequence {Unj } of {b/n} such that 

1 
< - - ,  j - - l , 2  . . . .  ]]U/'/J+I - -  Urtj lip - -  2J 
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m 
Let Um(X) = 'Y~j--1 lUnj+l(x)  -- Unj (X)[ .  Then 

m 1 

IlomIIp ~ j~l"= ~-  < 1, m = l , 2  . . . . .  

Putting v ( x )  - l i m m ~  Vm(X), which may be infinite for some x, we obtain by 
the Monotone  Convergence Theorem 1.48 

f lo(x) l  p d x =  lim f ~ l V m ( X ) l  p d x <  1. m---->c~ 

Hence v ( x )  < oo a.e. on ft and the series 

o o  

blnl (X) "~ Z (blnj+l (X) -- blnj (X) ) 
j = l  

(15) 

converges to a limit u (x) a.e. on ft by Theorem 1.50. Let u (x) = 0 wherever  it is 
undefined by (15). Since (15) telescopes, we have 

lim lgnm (X) --- lg(X) 
m---+ OO 

a.e. in ft. 

For any E > 0 there exists N such that if m, n > N, then Ilum - Un lip < E. Hence,  
by Fatou's  l emma 1.49 

f l u (x )  - Un(X)l p d x  = f ~  l im lUnj(X) - Un(X)I p d x  
j--.+ oo 

-< liminf f a j ~ o o  lUnj(X) - Un(X)l p d x  < ~5 p 

if n > N. Thus u = (u - u,,) + u,, ~_ L p (ft) and Ilu - Un lip ~ 0 as n ~ oo. 
Therefore L p (ft) is complete  and so is a Banach space. 

Finally, if {u~} is a Cauchy sequence in L~176 then there exists a set A C ft 

having measure  zero such that if x r A, then for every n, m = 1, 2 . . . .  

lu.(x)l ~ IlUnll~, lun(x) - Um(X)[ ~ Ilun - Um[Ioo. 

T h e r e f o r e ,  {b/n} converges uniformly on ft - A to a bounded function u. Setting 

u = 0 for x e A, we have u e L~ and Ilun - ull~ ~ 0 as n ~ oo. Thus 
L ~ (ft)  is also complete and a Banach space. II 

2.17 C O R O L L A R Y  If 1 _< p _< cx~, each Cauchy sequence in L p (ft)  has a 
subsequence converging pointwise almost everywhere  on ft. I 
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2.18 C O R O L L A R Y  L2 (~ )  is a Hilbert space with respect to the inner product 

(u, v) -- f a  u ( x ) v ( x )  dx .  

H61der's inequality for L 2 (f2) is just the well-known Schwarz inequality 

I(u, v)l ~ Ilul12 Ilvl12. I 

Approximation by Continuous Functions 

2.19 T H E O R E M  C0(f2) is dense in L p (~) if 1 ~ p < ec. 

Proof .  Any U E L p (~ )  can be written in the form u - -  U l - u 2  -Jr- i ( u 3  - u4) 
where, for 1 < j < 4, uj E L p (~ )  is real-valued and nonnegative. Thus it is 
sufficient to prove that if ~ > 0 and u ~ L P ( ~ )  is real-valued and nonnegative 

then there exists ~p E C0(f2) such that 114~ - ullp < ~. By Theorem 1.44 for such 
a function u there exists a monotonically increasing sequence {sn } of nonnegative 
simple functions converging pointwise to u on f2. Since 0 < Sn(X) < u(x) ,  we 
havesn E LP (f2) and since (u(x)  - Sn(X)) p < (u(x))  p, wehavesn  --+ u in LP (f2) 
by the Dominated Convergence Theorem 1.50. Thus there exists an s E {sn } such 
that Ilu - slip < E/2. Since s is simple and p < ec the support of s has finite 
volume. We can also assume that s(x)  - 0 i fx  E f2 c. By Lusin's Theorem 1.42(f) 
there exists 4) 6 C0(Rn) such that 

I~(x)l ~ Ilsll~ for all x 6 IR n, 

and 

vol({x E I~ n " ~b(x) --fi s(x)}) < 4 Ilsll~ 

By Theorem 2.14 

IIs - ~ l l p  ~ IIs - ~ 1 1 ~  (vol({x �9 R" " 4~(x) r S(X)})) lip 

< 2 Ilsll~ 4 Ilsll~ -- 2" 

It follows that Ilu - ~ lip < ~. I 

2.20 The above proof  shows that the set of simple functions in L p (f2) is dense in 
LP (f2) for 1 < p < ~ .  That this is also true for L ~ (f2) is a direct consequence 
of Theorem 1.44. 
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2.21 

Proof. 

T H E O R E M  L p (f2) is separable if 1 < p < ~ .  

For m -- 1, 2 . . . .  let 

~'2 m - -  {X E ~ " Ixl ~ m and d i s t (x ,bdry( f2) )  > 1 / m ] .  

Then Qm is a compact  subset of g2. Let P be the set of all polynomials on I~ n 

having rational-complex coefficients, and let Pm - -  { X m f  " f ~ P} where Xm 
is the characteristic function of ~2m. As shown in Paragraph 1.32, Pm is dense in 

C(~"2m). Moreover,  U m % l  Pm is countable. 

If  u e: LP(~)  and E > 0, there exists 4~ 6 C0(f2) such that I l u -  Clip < E/2. 
If 1/m < dist(supp (40,  bdry(f2)),  then there exists f in the set Pm such that 

114~ - f l l ~  < (E/2)(VOI(~'2m)) -lIp" It follows that 

I1r  flip S I1r  fll~ (vol(~m)) lip < e/2 

and so Ilu - f l ip < E. Thus the countable set Um%l em is dense in L P ( ~ )  and 
L p (~2) is separable. I 

2.22 C ~ (f2) is a proper closed subset of L ~176 (f2) and so is not dense in that space. 
Therefore,  neither are C0(Q) or C ~  (Q). In fact, L ~ (f2) is not separable. 

Convolutions and Young's Theorem 

2.23 (The Convolu t ion  P roduc t )  It is often useful to form a non-pointwise 
product of two functions that smooth out irregularities of each of them to produce 
a function better behaved locally than either factor alone. One such product is the 
convolution u �9 v of two functions u and v defined by 

u * v(x) = f•, u(x - y ) v ( y ) d y  (16) 

when the integral exists. For instance, if u ~ L P(I~ n ) and v ~ L p' (I~n), 
then the integral (16) converges absolutely by H61der's inequality, and we have 

lu * v(x)[ _< Ilu lip II v lip, for all values ofx .  Moreover,  u �9 v is uniformly continuous 
in these cases. To see this, observe first that if u 6 LP (I~ n ) and v E C0(R n), then 
applying H61der's inequality to the convolution of u with differences between v 
and translates of v shows that u �9 v is uniformly continuous. When 1 _< p '  < c~ 
a general function v in L p' (I~ n ) is the L P'-norm limit of a sequence, {vj } say, of 
functions in Co(I~ n); then u �9 v is the L~ limit of the sequence {u �9 vj }, and 
so is still uniformly continuous. In any event, the change of variable y = x - z 
shows that u �9 v = v ,  u. Thus u �9 v is also uniformly continuous when u 6 L 1 (I~n) 

and v E L~176 (i~n). 
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2 . 2 4  T H E O R E M  ( Y o u n g ' s  T h e o r e m )  

( l / p )  + ( l / q )  + ( l / r )  = 2. Then 

Let p, q, r > 1 and suppose that 

~ (u * v)(x)w(x) dx 
n 

Ilullp IIvllq IIwllr (17) 

h o l d s  fo r  al l  u �9 L p (Rn) ,  v �9 L q (l~n), w �9 L r (I[{n). 

Proofi  For now, we prove this estimate when u �9 C0(IR n), and we explain in 
the proof  of the Corollary below how to deal with more general functions u. 
This special case is the one we use in applications of convolution. The function 
mapping (x, y) to u(x - y) is then jointly continuous on IR n x I~ ~ , and hence is 
a measurable function on on R ~ x R ~ . This justifies the use of Fubini 's theorem 

below. First observe that 

1 1 1 1 1 1 
. . . .  - -  - -  3 = 1, p, t - q - I  r '  p q r 

so the functions 
U(x, y) --Iv(y))lq/P'lw(x)l r/p' 

g(x ,  y) - - lu(x  - y ) ) [P /q ' lw (x ) l  r/q' 

W(x, y) --[u(x - y))lp/r'lv(y)l q/r' 

satisfy (UVW)(x ,  y) - u(x - y)v(y)w(x) .  Moreover,  

(fo fo )l,q Ilgllq, = [w(x)l r dx lu(x - y)l p dy 
n n 

(fo s )l/q' -- Iw(x)l r dx lu(z)l p dz - IlullPp/q' IIwll r/q' , 
n n 

and similarly I l U l l p , -  Ilvllqq/p' Ilwll r/p' and I l W l l r , -  Ilblll;/r' Ilvl[ q/r'. Combining 
these results, we have, by the three-function form of H61der's inequality, 

fR (u �9 v ) (x )w(x)  dx 
n 

<f•  fR ] u ( x - y ] l v ( y ] j w ( x ) ] d y d x n  

- f R  fR U ( x ' y ) V ( x ' y ) W ( x ' y ) d y d x "  

<_ ]]gllp, I]gllq , ]lWIIr , - I l l g l lp  IlVllq Illll)]lr �9 

We remark that (17) holds with a constant K -- K (p, q, r, n) < 1 included on the 
right side. The best (smallest) constant is 

p l / p q l / q r l / r  ) n / 2  

K ( p , q , r, n ) -- ~ F-~  i i-~, -(r ) l /r, ( p t ) l '  , 1  ' ' 
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See [LL] for a proof of this. 1 

2.25 COROLLARY If ( l / p )  + ( l /q )  -- 1 + ( l / r ) ,  and if u ~ L p (~n)  and 
v E L q (~n) ,  then u �9 v E L r (]~n), and 

Ilu * vllr ~ K ( p ,  q, r', n)Ilullp Ilvllq ~ Ilullp Ilvllq �9 

This is known as Young's inequali ty  f o r  convolution.  It also implies Young's 
Theorem. When u E Co(N n ), it follows from Lemma 2.7 and the case of inequality 
(17) proved above, with r '  in place of r. 

2.26 (Proof of the General Case of Corollary 2.25 and Theorem 2.24) We 
remove the restriction u ~ C0(]~ ~) from the above Corollary and therefore from 
Young's Theorem itself. We can assume that p and q are both finite, since the 
only other pairs satisfying the hypotheses are (p, q) = (1, cx~) and (c~, 1), and 
these were covered before the statement of the theorem. 

Fix a simple function v in L q (I~ n ), and regard the functions u as running through 
the subspace C0(~" ) of L p (~n) .  Then convolution with v is a bounded operator, 
To say, from this dense subspace of LP(]~ n ) to L r (~n) ,  and the norm of To is at 
most IlVllq. By the norm density of C o ( ~  n) in LP(]~n), the operator To extends 
uniquely to one with the same norm mapping all of L p (~n)  to L r (R " ). 

Given u in L p (]~n), find a sequence {uj } in Co ( ~ )  converging in L p norm to u. 
Then To(uj) converges in L r norm to To(u). Pass to a subsequence, if necessary, 
to also get almost-everywhere convergence of To(uj) to To(u). Since the simple 
function v also belongs to L p', the integrals (16) defining u �9 v and uj �9 v all 
converge absolutely, and 

u * v ( x )  - -  lim (uj �9 v ( x ) )  for all x ~ R n. 
j--+ ~ 

So To(u) (x )  agrees almost everywhere with u �9 v (x )  as given in (16), and hence 
Ilu * Vllr < [lullpllvllq when u is any function in L P ( N  n) and v is any simple 
function in L q (~;~n). 

We complete the proof with an argument passing from simple functions v to 
general functions in Lq(Nn) .  For any fixed u in L P ( N  n ) convolution with u 
defines an operator, S, say, with norm at most Ilu lip, from the subspace of simple 
functions in L q (R  n ) to L r (]t~ n ). By the density of that subspace, the operator S, 
extends uniquely to one with the same norm mapping all of L q (Nn) to L r (Nn).  

To relate this extended operator Su to formula (16), it suffices to deal with the case 
where the functions u and v are both nonnegative. Pick an increasing sequence 
{vj} of nonnegative simple functions converging in L q norm to v. Then the 
sequence {u �9 vj } converges in L r norm to S , ( v ) .  Again pass to a subsequence 
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that converges almost everywhere to S , (v ) .  Since the function u is nonnegative, 
the product sequence {u �9 vj (x)} increases for each x. So it either diverges to 
e~ or converges to a finite value for u �9 v(x) .  From the a.e. convergence above, 
the latter must happen for almost all x, and Ilu * vllr - IIS,(v) llr < IlUllpllUllq as 
required. I 

2.27 (The Space/~P) It is sometimes useful to classify sequences of real or 
complex numbers according to their degree of summability. We denote by gP the 
set of doubly infinite sequences a - -  { a i  }~_--oc for which 

l a i l  p if 0 < p < oc 

Ila;e ll- 
sup lail if p - -  oc 

- o c < i < o c  

is finite. Evidently, [la; ~Pll - [I/lip where f is the function defined on I~ by 
f ( t ) - - a i f o r / _ < t  < i + l , - o c  < i  < o c .  

If 1 _< p _< ec, then s is a Banach space with norm II'; ~Pll. Singly infinite 
sequences such as { a i } ~  a n i=0 or even finite sequences such as { i}i=m can be regarded 
as defined for -cx~ < i < oc with all a i  - -  0 for i outside the appropriate interval, 
and as such they determine subspaces of of g P. 

H61der's inequality, Minkowski 's  inequality, and Young's inequality follow for 
the spaces g P by the same methods used for L p (I[{). Specifically, suppose that 
a {ai }oc and b - -  { b i  oc m } i -=- -oc"  i-=--o~ 

(a) If a E gP and b E ~q then a b -  { a i b i  oc ~r ' }i=-oc 6 where r satisfies 
( I / r )  -- ( l / p )  + ( l / q ) ,  and 

Ilab ~r II -< II a ;  gP II II b ~q II (H61der's Inequality) 

(b) If a, b E s then 

Ila + b;  e p II -< Ila; e p II + I1 b; e p I . (Minkowski 's Inequality) 

(c) If a E s and b E ~q where ( l / p )  + ( l / q )  > 1, then the series (a �9 b)i 
defined by 

o~ 

(a , b)i - Z ai_jbj ,  
j-----O~ 

( - o c  < i < cx~), 

converges absolutely. Moreover, the sequence a �9 b, called the convolution 
o f a  andb ,  belongs to U,  where 1 + ( I / r )  - ( I / p )  + ( I / q ) ,  and 

(Young's Inequality) 
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Note, however, that the E p spaces imbed into one another in the reverse order to 
the imbeddings of the spaces L p ([2) where f2 has finite volume. (See Theorem 
2.14.) If 0 < p < q < oe, then 

~P -"--> ~q, and Ila; ~ql[ Ila; E plI. 

The latter inequality is obvious if q = oo and follows for other q > p from 
summing the inequality 

lai l  q = ]a i lP la i [  q - p  ~ lai l  p Ila; e~l[ q-p < lai[ p [la; ePl[ q - p  . 

Mollifiers and Approximation by Smooth Functions 

2.28 
C ~  (/~n) and having the properties 

(i) J(x)  = 0 if Ixl _ 1, and 

(ii) fRn J(x)  dx = 1. 

For example, we may take 

(Mollifiers) Let J be a nonnegative, real-valued function belonging to 

k e x p [ - 1 / ( 1  - Ixl2)] if Ixl < 1 
J(x)  = 0 if lxl  ~ 1, 

where k > 0 is chosen so that condition (ii) is satisfied. If E > 0, the function 
J~ (x) = E -n J (x/E) is nonnegative, belongs to C ~  (R n ), and satisfies 

(i) J,(x)  = 0 if Ixl >_ E, and 

(ii) fR. J~(x) dx = 1. 

J,  is called a mollifier and the convolution 

J6 :~ U(X) = fRn J6(x -- y)u(y)  dy, (18) 

defined for functions u for which the right side of (18) makes sense, is called 
a mollification or regularization of u. The following theorem summarizes some 
properties of mollification. 

2.29 T H E O R E M  (Properties of Mollification) Let u be a function which 
is defined on I~ n and vanishes identically outside f~. 

(a) If u E L~o c (~n), then J~ �9 u ~ C ~ (R n ). 

(b) If u ~ L~oc(f2) and supp (u) ~ ~ ,  then J~ �9 u ~ C~(f2)  provided 

E < dist(supp (u) ,  bdry (fl)).  
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(c) If  u e L p (~) where  1 < p < (x~, then J, �9 u e L p (~2). Also 

II J~ * u lip ~ II u lip and l im II J~ * u - u lip - 0. 
E--+O+ 

(d) If  u e C(f2) and if G ~ f2, then l i m ~ 0 +  J~ �9 u(x) - u(x) uni formly  

on G. 

(e) If  u e C(f2),  then l im ,~0+  J, �9 u(x) = u(x) uni formly  on f2. 

P roof .  Since J ,  (x - y) is an infinitely differentiable funct ion of  x and vanishes 

if lY - x l >_ E, and since for every mul t i - index c~ we have 

D'~(J~ �9 u ) ( x ) -  fR, D x J ~ ( x -  y ) u ( y ) d y ,  

conclus ions  (a) and (b) are valid. 

If  u e L p ( ~ )  where  1 < p < oc, then by H61der 's inequal i ty  (3), 

[J~ * u ( x ) [ -  fR,, J~(x - y)u(y)  dy 

< J~(x - y) dy J~(x - y)lu(y)[ p dy 
n n 

(fo -- J ,(x - y)lu(y)l  p dy . 
n 

(19) 

Hence  by Fubini ' s  T h e o r e m  1.54 

L I J ' * u ( x ) l P d x < - ~  fR J ' ( x - y ) l u ( y ) l P d y d x ,  

= ~~  lu(y)l pdy  s  J , ( x -  y ) d x  = [lUllp p .  

For  p -- 1 this inequal i ty  fol lows directly f rom (18). 

Now let rl > 0 be given. By T h e o r e m  2.19 there exists 4~ e C0(f2) such that 

II u - 4~ II p < rl/3. Thus also II J~ * u - J~ �9 4~ II p < rl! 3. Now 

f 
IJ~ * ~b(x) - ~b(x)l - L , ,  J~(x - y ) (~ (y )  - dp(x)) du 

_< sup I~(y)  - 4~(x)l. 
ly-xl<~ 

(20) 

Since 4~ is un i formly  cont inuous  on f2, the r ight  side of  (20) tends to zero as 

E --+ 0 + .  Since supp (40 is compact ,  we can ensure that IIJ~ * ~ - 4~[Ip < 7 /3  
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by choosing E sufficiently small. For such e we have II J~ * u - u lip < r/and (c) 
follows. 

The proofs of (d) and (e) may be obtained by replacing 4~ by u in inequality (20). | 

2.30 COROLLARY C~  (f2) is dense in L p (f2) if 1 < p < oo. I 

This is an immediate consequence of conclusions (b) and (e) of the theorem and 
Theorem 2.19. 

Precompact Sets in LP(J"~) 

2.31 The following theorem plays a role in the study of Lp spaces similar to that 
played by the Arzela-Ascoli Theorem 1.33 in the study of spaces of continuous 
functions. If u is a function defined a.e. on f2 C/1~ n , let fi denote the zero extension 
of u outside f2" 

u(x) i f x 6 f 2 ,  
fi = 0 i f x  E Rn -- f2. 

2.32 T H E O R E M  Let 1 < p < c~. A bounded subset K C LP(~)is 
precompact in LP (~) if and only if for every number e > 0 there exists a number 
6 > 0 and a subset G ~ f2 such that for every u E K and h 6 I~ n with Ihl < 8 
both of the following inequalities hold: 

f lfi(x + h ) -  fi(x)l pdx  e p, < 

f ~  lu(x) l  p d x  E p. < 

--6 

(21) 

(22) 

Proof. Let Thu denote the translate of u by h: 

Thu(x)  = u (x  + h).  

First we assume that K is precompact in L p (~). Let E > 0 be given. Since K 
has a finite e/6-net (Theorem 1.19), and since C0(f2) is dense in L p (~) (Theorem 
2.19), there exists a finite set S of continuous functions having compact support 
in f2, such that for each u 6 K there exists 4~ 6 S satisfying Ilu - 4~llp < ~/3. 
Let G be the union of the supports of the finitely many functions in S. Then 
G ~ f2 and inequality (22) follows immediately. To prove inequality (21) choose 
a closed ball Br of radius r centred at the origin and containing G. Note that 
(ThCk -- ck)(x) = r  + h) - ok(x) is uniformly continuous and vanishes outside 
Br+l provided Ihl < 1. Hence  

f 
lim I IThdP(x) -- r  p d x  O, 

Ihl--->O JRn 
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the convergence  being un i fo rm for 4~ E S. For Ihl sufficiently small, we 

have IlZhch--chllp < ~/3.  If  4~ E S satisfies I lu-4~l lp  < ~/3,  then also 
IlZh?~- Th~llp < E/3. Hence  we have for Ihl sufficiently small  ( independent  
o f u  E K ) ,  

I l r h ~  - fillp ~ [[th~ -- thqbllp + I l r h ~  - ~[[p -4- 11~ - Ullp < 

and (21) follows. (This a rgument  shows that t ranslat ion is cont inuous  in L p (I~ n ).) 

It is sufficient to prove the converse  for the special case f2 = I~ ~ , as it fol lows for 
general  f2 f rom its applicat ion in this special case to the set K = {fi : u E K }. 

Let  ~ > 0 be given and choose  G ~ IR n such that for all u E K 

lu(x)l  p d x  < - .  (23) 
,--d 3 

For any r/ > 0 the funct ion J~ �9 u defined as in (18) be longs  to C ~ (IR") and in 
part icular  to C ( G ) .  If  ~p ~ C0(R ~ ), then by H61der's inequality,  

�9 , ( x )  - , ( x ) l  : . 4 ( y ) ( c / ) ( x  - y) - ~ ( x ) )  ay 

Jn(y) lT_ycp(x)  - 4~(x)[ p < dy .  
d O  rl 

Hence  

< sup I ITh~  - -  ~11 �9 

hEB. 
If  u 6 LP (IR n ), let {~bj } be a sequence  in Co (IR n ) converging to u in L p norm. By 

2.29(c),  {J~ �9 4~j} is a Cauchy  sequence  converging to Jo �9 u in L p (It{ n ). Since 
also Th~j --+ Thu in LP(I[{  n ), we have 

< sup II t h  u - u lip 114  � 9  - ,ll  _ h6B~ 

Now (21) implies  that limlhl__,0 IIThu -- Ullp = 0 un i formly  for u E K.  Hence  

-- 0 un i formly  for u E K Fix ~ > 0 so that l i m ~ 0  I[ J~ * u - u lip 

f__ IJrl , bl(X) -- bt(x)l p dx < 
3 . 2 p - 1  

for all u E K.  

(24) 

) 1/p 
[ J , * u ( x ) [  < sup Jo(y)  

~ k y E R  n 
Ilullp 

We show that {Jo �9 u : u 6 K} satisfies the condi t ions of the Arzela-Ascol i  
T h e o r e m  1.33 on G and hence  is p recompac t  in C ( G ) .  By (19) we have 
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which is bounded uniformly for x 6 I~ n and u 6 K since K is bounded in LP (/~n) 
and r/is fixed�9 Similarly, 

) 1/p 
l J,7 * u(x + h) - J,7 * u(x)l < sup J,7(Y) 

\y~Rn 
IlZhu -- ullp 

and so limlhl~0 J,7 * u(x + h) = J,7 * u(x)  uniformly for x 6 IR n and u 6 K. Thus 
{Jo �9 u �9 u 6 K} is precompact in C(G) ,  and by Theorem 1.19 there exists a 
finite set {~Pl . . . . .  ~Pm} of functions in C(G)  such that if u 6 K, then for some j ,  
1 < j  < m ,  a n d a l l x 6 G w e h a v e  

174(x) - J~ * u(x)l < 
3 . 2 p - 1 .  vol(G) 

This, together with (23), (24), and the inequality (la[ + Ibl) p ~ 2p-l( lal  p + Ibl p) 
of Lemma 2.2, implies that 

f•n lU(X)--~/j(X)] p dx  = fR"--a-- [U(X)I p dx  + f_ff lU(X) -- ~j(x) l  p dx  

< ~ + 2 p-1 [U(X) -- J'7 * U(x)l p + [J" * U(X) -- ~j(X)[ p) dx  

E ( E E ) 
< 3 + 2P-1 3 2p-1 + - __ v o l ( G )  = E. 

�9 3 . 2 p - 1  vol(G) 

Hence K has a finite E-net in LP (R n ) and is precompact there by Theorem 1.19. | 

2.33 T H E O R E M  Let 1 < p < cx~ and let K C L p (~). Suppose there exists 
a sequence { f2j } of subdomains of f2 having the following properties: 

(i) f2j C f2j+l for each j .  

(ii) The set of restrictions to f2j of the functions in K is precompact in L p (~ j )  
for each j .  

(iii) For every e > 0 there exists j such that 

L < E lu(x)l p dx  for every u 6 K. 

Then K is precompact in L P (~).  

Proof.  Let {un} be a sequence in K. By (ii) there exists a subsequence {U~n 1~} 
whose restrictions of f21 converge in LP(~I) .  Having selected {U~n 1~ } . . . . .  {U~nk~}, 
we may select a subsequence {U~n k+l~ } of {u~ k) } whose restrictions to f2k+l converge 
in LP(~k+I). The restrictions of {u~ k+l~} to f2j also converge in LP(~j) for 
1 < j  < k b y ( i ) .  
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Let v~ -- u~ ~) for n -- 1, 2 , . . . .  Clearly {v~} is a subsequence of {u~}. Given 

e > 0, (iii) assures us that there exists j such that 

f ~  E IUn(X) --  Vm(X)]  p d x  < - 
_~j  2 

for all n, m -- 1, 2 . . . . .  Except for the first j - 1 terms, { vn } is a subsequence of 

{u~J)}, so its restrictions to ~ j  form a Cauchy sequence in L p (~j). Thus for n, m 

sufficiently large, 

I V n ( X )  - -  l )m(X) l  p d x  < - 
2 '  

and 

~2 lVn(X)  --  13m(X)[ p d x  < E. 

Thus {vn} is a Cauchy sequence in LP(~) and so converges there. Hence K is 

precompact  in L P (g2). I 

Uniform Convexity 

2.34 As noted previously, the parallelogram law in an inner product space guar- 

antees the uniform convexity of the corresponding norm on that space. This 
applies to L 2 (~) .  Now we will develop certain inequalities due to Clarkson [Clk] 
that generalize the parallelogram law and verify the uniform convexity of L p (~) 
for 1 < p < cx~. 

We begin by preparing three technical lemmas needed for the proof. 

2.35 L E M M A  If 0 < s < 1, then f ( t )  -- (1 - s t ) / t  is a decreasing function 

o f t  > 0. 

Proof .  f ' ( t )  - ( 1 / t Z ) ( g ( s  t) - 1) where g ( r )  - -  r - r ln r .  Since 0 < s t < 1 

and since g ' ( r )  - - l n r  _> 0 for 0 < r < 1, it follows that g ( s  t) < g(1) - 1 

whence f '  ( t )  < O. I 

2.36 L E M M A  I f l  < p < 2 a n d 0 < t  < 1, then 

< -Jr- t p (25) 
2 + 2 - 

where p '  = p / ( p  - 1) is the exponent conjugate to p. 

Proof .  Since equality holds in (25) if either p - 2 or t - 0 or t - 1, we 

may assume that 1 < p < 2 and that 0 < t < 1. Under  the transformation 
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t -- (1 - s)/(1 + s), which maps 0 < t < 1 onto 1 > s > 0, (25) reduces to the 
equivalent form 

1 
=((1 + s) p + (1 - s) p) - (1 + sP') p-1 > O. 
2 "  

(26) 

The power series expansion of the left side of (26) takes the form 

2 k=o k 
1 P ( - - s ) k - - E  p - - 1  sp, k 

+ 2 k=0 k k=o k 

_ ~ ( ~ k ) S Z k _  ~ p - 1  sp, k 
k=o ~=o k 

= ~ I ( 2 k ) S 2 k  - t ~ k - 1  - 1  1)sP'(2k-1)--( p ) s  2p'k] 
~=1 2k ' 

where 

{P] -- 1 and {P] p ( p -  1 ) ( p - 2 ) . . .  ( p - k  + 1) k > 1 
0 k k! ' - " 

The latter series certainly converges for 0 < s < 1. We prove (26) by showing 
that each term of the series is positive for 0 < s < 1. The kth term (in square 
brackets above) can be written in the form 

p ( p -  1 ) ( 2 -  p ) ( 3  - p ) . . .  ( 2 k -  1 - p )  2k 
s 

(2k)! 

(p - 1 ) ( 2 -  p ) . . .  ( 2 k -  1 - p) p'(2k-1) ( p -  1 ) ( 2 -  p ) . . .  ( 2 k -  p)szkp, 
- s -a t- 

(2k  - 1)! (2k)! 

[ sp 1, 2, 2k 1 ( 2 -  p ) . . . ( 2 k  P)s2 ~ p(p 1) p 1 

-- ~ s  1)! 2k(2k - p) 2k - p 

(2- p)... (2k- p) = F1-S (2k-p)/(p-1) 1-sBk/(P-1) 1 
= ~ s  1)! s L ( 2 s  2 k / ( p - l )  J"  

The first factor is positive since p < 2; the factor in the square brackets is positive 
by Lemma 2.35 since 0 < (2k - p)/(p - 1) < 2k/(p - 1). Thus (26) and hence 
(25) is established. | 

2.37 L E M M A  Letz ,  w 6 C .  I f l  < p < 2 a n d p ' - p / ( p - 1 ) , t h e n  

Z -+- w lP' 
2 + 

ZmW 
2 

1 1 1 / (p- l )  
<_ ~lzl p + ~lwl P . (27) 



Uniform Gonvexity 43 

If 2 < p < oo, then 

z + w  

2 

P 
+ 

Z-- lI3 
2 

1 1 
~lzl  p + ~]wl p. (28) 

Proof .  Since (27) obviously holds if z - 0 or w - 0 and is symmetric in z and 

w, we can assume that lzl >_ Iwl > 0. I f w / z  = re i~ w h e r e 0 _ <  r _< 1 and 
0 < 0 < 27r, then (27) can be rewritten in the form 

1 + r e  iO ]P' 

2 + 

1 - re i~ 

2 

P' ( ~ 2 )  1~(p-l) 
<__ -Jr- r p �9 (29) 

If 0 -- 0, then (29) is just the result of Lemma 2.36. We complete the proof  of 
(29) by showing that for fixed r, 0 < r < 1, the function 

f (O) -- I1 + rei~ -+ - I1 -- rei~ p' 

has a max imum value for 0 < 0 < 2zr at 0 = 0. Since 
m 

f ( O )  - (1 + r 2 + 2r cosO) p'/2 -Jr- (1 + r 2 - -  2r cosO) p'/2, 

satisfies f (2zr - 0) -- f (Tr - 0) = f (0), we need consider f only on the interval 
0 _< 0 _< zr/2. Since p '  >_ 2, on that interval 

' -1 f '  (0) = - -p ' r  sin 0 [(1 + r 2 + 2r cos 0)(p'/2)-i __ (1 + r 2 -- 2r cos 0) (p/2) ] 5 0. 

Thus the max imum value of f does indeed occur at 0 - 0 and (29), and therefore 
also (27), is proved. 

If 2 < p < e~, then 1 < p '  _< 2, and we have by interchanging p and p '  in (27) 
and using Lemma 2.2, 

z + w  

2 

P 
+ 

Z--Ill) 
2 

< (~]zlp, 1..~_2 ]//3 ]p' )l /(p'-l)  

= ~ [ z I P ' +  -~]w] p' 

< 2(P/P')-I [ ( l )  pip' ( ~ )  - ~ ] z i P +  

1 1]zip + ]wlP 
- 2  -2 ' 

p/p' 
Iwl p] 

so that (28) is also proved. | 
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2.38 T H E O R E M  (Clarkson's Inequalities) Let u, V E LP(~) .  

1 < p < cx~ let p '  -- p / ( p -  1). If 2 _< p < c~, then 
For 

2 

u + v  

2 

P 

+ 
P 

p'  

+ 
P 

l g m  l) 

2 

U m l3 

2 

P 1 1 

P 

1 1 

P 

p ' - I  

(30) 

(31) 

I f l  < p < 2 ,  then 

u + v  

2 

u -k- v 

2 

p! 

Jr 
P 

P 

+ 
P 

u - v liP' (~ Ilullp p +21 ilvllpp)p'-I 
2 p 

u - v i i  p 1 1 2 >-- llull  + lloll . 

(32) 

(33) 

Proof.  For 2 < p < cxz, (30) is obtained by using z = u(x) and w = v(x) 
in (28) and integrating over f2. To prove (32) for 1 < p < 2 we first note that 
II lul p' I1~_1 - II ulIp' for any u ~ LP(~) .  Using the reverse Minkowski inequality 

(7) corresponding to the exponent p -  1 < 1, and (27) with z - u(x) and 
w - v(x),  we obtain 

u + v  

2 

pt 

+ 
P 

U m V  

2 

p! 

m 

P 

u + v  

2 
+ 

p-1 
u -2 riP' 

p - 1  

u(x) + v(x) u(x) - v(x) < + 
- 2 2 

[f~(1 1 ) ]p'-I <_ -~lu(x)l p + ~lv(x)l  p dx 

1 1 1 
= ll.ll'; + ll ll 

I 1/(p-l) 

which is (32). 

Inequality (31) is proved for 2 < p < ec by the same method used to prove (32) 
except that the direct Minkowski inequality (5), corresponding to p - 1 > 1, is 
used in place of the reverse inequality, and in place of (27) is used the inequality 

~+~ 
2 

p! 

+ 
~ - ~  

2 

p,) p-1 
1 1 

>__ ~]~]P -+- ~]r/] p, 
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which is obtained from (27) by replacing p by p' ,  z by ~ + r/, and w by ~ - r/. 

Finally, (33) can be obtained from a similar revision of (28). 

We remark that if p -- 2, all four Clarkson inequalities reduce to the paral lelogram 
law 

Ilu + vii:: + Ilu - vll~ - 2 ]lul]~ + 2 Ilvll~. l 

2.39 T H E O R E M  If 1 < p < oo, then L p (Q) is uniformly convex. 

Proof .  Let u, v E LP (f2) satisfy II u lip - II v lip - 1 and II u - v lip >_ E where 
0 < E < 2. If 2 < p < c~, then (30) impl ies  that 

u + v  

2 

P ~sP 

< 1  
- -  2 P  p 

If 1 < p < 2, then (32) implies that 

u + v  

2 

p '  6 p '  

< 1  
- -  2 P '  " p 

In either case there exists 3 -- 6(~) > 0 such that II(u + v)/211p ~ 1 - 3. I 

See [BKC] for sharper information on L p geometry. 

2 .40  C O R O L L A R Y  L p (f2) is reflexive if 1 < p < oo. I 

This is a consequence of uniform convexity via Theorem 1.21. We will give a 
direct proof  after calculating the normed dual of L p (~). 

The Normed Dual of L v ( I 2 )  

2.41 ( L i n e a r  F u n c t i o n a l s )  Let 1 _< p _< oo and let p '  be the exponent 
conjugate to p. Each element v ~ Lp' (f~) defines a linear functional L~ on Lp ( ~ )  

via 

Lv(u )  -- I u ( x ) v ( x ) d x ,  u E LP(f2) .  
de2 

By H61der's inequality IL~(u)l ~ Ilullp Ilvllp,, so that Lv 6 [LP(~)]  ' and 

ILL,; [LP(K2)]'II ~ Ilvllp,. 

Equality must  hold above. If 1 < p < oo, let u(x )  - -  IU(x)IP'-2I)(X) if V(X) :/: 0 

and u(x )  -- 0 otherwise. Then u ~ LP(~) and Lv(u )  -- ]]ullp ]lvllp,. 

Now suppose p - 1 so p '  -- oo. If ]iv lip, -- 0, let u(x )  -- O. Otherwise let 
0 < e < []vl]~ and let A be a measurable subset of f2 such that 0 < # ( A )  < oo 
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and Iv(x)1 > [ I v l l ~ - e  on A. L e t u ( x )  = v ( x ) / l v ( x ) l  on A a n d u ( x )  = 0 
elsewhere. Then u 6 L I ( ~ )  and Lv(u)  > Ilu[il ([[vl[~ - e ) .  Thus we have shown 

that 
IIL~; [ L P ( ~ ) ] ' I I  = Ilvl[p,, (34)  

so that the operator 12 mapping v to Lv is an isometric i somorphism of L p' (~ )  

onto a subspace of [ L P (~2) ]'. 

2.42 It is natural to ask if the range if the i somorphism s is all of  [LP(~) ]  '. 
That is, is every continuous linear functional on L p (~)  of the form Lv for some 
V 6 L p' (~).9 We will show that such is the case if 1 < p < c~. For p -- 2, 
this is an immediate  consequence of the Riesz Representat ion Theorem 1.12 for 
Hilbert  spaces. For general p a direct proof  can be based on the Radon-Nikodym 
Theorem 1.52 (see [Ru2] or Theorem 8.19). We will give a more  elementary proof  
based on a variational argument  and uniform convexity. We will use a limiting 

argument  to obtain the case p -- 1 from the case p > 1. 

2.43 L E M M A  Let 1 < p < cx~. If L 6 [LP(~) ]  ', and IlL; [LP(~)]'II - 1, 

then there exists a unique w ~ L P ( ~ )  such that liwllp - L ( w )  = 1. Dually, if 
w 6 L p (f2) is given and II w II p = 1, then there exists a unique L E [L p (f2) ]' such 

that IlL; [LP(f2)]'II = t ( w )  -- 1. 

Proof .  First assume that L 6 [LP(~)] ' is given and IlL; [LP(~2)]'II = 1. Then 
there exists a sequence {w,} 6 L P ( ~ )  satisfying Ilwnllp = 1 and such that 
lim,__,~ IL(w,) l  = 1. We may assume that IL(w,) l  > 1/2 for each n, and, 
replacing w, by a suitable multiple of w,, by a complex number  of unit modulus,  
that L(llOn) is real and positive. Let e > 0. By the definition of uniform convexity, 
there exists a positive number  6 > 0 such that if u and v belong to the unit ball of  
L P ( ~ )  and if II(u + v)/2llp > 1 - 6 ,  then Ilu - Vllp < ~. On the other hand, there 
exist an integer N such that L (Wn) > 1 - 6 for all n > N. When  m > N also, we 

have that L((wm + w , ) / 2 )  > 1 - ~ ,  and then ]lWm - Wnllp < E. Therefore {w,} is 
a Cauchy sequence in L p (~)  and so converges to a limit w in that space. Clearly, 

Ilwllp = 1 and L ( w )  = l i m n ~  L(wn)  -- 1. For uniqueness,  if there were two 

candidates v and w, then the sequence {v, w, v, w . . . .  } would have to converge, 

forcing v - w. 

Now suppose w ~ LP(f2) is given and IlW[Ip = 1. As noted in Paragraph 2.41 the 

functional Lv defined by 

L~(u) -- fa u(x)v(x) dx, u ~ LP (s2), (35) 

where 
Iw(x)[P-2w(x)  i f w ( x )  =/= 0 (36) 

V(X) -- 0 otherwise 
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satisfies L~(w)  = Ilwllp p -- 1 and ILL,; [LP(K2)]'II - I l v l l p ,  : Ilwll p i p ' -  1. It re- 
mains to be shown, therefore, that if L1, L2 E [LP(f2)] ' satisfy IlL1 II -- ILL211 -- 1 
and Ll ( to)  = L2(w) = 1, then L1 = L2. Suppose not. Then  there exists 
u �9 LP(f2)  such that Ll(U) 5~ L2(u).  Replacing u by a suitable mult iple of  u, we 
may assume that L1 (u) - L2(u) = 2. Then  replacing u by its sum with a suitable 
mult iple of  to, we can arrange that Ll(U) = 1 and L2(u) = - 1 .  If t > 0, then 

L ( w  + tu)  = 1 + t. Since IIL~ II -- 1, therefore IIw + tulip > 1 + t. Similarly, 
L 2 ( w -  tu)  = 1 + t and so I I w -  tulip > 1 + t. If 1 < p _< 2, Clarkson's  
inequali ty (3 3) gives 

1 + t p Ilull p -- (to + tu)  + (w - tu) p + (w + tu) -2 (w - tu) p 
2 p p 

1 1 
- 2  > - I I w  + tull p + ~ IIw - tull p _> (1 + t) p, 

which is not possible for all t > 0. Similarly, if 2 _< p < oo, Clarkson 's  inequality 
(31 ) gives 

,. ll 1 -+- t p' Ilullp p' - (w + tu)  + (to - tu)  + 
2 p 2 p 

>__ IIw + tull p + ~ IIw - tull p ___ (1 -q- t) p', 

which is also not possible for all t > 0. Thus no such u can exist, and L1 -- Le. 1 

2.44 THEOREM (The Riesz Representation Theorem for LP(~2)) Let 
1 < p < cx~ and let L E [LP (f2) ]'. Then  there exists v E L p' (f2) such that for all 
U �9 L p (f2) 

o 

L ( u )  -- Lv (u )  = Je  u ( x ) v ( x )  dx .  

Moreover ,  Ilvllp, -- IlL; [LP(f2)]'II. Thus [LP(f2)] ' ~ L p'(f2); [LP(f2)] ' is iso- 

metrically isomorphic  to L p' (f2). 

Proof. I f L  = 0 we may take v = 0. Thus we can assume L 5~ 0, and, 

without  loss of  generality, that IlL; [LP(f2)]'II -- 1. By L e m m a  2.43 there exists 

to E LP(f2)  with Ilwllp -- 1 such that L ( w )  = 1. Let v be given by (36). Then  

Lv, defined by (35), satisfies IIL~; [LP(f2)]'II - 1 and L~(w)  = 1. By L e m m a  

2.43 again, we have L = L~. Since Ilvllp, -- 1, the p roof i s  complete.  1 

2.45 THEOREM (The Riesz Representation Theorem for L1(~2)) 
L E [L 1 (f2) ]'. Then  there exists v E L ~ (f2) such that for all u E L 1 (f2) 

Let 

L ( u )  = f a  u ( x ) v ( x )  d x  
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and Iloll~ = IlL; [LI(K2)]'II. Thus [LI(~)]  ' =--- L~(f2) .  

Proof.  Once again we assume that L r 0 and lit; [ t l(f2)] ' l l  = 1. Let us 
suppose, for the moment,  that ~ has finite volume. If 1 < p < cx~, then by 
Theorem 2.14 we have L P ( ~ )  C L I ( ~ )  and 

Ig(u)l ~ Ilulll ~ (vol(~2)) 1-(l/p) Ilullp 

for any u ~ L P ( ~ ) .  Hence L 6 [LP(~)] ' and by Theorem 2.44 there exists 

Up C= L p' (~2) such that 

L(u) -- ~ u(X)Vp(X) dx, u ~_ L p (~)  (37) 

and 

I1  11 , (38) 

Since C ~  (f2) is dense in L p (~)  for 1 < p < ~ ,  and since for any p, q satisfying 
1 < p, q < cx~ and any 4~ 6 C ~  (S2) we have 

dp(X)Vp(X) dx - L(r  = ~(X)Vq(X) dx, 

it follows that Vp = l)q a.e. on f2. Hence we may replace Vp in (37) with a function 
v belonging to L p (~)  for each p, 1 < p < c~, and satisfying, following (38) 

Ilvllp, <__ (vol(~))l-(1/P) = (vol(~))1/p' .  

It follows by Theorem 2.14 again that v E L ~ ( ~ )  and 

I[l)[Ioo ~ p!im (vol(~"2)) l i p ' -  1. (39) 

The argument of Paragraph 2.41 shows that there must be equality in (39). 

Even if f2 does not have finite volume, we can still write f2 - [,.Jj~l G j, where 
Gj = {x 6 f2 : j - 1 < Ix l < j} has finite volume. The sets Gj are mutually 
disjoint. Let ) j  be the characteristic function of Gj. If Uj E L 1 (G j), let fij denote 
the zero extension of uj outside Gj. Let Lj(uj) = L(fij). Then Lj E [LI(Gj)] ' 
and II Lj; [L 1 (G j) ]' II _ 1. By the finite volume case considered above, there exists 

l)j E L ~ (G j) such that II II 1 and 

Lj(uj) ~ fG uj(X)Uj(X) dX -~ f ~j(X)v(X) dX, 
j 



Mixed-Norm L p Spaces 49 

where v (x )  -- v j ( x )  for x E Gj ,  j -- 1, 2 . . . . .  so that Ilvll~ ~ 1. If u E L1(~2), 
we put u = Y~jc~__ 1 Xjlg; the series is norm convergent in L](f2) by dominated 
convergence. Since 

t L Xju -- ~ L j (X jU)  -- ~ X j ( x ) u ( x ) v ( x )  d x ,  
j= l  j= l  j= l  

we obtain, passing to the limit by dominated convergence, 

L ( u )  -- f a  u ( x ) v ( x )  dx .  

It then follows, as in the finite volume case, that I[vIIoc = 1. I 

2.46 T H E O R E M  (Reflexivity of/.,P(~2)) LP(~2) is reflexive if and only if 
1 < p < e c .  

Proof.  Let X -- L p (f2), where 1 < p < co. Since X '  ~" L p' (f2), we have 

X" ~ [LP'(f2)] ~ "~ L p (f2). 

That is, for every element w E X" there exists u E LP(f2)  -- X such that 
w(v )  - v (u)  - J u ( v )  for all v E X ', where J is the natural isometric isomorphism 
of x into X". (See Paragraph 1.14.) Since the range of J is therefore all of X", X 
is reflexive. I 

Since L l(f2) is separable while its dual, which is isometrically isomorphic to 
L~(f2)  is not separable, neither L1 (E2) nor L~(f2)  can be reflexive. 

2.47 The Riesz Representation Theorem cannot hold for the space L ~ (f2) in a 
form analogous to Theorem 2.44, for if so, then the argument of Theorem 2.46 
would show that L 1 (f2) was reflexive. The dual of L~(f2)  is larger than L I(f2). 
It may be identified with a space of absolutely continuous, finitely additive set 
functions of bounded total variation on f2. See, for example, [Y, p 118] for details. 

Mixed-Norm Lp Spaces 

2.48 It is sometimes useful to consider L p type norms of functions on/~n in- 

volving different exponents in different coordinate directions. Given a measurable 
function u on R n and an index vector p = (pl . . . . .  Pn) where 0 < pi <_ c~ for 
1 < i < n, we can calculate the number Ilullo by calculating first the LP.-norm 
of u (x l, x2 . . . . .  Xn) with respect to the variable x l, and then the L P2-norm of the 
result with respect to the variable x2, and so on, finishing with the L P"-norm with 
respect to Xn" 
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where 

I [ f l l L q ( d t ) - - [ f L l f ( t  . . . .  . . . .  ) lqdt]  

esssup I f (  . . . .  t . . . .  )1 
t 

1/q 

i f O < q  < c ~  

i f q  = cx~. 

Of course, II. IlLq(dt) is not a norm unless q > 1. For instance, if all the numbers 

Pi are finite, then 

Ilullp ---- . . .  [U(Xl . . . . .  xn)l pl dxl dx2 d x 3 . . ,  dxn 
O0 O0 

We will denote by L p -- L p (I~ n) the set of (equivalence classes of almost every- 

where equal) functions u for which [[ullp < oo; this is a Banach space with norm 
II" lip if all pi _> 1. The standard reference for information on these mixed-norm 
spaces is [BP]. All that we require about mixed norms in this book are two el- 
ementary results, a version of H61der's inequality, and an inequality concerning 
the effect on mixed norms of permuting the order in which the L P;-norms are 

calculated. 

2 . 4 9  ( H i i l d e r ' s  I n e q u a l i t y  f o r  M i x e d  N o r m s )  Let  0 < Pi <_ oo and let 
0 < qi <_ oo for 1 _< i _< n. If u ~ L p and v ~ L q, then uv ~ L r where 

1 1 1 
- -  = t , 1 < i < n, ( 40 )  
ri Pi qi 

and we have H61der's inequality: 

]IuVlIr ~ Ilu[lp I[v]lq 

This inequality can be proved by simply applying the (scalar) version of H61der's 
inequality given in Corollary 2.5 one variable at a time. As in Corollary 2.5, pi 
and qi are allowed to be less than 1 in this form of H61der's inequality. The n 
equations (40) are usually summarized with the convenient abuse of notation 

1 1 1 

r p q 

The above form of H61der's inequality can be iterated to provide a version for a 

product of k functions: 

uj <_ [lujllpj where _ -  __. 
j = l  r j = l  r j = l  PJ 

1/p 
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2.50 (Permuted Mixed Norms) The definition of  Ilullp requires the suc- 
cessive L pi-norms to be calculated in the order of appearance of the variables 
in the argument  of u. This order can be changed by permuting the arguments 
and associated indices. If cr is a permutat ion of the set {1, 2 . . . . .  n}, denote 
crx = (x~(1), x~(2) . . . . .  x~(,)), and let crp be defined similarly. Let cru be defined 
by cru(crx) = u(x),  that is, cru(x) = u(cr - lx) .  Then IIcrull~p is called a permuted 
mixed norm of u. For example,  if n = 2 and cr { 1, 2} = {2, 1 }, then 

Ilullp - lu(Xl, x2)l pl dxl dx2 

Es_: ] Ilcru II~p - lU(Xl, x2)l p2 d x 2  d x l  �9 

Note that Ilullp and IIcrull~p involve the same Lpi-norms with respect to the same 
variables; only the order of evaluation of those norms has been changed. The 
question of comparing the sizes of these mixed norms naturally arises. 

2.51 THEOREM (The Permutation Inequality for Mixed Norms) Given 
an index vector p, let or, and cr* be permutations of { 1, 2 . . . . .  n } having compo- 
nents in nondecreasing order and nonincreasing order respectively: 

Per,(1) _< P~r,(2) _< ' ' "  _< P~,(,), 

P~*(1) >_ Per,(2) > _ " "  >_ P~*(,,). 

Then for any permutat ion cr of { 1, 2 . . . . .  n } and any function u we have 

II II _ ll , ll p _< II 

Proof. Since any permutat ion can be decomposed  into a product  of special 
permutat ions each of which transposes two adjacent elements and leaves the rest 
unmoved,  proving the inequality reduces to demonstrat ing the special case: if 

Pl _< P2 < ~ ,  then 

[S_e~o ii~ex ~ lp2/p, ]lip2 [S_e~o IS-~ I p'ip2 ] lip' lul p' dxl d x 2  < lul p2 d x 2  d x l  . 

But this is just a version of Minkowski ' s  inequality for integrals (Theorem 2.9), 
namely 

Iv(x1, x2)l dxl _< IIv(xl, ") IlLrr dxl 
c~ L r ( d x 2 ) cx3 

applied to v = lul p' with r = pz /p l .  The case where P2 = cx~ is easier, l 
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2.52 R E M A R K  Similar permutat ion inequalities hold for mixed norm s 
spaces and for hybrid mixtures of s and L q norms. We will use such inequalities 

in Chapter  7. 

The Marcinkiewicz Interpolation Theorem 

2.53 (Distribution Functions) Let ft be a domain in R" and u be a measurable  

function defined on ft. For t > 0, let 

~ u , t  - {x  ~ ~ �9 l u ( x ) l  > t } ,  

We define the distribution funct ion of u to be 

~u(t) - -  ]-s ( f t u , t )  , 

where / z  is the Lebesgue measure  on I~ n . Evidently 8u is nonincreasing for t > 0 

and if lu(x)l _< Ip(x)l a.e. on ft, then 8u(t) < go(t) for t > 0. 

Since lu(x)l > t implies lu(x)l > t + ( I / k )  for some integer k > 0, we have 
ftu,t = [,.J~=l ft,,t+(1/k) and it follows that 8u is right continuous on the interval 
[0, ~ ) .  Similarly, if lu(x)l is an increasing limit of  {luj(x)l} at each x, then 

O~ 
lu(x)l > t implies luj(x)l  > t for some j and so ftu,t = [,.Jj=l ftuj,t. Hence 
l i m j ~  8uj (t) = 8u(t). 

If lu(x) + v(x)l > t, then either lu(x)l > t /2  or Ip(x)l > t / 2  (or both), so that 

f2,+o,t C ft,,t~2 t3 ft,,t~2 and hence 

8,+v(t) < 8u(t /2)  + 8v(t /2) .  (41) 

Now suppose u ~ L p (ft)  for some p satisfying 0 < p < cxz. For t > 0 we have 

u,t 

f rom which we obtain Chebyshev's inequality 

~.( t)  - ~ (~ . , , )  ~ t -p  Ilullp p . (42) 

2.54 L E M M A  I f 0 < p < c ~ , t h e n  

f0 Ilullp p - iu(x)l p dx  -- p tp-16u(t) dt .  (43) 
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Proof. First suppose lul is a simple function, say 

lu(x)l- aj on Aj C f2, 1 < j < k, 

where 0 < a l  < a 2  < ' ' '  < a~ and Ai A Aj is empty for i ~ j .  Then 

~ = 1  #(Ai) if  t < al 

~ . ( t ~  - F~ ~ #(Ai) i fa j_]  <_ t < aj, i=j 
0 i f t  > a~. 

(2 < j < k) 

Therefore, 

p t p - la . ( t )  dt  - p + ~'= --1 -Jr- t p-16u(t) dt 

k k k 
= a p Z # ( A j ) +  ~ ( Op - - o P l )  Z # ( a i )  

j=l j=2 i=j 
k 

= ~ a P # ( A J ) -  Ilull p , 
j=l 

so (43) holds for simple functions. By Theorem 1.44, if u is measurable, then lu[ 
is a limit of a monotonically increasing sequence of measurable simple functions. 
Equation (43) now follows by monotone convergence. | 

2.55 (Weak L p Spaces) If u is a measurable function on ~,  let 

)lip 
[U]p -- [U]p,~ -- suptP(~u(t) 

\ t>O 

We define the space weak-L p (f2) as follows: 

w e a k - L P ( a ) -  {u " [ulp < e~}. 

It is easily checked that [CU]p - Icl[u]p for complex c, but [.]p is not a norm on 
weak-L p (f2) because it does not satisfy the triangle inequality. However, by (41) 

)] /p  
[u -+- V]p -- sup tP~u+v(t) 

\ t > 0  

_< 2 p sup 6 , ( t /2 )  -Jr- 2 p sup 6v(t/2) 
t>0 t>0 

= 2([U]p + [V]p), 

lip 
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so weak-L p (f2) is a vector space and the "open balls" Br(u) - -  {v E weak-L p (f2) �9 
[v - U]p < r} do generate a topology on weak-LP(f2) with respect to which 
weak-LP (f2) is a topological vector space. A functional [.] with the properties of 
a norm except that the triangle inequality is replaced with a weaker version of the 
form [u + v] < K ([u] + [v]) for some constant K > 1 is called a quasi-norm.  

Chebyshev's  inequality (42) shows that [U]p < Ilu lip so that L p (f2) C weak-L p (f2). 
The inclusion is strict since, if x0 6 f2 it is easily shown that u(x )  = Ix - xol -n/p 

belongs to weak-L p (f2) but not to L p (~) .  

2.56 (Strong and  Weak  Type Opera to r s )  A operator F mapping a vector 
space X of measurable functions into another such space Y is called subl inear  if, 
for all u, v 6 X and scalars c, 

IF(u + v)l _< IF(u)l + IF(v)l,  and 

IT(cu) l  -- Ic l lT(u) l .  

A linear operator from X into Y is certainly sublinear. We will be especially 
concerned with operators from L p spaces on a domain S2 in I~ n into L q (if2') o r  

weak-L q (f2') where ~ '  is a domain in ]R ~ with k not necessarily equal to n. 

We distinguish two important classes of sublinear operators" 

(a) F is of strong type (p,  q) ,  where 1 < p < oc and 1 < q < oc, if F 
maps L p ( f2)  into L q ( ~ ' )  and there exists a constant K such that for all 
U E L p (if2), 

IIg(u)llq,~, < g Ilullp,a. 

(b) F is of weak  type (p,  q) ,  where 1 < p < ec and 1 < q < ec, if F maps 
LP(f2)  into weak-L q (f2') and there exists a constant K such that for all 
u E L p (if2), 

[F(u)]q,~2, < K lib/lip,f2 . 

We also say that F is of weak type (p, oc) if F is of strong type (p, ec). 

Strong type (p, q) implies weak type (p, q) but not conversely unless q - c~. 

2.57 The following theorem has its origins in the work of Marcinkiewicz [Mk] 
and was further developed by Zygmund [Z]. It is valid in more general contexts 
than stated here, but we only need it for operators between LP spaces on domains 
in I~ n and only state it in this context. It will form one of the cornerstones on 
which our proof of the Sobolev imbedding theorem will rest. In that context it 
will only be used for linear operators. 

Because the Marcinkiewicz theorem involves an operator on a vector space con- 
taining two different L p spaces, say X and Y, (over the same domain) it is 
convenient to consider its domain to be the sum of those spaces, that is the vector 
space consisting of sums u + v where u ~ X and v E Y. 
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There are numerous proofs of the Marcinkiewicz theorem in the literature. See, 
for example, [St] and [SW]. Our proof is based on Folland [Fo]. 

2.58 T H E O R E M  (The Marcinkiewicz  Interpolation Theorem) Let 
1 <_ pl <_ ql < cxz and 1 __ p2 _ q2 __ cx~, with ql < q2. Suppose the 

numbers p and q satisfy 

1 1 - 0  0 1 1 - 0  0 
- =  t , - =  t 
p Pl P2 q ql q2 

where 0 < 0 < 1. Let f2 and f2' be domains in I~ n and I~ k , respectively; k may or 

may not be equal to n. Let F be a sublinear operator from L p~ (~)  -+- L p2 (f2) into 

the space of measurable functions on f2'. If F is of weak type (pl ,  ql) and also of 
weak type (p2, q2), then F is of strong type (p, q). That is, if 

[F(u)lqj,f2, < Kj Ilullpj,~, j -- 1,2,  

then 

IlF(u)llq,s~, ~ K Ilullp,a, 

where the constant K depends only on p, pl ,  ql, p2, q2, K1, and K2. 

Proof.  First consider the case where ql < q < q2 < ~ so that pl and p2 are 
necessarily both finite. The conditions satisfied by p and q imply that (1 /p ,  1/q)  
is an interior point of the line segment joining ( p l  1 , q~-l) and (p21 , q21) in the 
(p, q)-plane. Let c be the extended real number equal to q / p  times the slope of 

that line segment; 
Pl (ql - q) PZ(q2 - q) 

c = = . (44) 
ql (pl - p) q2(p2 - p) 

Given any T > 0, a measurable function u on f2 can be written as a sum of a 
"small" part u s,r and a "big" part u B,r defined as follows: 

u(x) if lu(x)l _< T 

u(x)  if lu(x)] > T us, r ( x )  = r lu(x)l 

{~ l u s , r ( x )  = u(x)  - us, r ( x )  -- u(x)  1 

if lu(x)l ~ T 

T ~ i f lu (x) l  > T. 
lu(x)l I 

Since lus , r (x) l  <_ T and luB,r(x)l - max{0, l u ( x ) l -  T} for all x 6 f2, the 
distribution functions of u s,r and u B,r are given by 

{ 6 . ( t )  i f t  < T 
6"sT( t ) - -  0 i f t  > T, 

8us,T ( t ) =  8,( t  + T).  
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It follows, using (43), that 

f~ f0 ~ f0 ~ ]us, T(X)I p2 dx  -- P2 tm-16us, T ( t ) d t  -- P2 tp2-16u( t )d t  

f~ fo ~ fo ~ lUB,T(X)I p' dx  -- Pl tP'--16UB,T(t) d t  -- Pl tP~--16u(t -k- T)  dt  

f~ f~ = Pl ( t -  T ) P l - l ~ u ( t ) d t  <_ Pl t p ' -18u( t )d t .  

Using (43) followed by the sublinearity of F and inequality (41), we calculate 

f~ f0 ~ IF(u) (y ) l  q dy  - q tq - lSF(u) ( t )d t  
t 

fo ~ -- 2qq tq-16F(u)(2t )dt  

fo ~ <_ 2qq tq-l~F(us,r)+F(uB,r)(2t) dt 

<_ 2qq tq-l~F(us,r)(t) dt + 2qq tq-l(~F(us,r)(t) dt. (45) 

This inequality holds for any T > 0; we can choose T to depend on t if we 
wish. In the following, let T = t c where c is given by (44). For positive s, the 
definition of [']s implies that 6v(t) <_ t-Sly]  s. Using this and the given estimate 
[F(v)]q2,~2, < K2 ]]Vllp,~ we obtain 

fo ~ fo ~ tq-16F(us,T)(t)dt < tq - l -q2[F(us ,  r)]qq2 2 d t  

< tq-l-q2(g2 Ilus,rllp2) q~ dt 

q2 _qz/P2 f.]a tq-l-q2 "r p2-18.(r) d r  --< K2 /~2 

Kq2 l~2-qz/P2 12 . 

dt  

Since q2 >_ p2 we can estimate the latter iterated integral 12 using Minkowski's 
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inequality for integrals, Theorem 2.9. 

12 -- L t(q-l-q2)(P2/q2)'gp2-16u(T5 ) dr dt 

I L o c ( f o c  )P2/q2 I q2/p2 <_< tq-l-q2 ('gp2-1(~u(72))q2/P2 dt dr 
l/c [L(X) (S(X) )P2/q2 ]q2/P2 

= "cp2-16. ( r )  t q-l-q2 dt dr  
1/c 

_ 1 rp2-1+[(q-q2)/c](P2/q2)(~u('C ) dr  
q2 - q (1LO0 ) q 2 / P 2 (  1 

-- 72 p- l a u ( 72 ) d .g = 
q2 -- q P(q2 -- q) 

P ~ q2/P2 
Ilu IIp,~ ) 

It follows that 

Lec  ( p2 
2qq tq-laF(us,r) (t) dt < 2 qqKg 2 P(q2 - q) Ilull pp,~ )q2/p2 (46) 

An entirely parallel argument using ql < q instead of q2 > q shows that 

fo ( ql Pl 2qq tq-laF(us,r)(t) dt < 2qqK 1 
P(q ql) 

If ]]ullp,a = 1, we therefore have 

Ilull pp,~ )qi/pl (47) 

IIF(u)llq'a' < K - 2ql/q p(q2 p2K;2-- q) )q2/p2 K ?  ) pl 

+ p(q - ql) 

By the homogeneity of F,  if u 7~ 0 in L p (~), then 

ql/plll/q 

( u) IlF(u)llq,s2,-- F IlUllp,s2 IlUllp,a q,a, 

- I lu l lp ,a  f Ilullp,a q,a '  < K IlUllp,f~ �9 

Now we examine the case where q2 -- oo. It is possible to choose T (depending 
on t) in the above argument to ensure that 6F(us,r) (t) -- 0 for all t > 0. If P2 -- oo, 
the appropriate choice is T - t /K2 for then 

II F (u s,,-~ll ~, ~, -< K2 II u s,T II ~, ~ -< K~ r - ,, 
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and (~F(us, r)(t) --  O. If P2 < oo, the appropriate choice is ( )c 
t 

T =  
K2(P2 Ilull p /p ) l /p2  ' p,f2 

where c - p 2 / ( p 2  - p),  the limit as q2 ~ oo of the value of c used in the earlier 

part of this proof. For this choice of T, 

f0 T iiF(us, )ll 2 < p2 P2 t p2-1 (t) dt ~,~, K2 Ilux,~ll *'~ - -  P2 --  K2 P2 SUs,r 

fo <_ g ~ 2 p 2 T  p2-p t p - 1 6 u ( t )  d t  

fo < g~2p2  Tp2-p tP- l (Su( t )  d t  

-- K ~ 2 p 2 T P 2 - P ( 1 / p )  Ilull p -- tp2 p , f2  ' 

and again (~F(us, r)(t) = 0. In either of these cases the first term in (45) is zero and 

an estimate similar to (47) holds for the second term provided pl  < p2. 

If q2 - o0 and p2 < pl  < oo we can instead assure that the second term in (45) is 
zero by choosing T to force (~F(u,,,)(t) --  0 and obtain an estimate similar to (46) 

for the first term. 

There remains one case to be considered: ql < q < q2 -- ~ ,  Pl  : P -- P2 < oo. 
In this case it follows directly from the definition of [']s that 

tql(~F(u)(t) ~ [F(u)lql 1 < K q, Ilullq'~,, 

and hence ~F(u) <--- (K1 Ilullp,a/ t)  ql. On the other hand, SF(u)(t)  : 0 if we have 

t > T = Ke Ilullp,a >__ IIF(u)ll~,a, .  Thus 

IIF(u)l l  q q,f2' f0 f0 --  q t q - l ~ F ( u ) ( t ) d t  --  q t q - 1 8 F ( u ) ( t ) d t  

fo < q ( K 1  ]]Ullp,~2) ql t q - l -q l  d t -  K q ][ulJql, s2, 

where K is a finite constant because ql < q. This completes the proof, l 
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THE SOBOLEV SPACES Wm'P( ) 

In this chapter we introduce Sobolev spaces of integer order and establish some 
of their most important properties. These spaces are defined over an arbitrary 
domain ~2 C/t{ n and are vector subspaces of various Lebesgue spaces LP (f2). 

Definitions and Basic Properties 

3.1 (The Sobolev Norms)  We define a functional II'llm,p, where m is a positive 
integer and 1 < p < c~, as follows: 

Il U llm, p - IIO~ullp p 
\0_lotl_m 

Ilullm,~ - max IID~ull~ 
0_<lotl_<m 

if 1 < p  < o o ,  (1) 

(2) 

for any function u for which the right side makes sense, I1" lip being, of course, 
the norm in L p (~) .  In some situations where confusion of domains may occur 
we will use IlUllm,p,~ in place of I lul lm,p.  Evidently (1) or (2) defines a norm on 
any vector space of functions on which the right side takes finite values provided 
functions are identified in the space if they are equal almost everywhere in f2. 

3.2 (Sobolev Spaces) For any positive integer m and 1 ~ p ~ oo we consider 
three vector spaces on which ll'llm,p is a norm: 
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(a) Hm'p(~"~) ~ the completion of {u 6 cm(~'2) : Ilullm,p < ~ }  with respect 
to the norm II'llm,p, 

(b) wm'p(~"2) ~ {b/ E L P ( ~ )  : D ~ u  E L P ( ~ )  for 0 < I~1 _< m}, where Dab/ 

is the weak (or distributional) partial derivative of Paragraph 1.62, and 

(c) W o  'p (f2) -- the closure of C~ (S2) in the space W m'p (~2). 

Equipped with the appropriate norm (1) or (2) these are called Sobolev  spaces  over 
f2. Clearly W ~ ( ~ )  -- L p (f2), and if 1 < p < oe, W ~ (f2) -- L p (f2) because 
C~  (f2) is dense in L p (f2). (See Paragraph 2.30.) For any m, we have the obvious 
chain of imbeddings 

W o  'p (~"2) ---+ W m'p (~2) ---+ L p ( ~ ) .  

We will show in Theorem 3.17 that Hm'p(~'2) = w m ' p ( ~ )  for every domain S2. 
This result, published in 1964 by Meyers and Serrin [MS] ended much confusion 
about the relationship of these spaces that existed in the literature before that time. 
It is surprising that this elementary result remained undiscovered for so long. 

The spaces W m'p (~'2) w e r e  introduced by Sobolev [Sol,So2]. Many related spaces 
were being studied by other writers, in particular Morrey [Mo] and Deny and Lions 

m [DL]. Many different symbols (W m'p, H m'p, pm,p, Lp, etc.) have been used to 
denote these spaces and their variants, and before they became generally associated 
with the name of Sobolev they were sometimes referred to under other names, for 
example, as Beppo Levi spaces. 

Numerous generalizations and specializions of the basic spaces W m'p (~'2) have 
been constructed. Much of this literature originated in the Soviet Union. In 
particular, there are extensions that allow arbitrary real values of m (see Chapter 
7) which are interpreted as corresponding to fractional orders of differentiation. 
There are weighted spaces that introduce weight functions into the L p norms; see 
Kufner [Ku]. There are spaces of vector fields that are annihilated by differen- 
tial operators like curl and divergence; see [DaL]. Other generalizations involve 
different orders of differentiation and different L p norms in different coordinate 
directions (anisotropic spaces m see [BIN1, BIN2]), and Orlicz-Sobolev spaces 
(see Chapter 8) modeled on the generalizations of L p spaces known as Orlicz 
spaces. Finally, there has been much work on the interaction between Sobolev 
spaces and differential geometry [Hb] and a flurry of recent activity on Sobolev 
spaces on metric spaces [Hn, HK]. 

We will not be able to investigate the most of these generalizations here. 

3.3 T H E O R E M  W m,p (f2) is a Banach space. 

Proof. Let {b/n} be a Cauchy sequence in wm'P(~'2). Then {D~u}  is a Cauchy 
sequence in L P ( ~ )  for 0 < Ic~l _ m. Since L P ( ~ )  is complete there exist 
functions b/and b/~, 0 < I~1 _< m, such that b/n ~ u and D~un ~ ua in LP(~)as  
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n --+ cx~. Now LP(ff2) Q L~oc(f2) andso/'/n determines a distribution T,n E ~ ' ( f2 )  
as in Paragraph 1.58. For any r 6 ~ ( f l )  we have 

_ J~ l u g ( x ) -  u ( x ) l l r  d x  < IIr I l u n -  ullp IT,, (r 7",(r I 

by H61der's inequality, where p '  is the exponent conjugate to p. Therefore 
T,, (r --+ T , ( r  every r E ~ ( f 2 ) a s  n --+ cx~. Similarly, TO~,n (r --+ T,~ (r 
for every r E ~(f2) .  It follows that 

T,~(r -- lim To~u,,(r -- lim (-1)I~IT, n(D~r -- ( -1) I~IT, (D~r  
n---+ o ~  n---+ o o  

for every r E ~ ( ~ ) .  Thus u~ - D~u in the distributional sense on f2 for 
0 _< I~1 _< m, whence u E W m'p ( ~ ) .  Since l i m n ~  Ilu~ - U llm,p -- 0, the space 
W m' P (f2) is complete. 1 

3.4 C O R O L L A R Y  H m'p (~2) C W m'p (~-'2). 

Proof.  Distributional and classical partial derivatives coincide whenever the 
latter exist and are continuous on S2. Therefore the set 

S -  {~ E cm(~'2) " IIr < cr 

is contained in W m,p (~'2). Since W m,p (~"~) is complete, the identity operator on S 
extends to an isometric isomorphism between H m,p (~), the completion of S, and 
the closure of S in W m'p (~'2). We can identify n m,p (~'2) with this closure. | 

3.5 Several important properties of the spaces W m,p (~'2) c an  be easily obtained 
by regarding W m,p (~'2) as a closed subspace of an L p space on a union of disjoint 
copies of f2. 

Given integers n > 1 and m > 0, let N = N (n, m) be the number of multi-indices 
c~ - (or1 . . . . .  otn) such that I~1 _< m. For each such multi-index ot let f2~ be a copy 
of f2 in a different copy of R ~ , so that the N domains f2~ are de fac to  mutually 
disjoint. Let ~'~(m) be the union of these N domains; ~'-~(m) __ Uic~l< m ~"2ot. Given a 

function u in W m,p ( ~ ) ,  let U be the function o n  ~"2 (m) that coincides with D~u on 
g2~. It is easy to check that the map P taking u to U is an isometry from W m'p (~"2) 

into L p (h"2(m)). Since W m'p (~"2) is complete, the range W of the isometry P is a 
closed subspace of LP(~2(m)). It follows that W is separable if 1 < p < cx~, and 
is uniformly convex and reflexive if 1 < p < cx~. The same conclusions must 
therefore hold for W m'p ( ~ )  - -  p - 1  (W) .  

3.6 T H E O R E M  wm'p(~'2)  is separable if 1 < p < cx~, and is uniformly 
convex and reflexive if 1 < p < cx~. In particular, W m,2 (f2) is a separable Hilbert 
space with inner product 

(U, U)m --  ~ (D~ u, D~ v), 
0_<l~l_<m 

where (u, v) = f~  u ( x ) v ( x )  d x  is the inner product on L2(f2). | 
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Duality and the Spaces W -m,p'(g~) 

3.7 In this section we shall take, for fixed ~ ,  m, and p, the number N, the spaces 
Lp (~(m)) and W, and the operator P to be specified as in Paragraph 3.5. We also 
define 

p 

(u, v) = j~ u(x)v(x) dx 

for any functions u, v for which the right side makes sense. For given p let us 
agree that p '  always denotes the conjugate exponent: 

(N2 

p ' =  p / ( p -  1) 
1 

if p =  1 
i f l  < p < cx~ 
i f p  = cr 

First we extend the Riesz Representation Theorem to the space W m'p (~"~). Then, 
we identify the dual of Wo 'p (f2) with a subspace of ~'(~2). Finally, we show that 
if 1 < p < cxz, the dual of Wo 'p (g2) can also be identified with the completion of 
L p' (f2) with respect to a norm weaker than the usual L p' norm. 

3.8 (The Dual  of LP(g2(m))) To every L ~ (LP(~'J(m))) t, where 1 <_ p < oe, 
there corresponds a unique v ~ L p' (f2 ~m~) such that for every u ~ L p (g2(m)), 

L(u) = far u(x)v(x) dx = 
lal_<m ~ I~l_<m 

where u~ and v~ are the restrictions of u and v, respectively, to f2~. Moreover, 

Thus 

This is valid because L p (~(m)) is, after all, an L p space, albeit one defned  on an 
unusual domain. 

3.9 T H E O R E M  (The Dual  of Wm'P(g2)) Let 1 ~ p < ee. For every 
L ~ (W m'p (f2))' there exist elements v ~ L p' (~2 (m)) such that if the restriction of 
v to ~2~ is v~, we have for all u ~ W m'p (g2) 

L(u)  = Z (D~u' v~). (3) 
O___lul___m 

Moreover 

ilL; ( w m ' P ( ~ ) ) ' [ ] -  inf Ilv; LP'(~(m))]]-- min BeY; LP'(~(m))]], (4) 

the infimum being taken over, and attained on the set of all v ~ L p' (~"~(m)) for 
which (3) holds for every u E W m'p (~'~). 
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If 1 < p < ec, the element v E L p' (~-'~(m)) satisfying (3) and (4) is unique. 

Proof. A linear functional L* is defined as follows on the range W of the operator 
P defined in Paragraph 3.5" 

L * ( P u )  -- L ( u ) ,  u E wm'P(~'2). 

Since P is an isometric isomorphism, L* ~ W '  and 

By the Hahn-Banach Theorem 1.13 there exists a norm preserving extension L of 
L* to all of L p (~(m)), and, as observed in Paragraph 3.8 there exists v E L p' (~(m)) 
such that if u ~ L p ([2(m)), then 

L(u) - ~ (u~, v~). 
0<lal<m 

Thus, for u ~ W m'p (~'2) w e  obtain 

L ( u )  - -  L * ( Y u )  - -  s  - -  E (D~ vo~). 
0_<lotl_<m 

Moreover, 

IlL; ( w m ' p ( K 2 ) ) ' I [ -  ILL*; W ' l l -  IlL; (LP(K2(m)))'I[ = IIv; tP'(K2(m))ll. 

Now (4) must hold because any element v E L p' (~"2 (m)) for which (3) holds for 
every u ~ W m'p (~"2) corresponds to an extension L of L* and so will have norm 
IIv; LP' (f2(m>)l{ not less than IlL; (wm 'p ( f2 ) ) ' l l .  

The uniqueness of v if 1 < p < ec follows from the uniform convexity of 
L p (f2 (m)) and L p' (~(m)) by an argument similar to that in Lemma 2.43. | 

3.10 If 1 < p < cx~ every element L of  (W m'p (~'2)) t is an extension to W m'p (~2) 
of a distribution T E ~ '  (f2). To see what form this distribution takes, suppose L 
is given by (3) for some v E L p' (~(m)) and define T and Tv~ on ~(f2)  by 

E (-1)I~ID~Tv~' Tv~(qS) - <r v~>. 0 ~ lal ~ m, (5) T i 

0<{al<m 

For every 4) E !~(f2) C w m ' p ( ~ )  w e  have T(q~) --  E0<[otl<m T v , , ( D ' ~ )  = L(49) 
so that L is clearly an extension of T. Moreover, by (4) 

IlL; (wm'p(K2)) ' l l  - min{ IIv; LP'(K2(m))II " t extends T given by (5)}. 



64 The Sobolev Spaces Wm' p (~)  

These remarks also hold for L E ( W y  'p (fl)) '  since any such functional possesses 
a norm-preserving extension to W m,p (f2). 

3.11 Now suppose T is any element of ~ ' ( f2)  having the form (5) for some 
v ~ L p' (f2(m)), where 1 _< p1 _< e~. Then T possesses (possibly non-unique) 
continuous extensions to W m'p (f2). However, T possesses a unique continuous 
extension to W y  'p (S2). To see this, for u ~ W y  'p (f2) let {4~n} be a sequence in 
C ~  (f2) = @(g2) converging to u in norm in W y  'p (S2). Then 

IT(4~k)- T(G)I  ___ ~ IT~(D~Ckk - D~Cbn)l 
0___lotl___m 

_< ~ IID~(4~k-- q~n)llp IIv~llp, 
0_<lotl<_m 

<__ 114~ -dPnllm,p IIv; LP'(f2(m))l[ ~ 0 as k, n --+ cxz. 

Thus { T (q~,)} is a Cauchy sequence in C and so converges to a limit that we can 
denote by L(u)  since it is clear that if also {~p,} C ~(f2)  and IlaPn - Ullm,p ~ 0, 
then T (q~n) - T (ap~) ~ 0 as n --+ c~. The functional L thus defined is linear and 
belongs to ( W o  'p (f2)) I, for if u - lim,__.~ ~b n as  above, then 

IZ(u)l = lim IT(G)[  _< lim Ilcknllm,p Ilv; tP'(f2(m))ll = IlUllm,p IIv; ZP'(f2(m))]l. 
n--+cx~ n--+~ 

We have therefore proved the following theorem. 

3.12 T H E O R E M  (The Normed  Dual of W o ' P ( I 2 ) )  If 1 < p < cx~, 

p '  is the exponent conjugate to p, and m > 1, the dual space (Wo 'p (f2))' is 

isometrically isomorphic to the Banach space W -m'p' ( ~ )  consisting of those 
distributions T 6 ~ '  (f2) that satisfy (5) and having norm 

IlZll -- min{llv; tP'(f2(m))ll " v satisfies (5)}. | 

The completeness of this space is a consequence of the isometric isomorphism. 
E v i d e n t l y  W -m'p' (~'2) is separable and reflexive if 1 < p < cx~. 

When W o  'p (f2) is a proper subset of W m,p (~'2), continuous linear functionals on 
W m'p (~'2) a re  not fully determined by their restrictions to C0(f2), and so are not 
determined by distributions T given by (5). 

3.13 (The  ( - - m ,  p ' )  n o r m  on L f f  (I2)) There is another way of characterizing 
the dual of W o  'p (f2) if 1 < p < oe. Each element v ~ L p' (~) determines an 

element Lo of ( W o  'p (f2))' by means of Lo(u)  -- (u, v), because 

[L~(u)[ = I(u, v)l < Ilvllp, [[ullp ___ [Ivllp, IlUllm,p. 

We define the ( - m ,  p ' ) -norm of v ~ L p' (~)  to be the norm of L~, that is 

Ilvll-m,p, = Ilt~; (Wo 'P ( f2 ) ) ' I I -  sup I(u, v)l. 
u~Wo'P (f2), IlUllm,p <_l 
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Clearly Ilvll_m,p, ~ Ilvllp, and for any u E W o  'p(f2) and v E L p' (~)  we have 

I<u, v> l -  IlUllm,p {" ) 
Ilu Ilm,p ' v 

Ilullm,p Iloll_m,p,, (6) 

which is a generalization of H61der's inequality. 

Let V -- {Lv �9 v ~ Lp' (f2)}, which is a vector subspace of (Wo'P(f2)) '. We 

show that V is dense in ( W o  'p (f2))'. To this end it is sufficient to show that if 

F E (Wo'P([2)) '' satisfies F ( L v )  -- 0 for every L~ E V, then F -- 0 in 

( W o  'p (f2))". But since W o  'p (f2) is reflexive, there exists f E W o  'p (f2) cor- 

responding to F E ( W o  'p ([2))" such that ( f ,  v) -- L ~ ( f )  -- F ( L ~ )  = 0 for every 

V E L p' ([2). But then f ( x )  must be zero a.e. in f2. Hence f -- 0 in W o  'p (f2) and 

F -- 0 in (Wo 'P ( f2 ) )  ''. 

Let H -m'p' ( ~ )  denote the completion of L p' ( ~ )  with respect to the norm I] �9 ]l-m,p'. 
Then we have 

n-m'P'(~) ~ ( %  'p(~)), ~ w--m'P'(~-2). 

In particular, corresponding to each v ~ H -m'p' (~ ) ,  there exists a distribution 
Z v E W -m'p' (~2) such that Tv(r  -- l i m n ~ ( 4 ) ,  v~) for every r 6 ~(f2)  and 
every sequence {Vn} C L p' ( ~ )  forwhich l i m n ~  [Ivn - vll_m,p, -- O. Conversely, 

any T E W -m'p' (~2) satisfies T -- T~ for some such v. Moreover, by (6), 

IZ~(4))l _< 114~llm,p Ilvll_m,p,. 

3.14 A similar argument to that above shows that the dual space ( w m , p ( f 2 ) ) ' c a n  

be characterized for 1 < p < ~ as the completion of L p' (f2) with respect to the 
norm 

Ilvll*_m,p,- sup I(u, v)l. 
blEWm'P (~'2), IlUllm,p_<l 

Approximation by Smooth Functions on 
We wish to prove that {~p E C~(f2)  �9 114)llm,p < ~ }  is densein wm'P(~'2). Forthis 
we require the following existence theorem for infinitely differentiable part i t ions  

o f  unity. 

3.15 THEOREM (Partitions of Unity) Let A be an arbitrary subset of I~ n 
and let 6 be a collection of open sets in ~n which cover A, that is, A C U u c 6  u .  
Then there exists a collection ~P of functions ~ E C ~  (R n ) having the following 
properties: 

(i) For every ~ E �9 and every x E ~n, 0 _< ~p(x) <_ 1. 

(ii) If K ~ A, all but finitely many ~p E qJ vanish identically on K. 
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(iii) For every ~p ~ qJ there exists U ~ 6 such that supp (~p) C U. 

(iv) For every x ~ A, we have y ~ ,  ~p(x) = 1. 

Such a collection qJ is called a C ~-partition of  unity for  A subordinate to 6 .  

Proof.  Since the proof can be found in many texts, we give only an outline of 
it. First suppose that A is compact. Then there is a finite collection of sets in 6 
that cover A, say A C ~;=1 Uj. Compact  sets K1 C U1 . . . . .  KN C UN can then 

be constructed so that A C U;=I  Kj. For each j a nonnegative-valued function 
4~j 6 C ~  (U j) can be found such that 4~j (x) > 0 for x 6 Kj. A function 4~ in 

C ~ (I~ n ) can then be constructed so that 4~ (x) > 0 on I~ n and 4~ (x) = y-~N= 1 t~j (X) 
for x 6 A. Now �9 = { 7in : 7rj (x) = 4)j (x)/q~ (x), 1 _< j _< N} has the required 
properties. If A is an arbitrary open set. Then A -- L.Jj~l A j, where 

Aj = {x ~ A : Ixl _< j and dist(x, bdryA)  _> l / j }  

is compact. Taking A0 = A-1 = 0, for each j _> 1 the collection 

tYj - {U A (interior of Aj+I CI A j_2) " U E O} 

covers Aj and so there exists a finite C~ of unity qJj for Aj subordinate 
to tYj. The sum (r(x) = Y~4~1Y~ee*j 4)(x) involves only finitely many nonzero 
terms at each x E a .  The collection qJ = {lp : ~p(x) = ~ ( x ) / o ( x )  for some q~ in 
some qJj if x 6 A, ap (x) = 0 if x r A } has the prescribed properties. 

Finally, if A is arbitrary, then A C B where B is the union of all U E tY and is an 
open set. Any partition of unity for B will do for A as well. | 

3.16 L E M M A  ( M o l l i f i c a t i o n  i n  Wm,P(g2))  Let J~ be defined as in Para- 
graph 2.28 and let 1 _ p < oe and u ~ W m'p (~2). If ~2' is a subdomain with 
compact  closure in ~2, then lirr~_~0+ J~ �9 u = u in W m,p (~2'). 

P r o o f .  Let E < dist(f2', bdry f2) and fi be the zero extension of u outside f2. If 
~ ~ ( ~ ' ) ,  

f a J ~ * u ( x ) D ~  f i ( x - y ) J ~ ( y ) D ~  n n 

= ( -  1)l~ ~ n  f~, D : u ( x - y ) J E ( y ) c p ( x ) d x d y  

= (-1)1~1 f a, JE * D~  

Thus D ~ J, �9 u -- J~ �9 D~u in the distributional sense in f2'. Since D~u E L p (f2) 
for 0 < loll < m we have by Theorem 2.29(c) 

lim II D ~ J~ * u - D '~ u l ip,a,  - -  l i m  ]l J~ * D ~ u - D ~ u l ip,a,  - -  O .  
E---~O+ e---~O+ 

Thus lim~___,o+ IIJ~u - Ullm,p,•, - O. II 
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3.17 THEOREM (H = W) (See [MS].) If 1 ~ p < cx~, then 

n m ' p ( ~ )  -- wm,p  ( ~ ) .  

Proof .  By Corollary 3.4 it is sufficient to show that W m'p (~"2) C H m'p (~), that 
is, that {~b 6 C m (f2) : II 4~ II m,p < ~ }  is dense in W m' p (f2). If u ~ W m' p ( ~ )  and 

> 0, we in fact show that there exists 4~ 6 C ~ (f2) such that 114~ - u IIm,p < ~, SO 
that C ~ (f2) is dense in W m'p (~'2). For k = 1, 2 . . . .  let 

S2k = {x ~ S2 : Ix l < k and dist(x, bdry f2) > 1/k,  

and let f20 - S2_l = 0, the empty set. Then 

= {Uk : Uk = ~"~k+l (') ( ~ k - 1 )  c, k = 1, 2 . . . .  } 

is a collection of open subsets of f2 that covers S2. Let qJ be a C~-par t i t ion  
or unity for f2 subordinate to 6 .  Let 7tk denote the sum of the finitely many 

functions 7r 6 q~ whose supports are contained in U~. Then 7q, ~ C ~  (Uk) and 

~ k = l  ~ k ( X ) =  1 on f2. 

If 0 < ~ < 1 / ( k  + 1)(k + 2), then J, �9 (~Pku) has support in the intersection 
V~ = f2~+2 N (S2,_e) C ~ f2. Since ~p~u ~ W m'p (~"2) we  may choose ~ ,  satisfying 

0 < ek < 1 / (k q- 1) (k + 2), such that 

Let q~ -- Y~'~=I J,~ * (Tt~u). On any f2' G f2 only finitely many terms in the sum 

can be nonzero. Thus ~b 6 C ~ (f2). For x 6 f2k, we have 

k+2 k+2 
ll(X) - Z l/,rj(X)li(X), and ~ ( x )  -- ~ J~j �9 (1/,rjll)(X). 

j=l  j=l  

Thus 
k+2 

[[ U -- ~b 11 m, p, f2k ~ ~ II J~J * (l[fj U) -- l[fj u I[m, p, a < 6" 
j=l  

By the monotone convergence theorem 1.48, Ilu - 4)llm,p,~ < E. | 

3.18 E X A M P L E  Theorem 3.17 can not be extended to the case p - c~. For 

instance, if f2 = {x E ~ �9 - 1  < x < 1, and u ( x )  - Ixl, then u ' ( x )  - x/Ixl for 
x ~ 0 and so u 6 w l ' ~ ( f 2 ) .  But u r H l ' ~ ( f 2 ) .  In fact, i f 0  < e < 1/2, there 

exists no function 4~ 6 C 1 ( f2)such that I 1 ~ ' -  u' < ,  

Approximation by Smooth Functions on R n 

3.19 Having shown that an element of W m'p ( ~ )  can always be approximated by 

functions smooth on f2 we now ask whether the approximation can in fact be 
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done with bounded functions having bounded derivatives of all orders, or at least 
of  all orders up to and including at least m. That is, we are asking whether, for any 
values of k > m, the space C k (~ )  is dense in W m'p (~'2). The following example  

shows that the answer may be negative. 

3.20 E X A M P L E  Let f2 = {(x, y) ~ I~ 2 �9 0 < Ix l < 1, 0 < y < 1 }. Then 
the function defined on f2 by 

1 if X > 0  
u ( x , y ) - -  0 i f x < 0  

evidently belongs to W I'p (f2). However,  if E > 0 is sufficiently small, there can 
exist no 4~ E C I ( ~ )  such that Ilu - ~blll,p,~ < E. To see this, suppose there exists 
s u c h a 4 ) . I f L = { ( x , y ) ' - l < x < 0 ,  0 < y <  1 } a n d R - - { ( x , y ) ' 0 < x <  1, 

0 < y < 1 }, then f2 = L U R. We have 114~111,L _< 114~llp,L < ~ and similarly 

II 1 - ~b II 1,R < ~ from which we obtain 114~ II 1,R > 1 -- E. If 

f0 
1 

�9 (x)  = ~ ( x , y ) d y ,  

then there exist a and b with - 1  _ a < 0 and 0 < b < 1 such that �9 (a) < E and 
�9 (b) > 1 -  e. I f 0  < e < 1/2, then 

fo b 1 -- 2e < ~ ( b )  - ~ ( a )  = ~ ' ( x )  d x  < IDx4~(x, y)l d x  d y  

< 21/p' IlDxqbllp,~ < 21/p'e. 

Thus 1 < e(2 + 21/P'), which is not possible for small E. 

The difficulty with the domain in this example is that it lies on both sides of part 

of  its boundary,  namely  the line segment  x = 0, 0 < y < 1. We now formulate 
a condit ion on a domain ~2 that prevents this f rom happening and guarantees that 
for any k and m, C k (~ )  is dense in W m'p (~'2) provided 1 < p < oo. 

3.21 (The Segment Condition) We say that a domain f2 satisfies the segment  

condi t ion if every x E bdry f2 has a ne ighbourhood Ux and a nonzero vector Yx 

such that if z ~ f2 N Ux, then z + tyx ~ f2 for 0 < t < 1. 

If nonempty,  the boundary of a domain satisfying this condition must  be (n - 1)- 
dimensional ,  and the domain cannot lie on both sides of any part of  its boundary. 

3.22 T H E O R E M  If g2 satisfies the segment  condition, then the set of  restric- 
tions to ~2 of  functions in C ~  (En) is dense in W m'p (~'2) for 1 < p < cx~. 

Proof .  Let f be a fixed function in C ~  (I~ n) satisfying 
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(i) f ( x ) =  1 if Ixl ~ 1, 

(ii) f ( x )  = 0 if Ixl >_ 2, 

(iii) I D ~ f ( x ) l  < M (constant)for  all x and 0 < I~1 ~ m. 

For e > 0 let f , ( x )  = f ( e x ) .  Then f , ( x )  -- 1 for Ixl _< 1/~ and also 
ID~ f~(x ) l  <_ M e  I~1 < M if e < 1. If u E w m ' p ( ~ " 2 ) ,  then u, - f , u  belongs to 
W m'p (~"2) and has bounded support. For 0 < e < 1 and I~1 ___ m 

(~ ol D ~ u ( x ) D ~ - ~ f ~ ( x )  < _ M ~ j  /3 [D~u(x)l"  ID~u~(x) l  - fl 
_ ~<_~ 

Therefore,  setting f2, = {x ~ S2 �9 Ixl > 1/~}, we have 

Ilu - u~ [Im,p,s2 - Ilu - u~ Ilm,p,f2~ 

_< Ilu Ilm,p,~, + Ilu~ Ilm,p,S2~ <_ const Ilu Ilm,p,~, �9 

The right side approaches zero as e ~ 0+ .  Thus any u ~ w m ' p ( ~ )  can be 
approximated in that space by functions with bounded supports. 

We now, therefore, assume that K = {x 6 f2 �9 u (x )  ~ 0} is bounded. The 
- ( ) set F -- K - Uxebarya Ux is thus compact  and contained in ~2, {Ux} being 

the collection of open sets referred to in the definition of the segment  condition. 
There exists an open set U0 such that F ~ U0 G ~2. Since K is compact,  there 
exists finitely many of the sets Ux, let us rename them U1 . . . .  , Uk, such that 
K C U0 U U1 U . . .  U Uk. Moreover,  there are other open sets V0, V1 . . . . .  Vk such 
that Vj ~ Uj for 0 _< j < k but still K C V0 U V1 U . . .  U Vk. 

Let �9 be a C~-par t i t ion  of unity subordinate to {Vj �9 0 < j < k}, and let Oj 
be the sum of the finitely many functions ~ ~ �9 whose supports lie in Vj. Let 
uj -- Oj u. Suppose that for each j we can find 4~j e C ~  (IR n ) such that 

II Uj -- dl)j II m,p,~ < E. / (k  3 I- 1). (7) 

Then, putting ~b -- }--~=0 q~J, we would obtain 

k 

IlU -- ~ llm,p,f2 <~ ~ IluJ - ~jllm,p,f2 < (5. 
j=0 

A function 4~0 E C ~  (R ~ ) satisfying (7) for j = 0 can be found via L e m m a  3.16 
since supp (u0) C V0 @ S2. It remains, therefore, to find 4~j satisfying (7) for 
1 < j < k. For fixed such j we extend uj to be identically zero outside f2. 
Thus uj E W m'p ( I~  n - -  F),  where F -- Vj N bdry f2. Let y be the nonzero vector 

associated with the set Uj in the definition of the segment condition. (See Fig. 1.) 
Let Ft --  {x - ty  " x ~ F}, where t is so chosen that 

0 < t < min{1, dist(Vj, R ~ - Uj) / Iy l } .  
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Fig. 1 

Then I"t C Uj and Ft N g2 is empty by the segment condition. Let us define 
uj , t (x)  = u j ( x  + ty) .  Then uj,t e wm'p(]~  n - I"t). Translation is continuous in 
L P ( ~ )  (see the proof of Theorem 2.32)so Dauj , t  ~ D~ in L P ( ~ )  as  t ~ 0 +  

for I~1 _< m. Thus uj,t ~ uj in wm'P(~'2) as  t -----> 0--~-, and so it is sufficient 
to find tpj e C~(I~ n) such that Iluj,- ~Jllm,~ is sufficiently small. However, 
~2 N Uj ~ ]~n _ I"t, and so by Lemma 3.16 we can take ~j = J~ �9 uj,t for suitably 
small 6 > 0. This completes the proof. 1 

3.23 COROLLARY Wo,P (]~n ) : wm,p  (]~n ). 

Approximation by Functions in C~~ 

3.24 Corollary 3.23 suggests the question: For what domains f2 is it true that 
W m, P (g2) = W o'  p (f2), that is, when is C~  (f2) dense in W m' P (f2) ? A partial an- 
swer to this question can be formulated in terms of the nature of the distributions 
belonging to  W -m'p' (]~n). The approach below is due to Lions [Lj]. Through- 
out this discussion we assume 1 < p < zxz and p'  is the conjugate exponent 
p ' =  p / ( p -  1). 

3.25 ( (m,  p ' )-Polar  sets) Let F be a closed subset of/t~ n. A distribution 
T e ~ '  (~n) is said to have support in F (supp (T) C F) provided that T (tp) = 0 
for every tp 6 ~(I~ n - F). We say that the closed set F is (m, p')-polar if the only 
distribution T e W -m,p' (~n) having support in F is the zero distribution T = 0. 

If F has positive measure, it cannot be (m, p')-polar because the characteristic 
function of any compact subset of F having positive measure belongs to L p' (I~ ~ ) 
and hence to W -m'p' (I~ n ). 
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We shall show later that if mp > n, then W m'p (~n) ~ C (]~n) in the sense that if 
bl �9 wm'p(~n), then there exists v �9 C(R ~) such that u(x)  = v(x)  a.e. in R ~ and 

Iv (x)l _ const II u II m , p ,  

the constant being independent of x and u. It follows that the Dirac distribution 6x 
given by 6x (4~) = 4~(x) belongs to (W m'p (R n ))t _. (wg ,p  (•n))' __ w-m,p' (Nn). 
Hence, if mp > n a set F cannot be (m, p')-polar unless it is empty. 

Since W m+l'p (~'~) ---Y W m'p (~"~) any bounded linear functional on the latter space is 
also bounded on the former. Thus W -m'p' (~) C W -m-l'p' (~"~) and, in particular, 
any (m + 1, p')-polar set is also (m, p')-polar. The converse is, of course, generally 
not true. 

3.26 (Zero Extensions) If function u is defined on ~2 let fi denote the zero 
extension of u to the complement f2 r of f2 in Rn: 

u(x) i f x e f 2 ,  
f i ( x ) =  0 i f x e f 2  r 

The following lemma shows that the mapping u ~-~ fi maps W~ 'p (f2) (isometri- 
cally) into W m'e ( F  ~ ). 

3.27 L E M M A  Let u e Wo'P(f2). If I~1 _< m, then D~fi = D~u in the 
distributional sense in R ~ . Hence fi �9 W m'p (R ~). 

Proof.  Let {~j} be a sequence in C~(f2)  converging to u in Wo'P(f2). If 
1/r �9 ~ ( R  ~), then for lot[ _< m 

(--1)l~l J~,, f i ( x ) D ~ O ( x ) d x - - ( - 1 ) ' ~ l f a u ( x ) D ~ O ( x ) d x  

lim (-1)1~1 f ck j ( x )D~O(x )dx  
j---+ ~ da 

= lim [ D~ckj(x)Tr(x) dx  
j--+ e~ Ja 

fo- = D ~ u ( x ) g r ( x ) d x .  
n 

Thus Daft - D~u in the distributional sense in R~ and these locally integrable 
functions are equal a.e. in R n . It follows that lift ] ]m,p,R n = ][U Ilm,p,~2" | 

We can now give a necessary and sufficient condition that the mapping u w-~ fi 
carries Wo 'p (~2) onto W m'p (R ~ ). 

3.28 T H E O R E M  C ~ ( ~ )  i sdensein  wm'P(I~ n) if and only if the complement 
~c of ~2 is (m, p')-polar. 
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Proof.  First suppose C ~  (f2) is dense in W m'p (]~n). Let T E W -m'p' (1~ n ) have 
support in f2 c. If u ~ W m'p (]~n), then there exists a sequence {4~j} C C~(f2)  
converging to u in wm'p(]~n) .  Hence T(u)  = limj__,~ T(~ j )  -- 0 and so T = 0. 
Thus ~2 c is (m, p')-polar. 

Conversely, suppose that C~(~2) is not dense in W m'p (R n). Then there exists 
bl E wm'P(]~  n ) and a constant k > 0 such that for all 4~ E C ~ ( ~ )  we have 
Ilu- r > k. The Hahn-Banach theorem 1.13 can be used to show that 

there exists T ~ W -m'p'  (I~ n) such that T(r  = 0 forall  u E C~c(~) but T(u)  7/= O. 
Since supp (T) C f2 c but T ~ 0, f2 c cannot be (m, p')-polar. | 

As a final preparation for our investigation of the possible identity of W o  'p (~2) and 
W m'p (~'2) w e  establish a distributional analog of the fact, obvious for differentiable 
functions, that the vanishing of first derivatives over a rectangle implies constancy 
on that rectangle. We extend this first to distributions (in Corollary 3.30) and then 
to locally integrable functions. 

3.29 L E M M A  Let B = ( a l ,  bl) x . . .  x (an, bn) be an open rectangular box 
n 

in ]R " and let 4~ 6 ~ ( B ) .  If fB 49 (X) dx  = 0, then r (x) - Y~.j=l ~ J  ( X ) ,  where 
Cj 6 N ( B ) a n d  

faj~J d/)j (X l . . . . .  Xj . . . . .  Xn ) dxj  - 0 (8) 

f o r  e v e r y  f i x e d  (Xl . . . . .  X j_  1, Xj+l . . . . .  X n) E I~ n -  1. 

< j < nse l ec t f unc t i onsu j  ~ C ~ ( a j ,  bj) suchthat fa l /u j ( t )  dt  -- Proof.  For 1 1. 

F o r 2 < j  < n ,  let 

B j -  (aj, bj) x (aj_t_l, bj_l_l) x . . .  x (an, bn), 

fa , l/s . . . . .  Xn) --- dtl  dt2 . . .  ~b(tl . . . . .  tj-1, Xj . . . . .  Xn) dt j -1 ,  
1 2 J a j - 1  

O)j(X) --  U l ( X l ) " " "  lgj_l (X j_ l ) l /Q(x j ,  . . . , Xn). 

Then 7tj ~ _@ (Bj)  and coj 6 ~ (B). Moreover 

fBj gtj(Xj, . . . , Xn) dx j  " "  dxn = f 8  r  dx  -- O. 

Let 4)1 = 4~ - 0)2,  t~j - -  o)j  - Ogj+ 1 if 2 < j < n -- 1, and 4)n = wn. Clearly 
q~j 6 ~ ( B )  for 1 < j < n, and ~b - ~ = 1  4~j. Finally, 
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la b' ~1(Xl . . . . .  x n ) d X l  
1 

fa  hI fa  hi = ~b(Xl . . . . .  Xn) d x l  --  lP'2(x2 . . . . .  Xn) b/1 (Xl) d x l  -- 0 
1 1 

a~J ~ j ( X l , . . . ,  X,,) dxj 

= Ul (Xl ) ' ' ' / , / j - I (X j -1 )  

X l[rj(Xl . . . . .  x , , )  dxj - ~j+l (Xj+I . . . . .  Xn) U j ( X j )  d x j  

= 0 ,  2 < j < n - 1 ,  

fa fa ~ n ( X l  . . . . .  Xn) d x n  - -  Ul (X l )  " " " bln-1 (Xn-1) l[fn(Xn) dx , ,  
n n 

(Xl)' ' ' / ' /n--l(Xn--1) t ~b(x) dx = O. II /,/1 
JB 

3.30 C O R O L L A R Y  I f T  6 ~ ' ( B )  a n d D j T  = 0 f o r l  < j < n ,  thenthere 
exists a constant k such that for all 4~ 6 ~ (B), 

T(dp) -- k f8  dp(x) dx .  

Proof. First note that if fB alp(x)dx = 0, then T(4)) = 0, for, by the above 
n lemma we may write 4~ = ~ j = l  4~j, where 4~j ~ ~ ( B )  satisfies (8), and hence 

dpj = DjOj, where Oj defined by 

faj ~/ 
Oj(X)  "~ ~ j ( X l  . . . .  , X j - 1 ,  t ,  X j+l  . . . . .  Xn)  a t  

n H 
belongs to ~ ( B ) .  Thus T(q$) - -  ~ - ~ j = l  T(DjOj) -- - ~ j = I ( D j T ) ( O j )  -" O. 

Now suppose T # 0. Then there exists ~bo E ~ ( B )  such that T(~bo) -- kl :/: 0. 
Thus f8  Cko(x)dx - k2 ~ 0 and r(dpo) -- k fB Cbo(x)dx, where k - k l /k2 .  If 
4b 6 ~ ( B )  is arbitrary, let K(~b) -- fB Ok(X)dx. Then 
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and so T(4) - [K(c]))/k2]~o) = O. It follows that 

T(~o) K(~) = kK(~) -- k f ,  , ( x ) . x  , r (~ )=  k----7 

Note that this corollary can be extended to any connected set f2 6 I~ n via a partition 
of unity for f2 subordinate to some open cover of ~ by open rectangular boxes 
that are contained in f2. We do not, however, require this extension. 

The following lemma shows that different locally integrable functions on an open 
set f~ determine different distributions on f2. 

3.31 L E M M A  Let u 6 L~oc(f2) satisfy fn u(x)~(x)dx -- 0 for every 4~ in 
~(f2) .  Then u(x) = 0 a.e. in f2. 

Proof.  If 7t 6 C0(f2), then for sufficiently small positive E, the mollifier JE * 
belongs to ~(f2) .  By Lemma 2.29, JE * 7 r -+ 7 t uniformly on f2 as e -+ 0+.  
Hence f~ u(x)~(x) dx = 0 for every 7r 6 C0(f2). 

Let K ~ fl and let e > 0. Let XK be the characteristic function of K. Then 
fK [U(X)[ dx < cx~. There exists 8 > 0 such that for any measurable set A C K 
with # (A)  < 3 we have fA [u(x)[ dx < E/2 (see, for example, [Ru2, p. 124]). By 
Lusin's theorem 1.42(f) there exists 7r 6 C0(I~ n) with [Tt(x)[ _< 1 for all x, such 
that 

/~({x ~ I~ ~ �9 7t(x) # XK(X)sgnu(x)}) < 8. 

v(x)/[v(x)[ if v(x) 7/= 0 
s g n v ( x ) =  0 i f v ( x ) = O .  

Here 

Hence 

fK lU(x)l dx -- fa u(x)Xl,:(x)sgnu(x) dx 

= f u(x)~p(x)dx + feu(x)(Xr(x)sgnu(x)-  7t(x))dx 

_< 0 + 2 j [u(x)] dx < E. 
Jtx ~g2:~ (x)#x/r (x)sgn u(x) } 

Since e is arbitrary, u (x) - 0 a.e. in K for each such K, and hence a.e. in f2. | 

3.32 C O R O L L A R Y  If B is a rectangular box as in Lemma 3.29 and u in 

L~oc(B) possesses weak derivatives Dju = 0 for 1 _< j _< n, then for some 
constant k, u (x) - k a.e. in B. 

Proof.  By Corollary 3.30, since Dj T, = 0 for 1 _< j _< n, we have 

~ u(x)~(x) dx - Tu(c])) = k ~ qb(x) dx. 

Hence u (x) - k - 0 a.e. in B. 1 
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3.33 T H E O R E M  Le tm > 1. 
m 

(a) If W m'p (f~) -- W ~  'p ( ~ ) ,  then f2 c is (m, p')-polar. 

(b) If f2 c is both (1, p)-polar and (m, p')-polar, then W m'p (f~) - W ~  'p ( ~ ) .  

Proof. (a) Assume W m'p (f2) = W ~  'p (f2). We deduce first that ~c must have 
measure zero. If not, there would exist some finite open rectangle B C R n which 
intersects both f2 and f2 c in sets of positive measure. Let u be the restriction to 
of a function in C ~  (R n ) which is identically one on B A ~.  Then u E W m'p ( ~ )  

and so u E W o  'p ( ~ ) .  By_,Lemma 3.27, the zero extension fi of u to R ~ belongs to 
W m,p (R ~ ) and Dj fi -- Dj u in the distributional sense in R ~ for 1 ___ j _< n. Now 
D; u is identically zero on B and so Dj fi -- 0 as a distribution on B. By Corollary 
3.32, fi must have a constant value a.e. in B. Since fi -- 1 on B N ~ and fi - 0 on 
B M ~c, we have a contradiction. Thus ~c has measure zero. 

Now if v ~ W m'p (R  ~ ) and u is the restriction of v to f~, then u belongs to W m'p ( ~ )  

and hence, by assumption, also to W ~  'p (f2). By Lemma 3.27, fi ~ W m'p (R n) and 
can be approximated by elements of C ~  (f2). But v (x )  -- fi(x) on ~ ,  that is, a.e. 
in I~ ~ . Hence v and fi have the same distributional derivatives, and coincide in 
W m'p (R") .  Therefore C ~  (f~) is dense in W m'p (I~ ~ ) and f2 c is (m, p ')-polar by 

Theorem 3.28. 

(b) Now assume f2 c is (1, p)-polar and (m, p')-polar. Let u E W m'p (~) .  We 
show that u ~ W ~  'p (f2). Since fi E L p ( ~ ) ,  the distribution TD~, correspond- 

ing to Djfi ,  belongs to w-l'P(]~n). Since Dj~u E LP(]R n) C H- I 'P ( ]~  n) (see 

Paragraph 3.13), therefore T~, ,  E W -I 'p  (~" ) .  Hence Tz~j~,_Dj"-" . E W - l 'p  (~" ) .  

But D j f i -  D j u  -- 0 on f2 so supp ~-D;'. C ~2 c. Since ~c is (1, p)- 

polar, Dj fi -- Dj u in the distributional sense on R ~ , whence Djfi  E L p (IR n ) and 
E W m'p (R ~ ). Since ~2 c is (m, p~)-polar, C ~  (S2) is dense in W m'p (R ~ ), and thus 

u e Wo'P(~) .  ! 

3.34 If (m, p')-polarity implies (1, p)-polarity, then Theorem 3.33 amounts to 
the assertion that (m, p')-polarity of ~c is necessary and sufficient for the equality 
of W m'p (~"~) and W o  'p (g2). This is certainly the case if p -- 2. 

The following two lemmas develop properties of polarity. The first of these shows 
that it is a local property. 

3.35 L E M M A  F C Nn is (m, p ')-polar if and only if F M K is (m, p ')-polar 
for every compact set K C R". 

Proof. Clearly the (m, p')-polarity of F implies that of F N K for every compact 
K. We need only prove the converse. 

Let T E W -m'p' (]~n) be given by T -- E0<lotl<m ( -  1)1~1D ~ Tv~, where sequence 

{v~ } C L p' (]~n). Suppose T has support in F. We must show that T - 0. Let 

f E C ~  (R ~) satisfy f (x) - 1 if Ix] _< 1 and f (x) - 0  if Ix l > 2. For E > 0, let 
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f~(x) -- f@x) so that D~ -- el'~lD~162 --+ 0 uniformly in x as E ~ 04-. 
Then f, T e W -m,p' (I1~") by induction on m, and for any r 6 ~(I~ n ) we have 

I T ( C ) -  f~T(r  = I T ( C ) -  T ( L r  

10_l~l_m n 

= E E ~ v~(x)D~r ~-~(1-  f~(x))dx 
O_<lul_<m fl_<a n 

where 

(-) 
Io~l_<m, r 

- - v ~ ( x ) ( 1 - f , ( x ) ) -  E ( ~ )  v~ 
lal_<m,/~_<ot,/~#o~ 

Since f,(x) - 1 for Ixl _< 1/~, we have lim,_+0+ I1  11 , - 0 Thus f ,T  --+ T 
in W -m'p' (~n) as 6 ~ 04-. But f ,  T -- 0 by assumption since it has compact 
support in K. Thus T -- 0. | 

3.36 L E M M A  If p '  < q' (that is, p > q) and f C I~ n is (m, p')-polar, then 
F is also (m, q')-polar. 

Proof.  Let K C I~ n be compact. By the previous 1emma it is sufficient to show 
that F n K is (m, q')-polar. Let G be an open, bounded set in R n containing K. By 
Theorem 2.14, Wo 'p (G) --+ WZ 'q (G), so that W -m'q' (G) C W -m'ff (G). Any 
distribution T e W -m'q' (]I~ n ) having support in K N F also belongs to W -m'q' (G) 

and so to W -m'p' (G). Since K N F is (m, p')-polar, T -- 0. Thus K n F is also 
(m, q')-polar. | 

3.37 T H E O R E M  Let m > 1 and p > 2. Then W m,p (~'2) -- WZ 'p (~'2) if and 
only of f2 c is (m, p')-polar. 

Proof.  Since p'  < 2, f2 c is (m, p)-polar and therefore also (1, p)-polar. The 
result now follows by Theorem 3.33. 

3.38 The Sobolev Imbedding Theorem 4.12 can be used to extend the previous 
theorem to cover certain values of p < 2. If (m - 1) p < n, the imbedding theorem 
gives 

np W m, p ( ~ n )  __.+ W 1,q ( ]~n) ,  q __ 
n - (m - 1)p 
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which in turn implies that W -  1,q' (]~n) C W -m' p' (]~n). If also p > 2n / (n + m - 1), 

then q' < p and so by L e m m a  3.36, f2 c is (1, p)-polar  if it is (m, p')-polar.  Note 
t h a t 2 n / ( n + m - 1 )  < 2 i f m  > 1. If, on the other h a n d , ( m -  1)p > n, then 
m p  > n, and, as pointed out in Paragraph 3.25, f2 c cannot be (m, f f ) -polar  unless 
it is empty, in which case it is trivially (1, p)-polar. 

The only values of p for which we do not know that the (m, p ' )-polari ty of ~c 
implies (1, p)-polari ty and hence is equivalent to the identity of W m'p (~'2) and 
Wo'P(f2), are given by 1 < p < m i n { n / ( m -  1 ) , 2 n / ( n  + m -  1)}. 

3.39 W h e n e v e r  W o  'p (~"2) =7/= W m,p (~2), the former space is a closed subspace 
of the latter�9 In the Hilbert space case, p -- 2, we may consider the space W~- 
consisting of all v E wm'2(f2) such that (v, 4~)m -- 0 for all 4) 6 C~( f2 ) .  Every 
u E wm'2(f2) can be uniquely decomposed in the form u = uo + v, where 
uo E Wo '2 (f2) and v E W~-. Integration by parts shows that any v E W~- must 
satisfy 

E ( - 1 ) I ~ I D 2 ~ v ( x )  -- 0 

0_<l~{<m 

in the weak sense, and hence a.e. in S2. 

Coordinate Transformations 

3.40 Let ~ be a one-to-one transformation of a domain f2 C R n onto a domain 
G E R n , having inverse ~P -- ~ - 1 .  We say that �9 is m-smoo th  if, when we write 
y -- �9 (x) and x - q~ (y) in the form 

Yl - -  t~l ( X l  . . . . .  Xn), 

Y2 -- ~b2(Xl . . . . .  x~), 

y~ -- ~n(Xl . . . . .  x~), 

Xl  - -  1//'1 (Y l  . . . . .  Yn), 

X2 - -  1//'2 (Y l  . . . . .  Yn), 

Xn -- ~n(Yl  . . . . .  Yn), 

then ~b 1 . . . . .  ~n belong to C m (~"2) and 7q . . . . .  1//' n belong to C m (G) .  

If u is a measurable function on f2, we define a measurable function A u  on G by 

A u ( y )  - u (qJ (y ) ) .  (9) 

Suppose that �9 is 1-smooth so that there exist constants 0 < c < C such that for 
all x ~ f2 

c < Ide t~ ' (x ) l  < C, (10) 

where ~ '  denotes the Jacobian matrix O(yl . . . . .  yn ) /O(y l  . . . . .  Yn). Since smooth 
functions are dense in L p spaces, the operator A defined by (9) transforms L p (f2) 

boundedly onto L p (G) and has a bounded inverse; in fact, for 1 < p < cx~, 

c lip Ilullp,~ _ IIAullp,G <_ C lip Ilullp,~. 
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We establish a similar result for Sobolev spaces. 

3.41 T H E O R E M  Let �9 be m-smooth, where m > 1. The operator A defined 
by (9) transforms W m'p (f2) boundedly onto W m,p (G) and has a bounded inverse. 

Proof. We show that the inequality IlAullm,p,G < const IlUllm,p,~ holds for 
every u ~ W m'p (~'~), the constant depending only on the transformation ~. The 
reverse inequality IIAullm,p,G > const [lullm,p,~ (with a different constant) can 
be established similarly, using the inverse operator A -1. By Theorem 3.17 for 
given u ~ W m'p (~"2), there exists a sequence {uj} C C~(f2) converging to u in 
W m,p (S2)-norm. For such smooth uj it is readily checked by induction on I~1 that 

D~ -- E M'~(Y)A(D~uj)(Y)' (11) 
~<_~ 

where M ~  is a polynomial of degree not exceeding I/~1 in derivatives of orders 
not exceeding loll of the various components of q~. If 0 6 ~ ( G )  integration by 
parts gives 

(-1)1~ fG (Auj)(y)D~O(y) dy -- E fG A(D~uj)(y)M'~(Y)O(Y) dy, (12) 

or, replacing y by �9 (x) and expressing the integrals over f2, 

( - 1 )  I~l f~ uj(x)(D~O)(O(x))ldet O'(x)l dx 

= ~<~f~_ D~uj (x )M~(*(x) )O(*(x) ) lde t* ' (x ) ldx"  (13) 

Since D~uj --+ u in LP(ff2) for ICYl ~ m, we can take the limit through (13) as 
n --+ ~o and hence obtain (12) with u replacing uj. Thus (11) holds in the weak 
sense for any u ~ W m'p (~'2). Therefore 

( ) fa  lD~(Au)(y)l p dy 1 max I(D~u)l(~P(y))l p dy < 
Ir \y6G 

const max f ID~u(x)l p dx, < 
I/~1_<1~1 J~ 

from which it follows that IIAullm,p,a < const Ilullm,p,~. II 
Of special importance in later chapters is the case of the above theorem corre- 
sponding to nonsingular linear transformations �9 or, more generally, affine trans- 
formations (compositions of nonsingular linear transformations and translations). 
For such transformations det ~ ' (x)  is a nonzero constant. 



4 
THE SOBOLEV 

IMBEDDING THEOREM 

4.1 The imbedding characteristics of Sobolev spaces are essential in their uses 
in analysis, especially in the study of differential and integral operators. The 
most important imbedding results for Sobolev spaces are often gathered together 
into a single "theorem" called the Sobolev Imbedding Theorem although they are 
of several different types and can require different methods of proof. The core 
results are due to Sobolev [So2] but our statement (Theorem 4.12) also includes 
refinements due to others, in particular Morrey [Mo] and Gagliardo [Gal ]. 

Most of the imbeddings hold for domains ~2 C R n satisfying some form of 
"cone condition" that enables us to derive pointwise estimates for the value of a 
function at the vertex of a truncated cone from suitable averages of the values of 
the function and its derivatives over the cone. Some of the imbeddings require 
stronger geometric hypotheses which, roughly speaking, force ~2 to have an ( n -  1)- 
dimensional boundary that is locally the graph of a Lipschitz continuous function 
and which, like the segment condition described in Paragraph 3.21, requires ~2 to 
lie on only one side of its boundary. We will discuss these geometric properties 
of domains prior to the statement of the imbedding theorem itself. 

4.2 (Targets of the Imbeddings) The Sobolev imbedding theorem asserts the 
existence of imbeddings of wm'p(~'~) (or Wo 'p (~)) into Banach spaces of the 
following types: 

(i) W j'q (~),  where j _< m, and in particular L q (~) ,  

(ii) W j,q (~2k), where, for 1 _< k < n, ~ is the intersection of ~ with a 
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k-dimensional plane in R n . 

(iii) C J8 (f2), the space of functions having bounded, continuous derivatives up 
to order j on f2 (see Paragraph 1.27) normed by 

II II u; C J ( ~ )  = max supID~u(x)l. 
O___lo~l<_j xe~2 

(iv) C j (~),  the closed subspace of C J (~) consisting of functions having 
bounded, uniformly continuous derivatives up to order j on ~ (see Para- 
graph 1.28) with the same norm as C J (f2)" 

[I r ; C j (~)[[ = max sup [D ~r (x)]. 
0<u<j  xe~2 

This space is smaller than C~ (~) in that its elements must be uniformly 
continuous on ~. For example, the function u of Example 3.20 belongs to 
C1B (~2) but certainly not to C 1 (~) for the domain ~2 of that example. 

(v) cJ'X(~), the closed subspace of C j (~) consisting of functions whose 
derivatives up to order j satisfy H61der conditions of exponent k in ~ (see 
Paragraph 1.29). The norm on CJ'Z(~2) is 

IDle(x)  - D=r 
II ~; cJ~ (n> II = II ~; c J (n)II + max sup 

0<_l~l<__j x ,~ [x - y IX 
x#y 

Since elements of W m'p (~'~) are, strictly speaking, not functions defined every- 
where on ~,  but rather equivalence classes of such functions defined and equal 
up to sets of measure zero, we must clarify what is meant by imbeddings of types 
(ii)-(v). What is intended for imbeddings into the continuous function spaces 
(types (iii)-(v)) is that the "equivalence class" u ~_ W m'p (~"~) should contain an 
element that belongs to the continuous function space that is the target of the 
imbedding and is bounded in that space by a constant times [[u [[m,p,~" Hence, for 
example, existence of the imbedding 

wm,p (~'~) ......> C j (~ )  

means that each u E W m'p (~'~) when considered as a function, can be redefined on 
a subset of ~2 having measure zero to produce a new function u* E C j (~) such 
that u* -- u in W m'p (~"~) (i.e. u* and u belong to the same "equivalence class" in 
W m'p (~"~)) and 

II u*; c J(~ II -< K llu lira ~ 

with K independent of u. 
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Even more care is necessary in interpreting imbeddings into spaces of type (ii): 

wm,p(~-2) ~ W j,q (~'2k) 

where f2k is the intersection of f2 with a plane of dimension k < n. Each element 
of wm'P(~'2) is, by Theorem 3.17, a limit in that space of a sequence {ui} of 
functions in C~(S2). The functions ui have t races  on f2k (that is, restrictions 
to S2k) that belong to C~(f2k).  The above imbedding signifies that these traces 
converge in W j'q (f2k) to a function u* that is independent of the choice of {ui} 

and satisfies 

I .* II q -< K II. IIm 
with K independent of u. 

4.3 Let us note as a point of interest, though of no particular use to us later, 
that the imbedding W m'p (~'2) --+ W j'q (~2) is equivalent to the simple containment 
W m'p (~ )  C wJ'q(~'2). Certainly the former implies the latter. To verify the 
converse, suppose W m'p (~'2) C W j'q (~"2), and let I be the linear operator taking 
W m,p (~"2) into W j'q (~'2) defined by I u  = u for u ~ W m'p (~'2). If uk --+ u in 
wm'P(~'2) (and hence in LP(~2))  and I u k  ~ v in wJ'q (f2) (and hence in Lq(~2)) ,  

then, passing to a subsequence if necessary, we have by Corollary 2.17 that 
u k ( x )  ~ u ( x )  a.e. on f2, u~(x )  = I u k ( x )  --+ v ( x )  a.e. on f2. Thus u ( x )  = v ( x )  

a.e. on f2, that is, I u  = v, and I is continuous by the closed graph theorem of 
functional analysis. 

Geometric Properties of Domains 

4.4 (Some Definitions) Many properties of Sobolev spaces defined on a do- 
main f2, and in particular the imbedding properties of these spaces, depend on 
regularity properties of ~.  Such regularity is normally expressed in terms of geo- 
metric or analytic conditions that may or may not be satisfied by a given domain. 
We specify below several such conditions and consider their relationships. First 
we make some definitions. 

Let v be a nonzero vector in ~n, and for each x ~ 0 let / (x ,  v) be the angle 
between the position vector x and v. For given such v, p > 0, and x satisfying 
0 < x _< re, the set 

C - {x ~ R n "x - 0 o r 0  < Ixl ~ p, L(x, v) ~ x / 2 }  

is called a f in i t e  cone  of height p, axis direction v and aperture angle x with vertex 
at the origin. Note that x + C -- {x + y �9 y 6 C} is a finite cone with vertex 
at x but the same dimensions and axis direction as C and is obtained by parallel 
translation of C. 
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Given n linearly independent vectors yl . . . . .  Yn ~ IR n , the set 

is a paral le lepiped with one vertex at the origin. Similarly, x + P is a parallel 
translate of P having one vertex at x. The centre of x + P is the point given by 

c(x  + P)  = x + (1/2)(yl  + . . .  + Yn). Every parallelepiped with a vertex at x is 
contained in a finite cone with vertex at x and also contains such a cone. 

An open cover tY of a set S C R n is said to be locally finite if any compact set in En 
can intersect at most finitely many members of 6 .  Such locally finite collections 
of sets must be countable, so their elements can be listed in sequence. If S is 
closed, then any open cover of S by sets with a uniform bound on their diameters 
possesses a locally finite subcover. 

We now specify six regularity properties that a domain S2 C I~ n may possess. We 
denote by S2~ the set of points in f2 within distance 6 of the boundary of g2: 

f2~ = {x ~ S2" dist(x, b d r y ~ )  < 6}. 

4.5 (The Segment  Condit ion) As defined in Paragraph 3.21, a domain g2 
satisfies the segment condition if every x E bdry g2 has a neighbourhood Ux and 
a nonzero vector yx such that if z E f2 M Ux, then z + tyx ~ f2 for 0 < t < 1. 
Since the boundary of g2 is necessarily closed, we can replace its open cover by the 
neighbourhoods Ux with a locally finite subcover { U1, U2 . . . .  } with corresponding 
vectors y l, y2 . . . .  such that if x E f2 M Uj for some j ,  then x + tyj ~ S2 for 
0 < t < l .  

4.6 (The Cone Condition) f2 satisfies the cone condition if there exists a 

finite cone C such that each x E f2 is the vertex of a finite cone Cx contained 

in f2 and congruent to C. Note that Cx need not be obtained from C by parallel 
translation, but simply by rigid motion. 

4.7 (The Weak Cone Condition) Given x E S2, let R(x) consist of all points 
y E f2 such that the line segment from x to y lies in f2; thus R ( x )  is a union of 
rays and line segments emanating from x. Let 

F(x) -- {y E R ( x ) ' l y - x l  < 1}. 

We say that f2 satisfies the weak cone condition if there exists 6 > 0 such that 

/~n(F(X)) ~ 6 for all x E ~ ,  



Geometric Properties of Domains 83 

where ].l n is the Lebesgue measure in IR ~ . Clearly the cone condition implies 
the weak cone condition, but there are many domains satisfying the weak cone 
condition that do not satisfy the cone condition. 

4.8 (The Uniform Cone Condition) f2 satisfies the uniform cone condition 
if there exists a locally finite open cover { Uj } of the boundary of ~2 and a corre- 
sponding sequence {Cj } of finite cones, each congruent to some fixed finite cone 

C, such that 

(i) There exists M < cx~ such that every Uj has diameter less then M. 

(ii) f2~ C Uj~=l uj for some 6 > 0. 

(iii) Qj - Ux~nv~ (x + cj)  c ~ for every j .  

(iv) For some finite R, every collection of R + 1 of the sets Qj has empty 
intersection. 

4.9 (The Strong Local Lipschitz Condition) ~ satisfies the strong local 
Lipschitz condition if there exist positive numbers 6 and M, a locally finite open 
cover { Uj } of bdry f2, and, for each j a real-valued function ~ of n - 1 variables, 
such that the following conditions hold: 

(i) For some finite R, every collection of R + 1 of the sets Uj has empty 
intersection. 

(ii) For every pair of points x, y E f2~ such that Ix - Y l < 6, there exists j 
such that 

x, y E Vj = {x E Uj "dist(x, bdryUj)  > 3}. 

(iii) Each function j~ satisfies a Lipschitz condition with constant M: that is, if 
= (~1 . . . . .  ~n-1) and p = (pl . . . . .  pn-1) are in R ~-1 , then 

[f(~)  - f ( p ) l  _< Ml~ - Pl. 

(iv) For some Cartesian coordinate system ( ( j , 1  . . . . .  (j,n) in Uj, g2 n Uj is 
represented by the inequality 

~j,n < OO(~'j,1, " ' ' ,  ~ ' j ,n-1).  

If f2 is bounded, the rather complicated set of conditions above reduce to the simple 
condition that f2 should have a locally Lipschitz boundary, that is, that each point 
x on the boundary of f2 should have a neighbourhood Ux whose intersection with 
bdry f2 should be the graph of a Lipschitz continuous function. 
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4.10 (The Uniform Cm-Regularity Condition) f2 satisfies the uniform C m- 
regularity condition is there exists a locally finite open cover { Uj } of bdry f2, and a 
corresponding sequence { Cj } of m-smooth transformations (see Paragraph 3.40) 
with Cj taking Uj onto the ball B -- {y 6 Ii~ n �9 lyl < 1 and having inverse 
~pj _ r such that: 

(i) For some finite R. every collection of R + 1 of the sets Uj has empty 
intersection. 

oo 1}). 
(ii) For some ~ > 0, f2, C [,.Jj=l qJJ({Y E I~ n "IYl < 

(iii) For each j ,  dpj(Uj A f2) -- {y ~ B �9 Y n  > 0}. 

(iv) If (cPj,1 . . . . .  ~pj,n) and (Tzj,1 . . . . .  ~pj,~) are the components of ~ j  and qJj, 
then there is a finite constant M such that for every c~ with 0 < I~1 _< m, 
every i, 1 < i < n, and every j we have 

ID~q6j,i(x)l <_ M, 

ID~j , i (Y) l  <_ M, 

forx  E U j, 

fo ry  6 B. 

4.11 Except for the cone condition and the weak cone condition, the other 
conditions defined above all require that the boundary of f2 be (n - 1)-dimensional 
and that f2 lie on only one side of its boundary. The domain f2 of Example 3.20 
satisfies the cone condition (and therefore the weak cone condition), but none of 
the other four conditions. Among those four we have: 

the uniform Cm-regularity condition (m ___ 2) 

~, the strong local Lipschitz condition 

~, the uniform cone condition 

~, the segment condition. 

Also, 
the uniform cone condition 

~, the cone condition 

~, the weak cone condition 

Typically, most of the imbeddings of W m'p (~"2) have been proven for domains 
satisfying the cone condition. Exceptions are the imbeddings into spaces C j (~)  
and C j'z (~)  of uniformly continuous functions which, as suggested by Example 
3.20, require that S2 lie on one side of its boundary. These imbeddings are usually 
proved for domains satisfying the strong local Lipschitz condition. It should be 
noted, however, that f2 need not satisfy any of these conditions for appropriate 
imbeddings of Wo 'p (f2) to be valid. 
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4.12 T H E O R E M  (The Sobolev Imbedding Theorem) Let f2 be a domain 
in II~ n and, for 1 _< k _ n, let f2~ be the intersection of f2 with a plane of dimension 
kinlt~ n. (If k -  n, thenf2~ = f2.) L e t j  >_ 0 a n d m  >_ 1 be integers and let 

l < p < o o .  

PART I Suppose f2 satisfies the cone condition. 

Case A If either m p  > n or m -- n and p -- 1, then 

wJ-k-rn,p (~"~) ~ CJB (~'~) . (1) 

Moreover, if 1 < k < n, then 

wJ+m'P (~''g) -----> wJ 'q  (~'~k) for p < q < o0, (2) 

and, in particular, 

W m'p (~"~) ---+ L q (~) for p < q < cx~. 

CaseB I f l _ < k < n a n d m p = n ,  then 

wJ+m'P (~'~) ---+ wJ 'q  (~'~k) , fo rp  < q < oo, (3) 

and, in particular, 

W m'p ( ~ )  ----> L q (~), for p _< q < cx~. 

Case C 
then 

I f m p  < n a n d e i t h e r n - m p  < k  < n o r p - -  l a n d n - m  < k  < n ,  

W j+m'p (~-'g) ""+ wJ 'q  ( ~ ' ] k )  , for p < q <_ p ,  - -  k p / ( n  - m p ) .  (4) 

In particular, 

wm,p(~-'g) ~ L q ( ~ ) ,  for p < q <_ p ,  - n p / ( n  - m p ) .  (5) 

The imbedding constants for the imbeddings above depend only on n, m, p, q, j ,  k, 
and the dimensions of the cone C in the cone condition. 

PART II Suppose ~2 satisfies the strong local Lipschitz condition. (See Para- 
graph 4.9.) Then the target space C~ (~) of the imbedding (1) can be replaced 
with the smaller space C j (~),  and the imbedding can be further refined as follows: 

I fmp  > n > ( m -  1)p, then 

W jTm,p (~'~) ----> C J, )~ (-~) for 0 < ~, < m - ( n / p ) ,  (6) 
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and if n = (m - 1)p, then 

W jTm'p (~'2) ~ C j '~(-~) f o r 0 < ~ <  1. (7) 

Also, if n = m - 1 and p = 1, then (7) holds for )~ = 1 as well. 

PART III All of the imbeddings in Parts A and B are valid for arbitrary domains 
f2 if the W-space undergoing the imbedding is replaced with the corresponding 
W0-space. 

4.13 REMARKS 

1. Imbeddings (1)-(4) are essentially due to Sobolev [So 1, So2], although his 
original proof did not cover the all cases. Imbeddings (6)-(7) originate in 
the work of Morrey [Mo]. 

2. Imbeddings (2)-(4) involving traces of functions on planes of lower dimen- 
sion can be extended in a reasonable manner to apply to traces on more 
general smooth manifolds. For example, see Theorem 5.36. 

3. If f2k (or f2) has finite volume, then imbeddings (2)-(4) also hold for 
1 < q < p in addition to the values of q asserted in the statement of the 
theorem. This follows from Theorem 2.14. It will be shown in Theorem 
6.43 that no imbedding of the form W m'p (~"2) ~ L q (f2) where q < p is 
possible unless f2 has finite volume. 

4. Part III of the theorem is an immediate consequence of Parts I and II applied 
to ~n because, by Lemma 3.27, the operator of zero extension of functions 
outside f2 maps Wo 'p (f2) isometrically into W m'p (]1~ n ). 

5. More generally, suppose there exists an operator E mapping W m'p (~'2) into 
W m,p(I~ n) such that Eu(x) = u(x) a.e. in f2 and such that 
[[Eullm,p,m, < K1 [[ullm,p,~. (Such an operator is called an (m, p)- 
extension operator for f2. If the imbedding theorem has already been 
proved for ~n, then it must hold for the domain f2 as well. For example, if 
wm,P (~n ) ~ L q (~n ), and u ~ W m'p (f2), then 

Ilullq,~ ~ IIEullq,R~ 5 K2 IlEullm,p,Rn ~ K2K1 Ilullm,p,~. 

In Chapter 5 we will establish the existence of such extension operators, but 
only for domains satisfying conditions stronger than the cone condition, so 
we will not use such a technique to prove Theorem 4.12. 

6. It is sufficient to prove imbeddings (1)-(4), (6)-(7) for the special case 
j = 0, as the general case follows by applying this special case to derivative 
D~u of u for Ic~l __ j .  For example, if the imbedding W m,p (~'~) ~ L q (f2) 
has been proven, then for any u ~ W j+m'p (f2) we have D'~u ~ W m,p (f2) 
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for lot[ < j ,  whence D~ c L q (Q) .  Thus u ~ W j'q (~"~) and 

[]ullj,q -- IID~ull q O,q 
Ic~l_j 

t < g l  IlD~ull p 
- -  m,p 

I~l_j 
<_ K2 Ilullj+m,p. 

7. The authors have shown that all of Part I can be proved for domains 
satisfying only the weak cone condition instead of the cone condition. See 
[AF1]. 

4.14 (Strategy for Proving the Imbedding Theorem) We use two overlap- 
ping methods to prove the imbeddings in Part I of Theorem 4.12. The first, 
potential theoretic in nature, was used by Sobolev. It works when p > 1, and 
gives the right order of growth of imbedding constants as q --+ oc when mp = n; 
this will be useful in Chapter 7. Here we use the potential method to prove Case 
A and the imbeddings in Cases B and C for p > 1. The other approach is based 
on a combinatorial-averaging argument due to Gagliardo [Gal]. We will use it to 
establish Cases B and C for p = 1, though it could be adapted (with a bit more 
difficulty) to prove all of Part I. (See, in particular, Theorem 5.10 and the Remark 
following that theorem.) 

Part II of the theorem follows by sharpening certain estimates used in obtaining 
Case A of Part I. 

The entire proof of Theorem 4.12 is fairly lengthy and is broken down into several 
lemmas. Throughout we use K, and occasionally K1, K2 . . . . .  to represent various 
constants that can depend on parameters of the spaces being imbedded. The values 
of these constants can change from line to line. While stated for the cone condition, 
the potential method works verbatim under the weak cone condition as well. 

Imbeddings by Potential Arguments 
4.15 L E M M A  (A Local Estimate) Let domain S2 C I~" satisfy the cone 
condition. There exists a constant K depending on m, n, and the dimensions p 
and x of the cone C specified in the cone condition for S2 such that for every 
u ~ C a (S2), every x 6 ~ ,  and every r satisfying 0 < r < p, we have 

lu(x)l~g(~o~m_l ~ rl'~l-"fC~,r ID'~u(y)Idy 

-+-~-~fci~i=m ~,, [D~ ' 
(8) 



88 The Sobolev Imbedding Theorem 

where  Cx,r = {y ~ Cx : Ix - Y l < r}. Here  Cx C f2 is a cone congruen t  to C 

having vertex at x. 

P roof .  We apply Taylor ' s  fo rmula  with integral  remainder ,  

~ 1  f( j)  f ( 1 )  -- -~S ( 0 ) +  
j :  

j = o  

1 f01 
(m - 1)! 

(1 - t) m-1 f(m) (t) dt 

to the funct ion f ( t )  = u(tx + (1 - t)y), where  x 6 f2 and y ~ Cx,r. Not ing  that 

j~ 
D~u(tx + (1 - t )y)(x - y)~, f(J)(t) = ~ ,  ~---i 

I~l=J " 

where  or! = of 1 ! . . . o f  n ! and (x - y)~ = ( x 1  - y l )  ~ . . .  (Xn - yn) an, we obtain 

lufx)l 1 D~ I~1 ~ l  u ( y ) l l x -  yl 
lal___m-1 

m fo 1 + ~__, ~ l x  - yl m (1 - t) m-llD=u(tx + (1 - t )y ) l  dt. 
Iotl=m 

If  C has vo lume  cp ~, then Cx,r has vo lume  cr n. Integrat ion of  y o v e r  Cx,r leads to 

crnlu(x)l 

rl~l f c  < E - -d-(  ID~u(y)ldy 
Io~[<m-1 x,r 

,mfol + E -~. Ix - y dy (1 - t)m-1]D~u(tx + (1 -- t )y) ld t .  
I~l=m ,r 

In the final (double)  integral  we first change  the order  of  integration,  then substi tute 

z = tx + (1 - t)y, so that z - x = (1 - t)(y - x) a n d d z  = (1 - t)" dy, to obtain,  

for that integral,  

f01 (1 - t) -n-1 dt Iz - xlmlD~u(z)l dz. 
, ( l -- t)r  

A second change  of  order  of  integrat ion now gives for the above integral  

fox fo 1-(Iz-xl/r) Ix - z lmlD=u(z ) ldz  
,r 

r ~ f c  <_ - -  ]x - zlm-nlD~u(z)l dz. 
n x , r  

(1 - t) -n-1  dt 
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Inequality (8) now follows immediately. | 

4.16 (Proof  of P a r t  I, Case A of Theorem 4.12) As noted earlier, we can 
assume that j = 0. Let u ~ W m'p (~"2) ("] C ~ (~"2) and let x 6 f2. We must show 

that 

lu(x)l <_ K Ilullm,p. (9) 

For p = 1 and m = n, this follows immediately from (8). For p > 1 and mp > n, 
we apply H61der's inequality to (8) with r = p to obtain 

lu(x)l <_ K (  Z c1/p'PI~I-(n/P) IID~ullp,cx,p 

I 

\ Iotl_<m-1 

1"'t + ~_~ IID~ullp,c~,p Ix -- y l ( m - n ) p ' d y  , 
Ioll=m x,p 

where c is the volume of Cx,1 and p'  = p / ( p  - 1). The final integral is finite 
since (m - n)p' > - n  when mp > n. Thus 

lu(x)l <_ K Z IlD~ullp,Cx,~ (10) 
Ic~l_<m 

and (9) follows because Cx,p C ~.  

Next observe that since any u E W m'p (~"2) is the limit of a Cauchy sequence of 
continuous functions by Theorem 3.17, and since (9) implies this Cauchy sequence 
converges to a continuous function on f2, u must coincide with a continuous 
function a.e. on f2. Thus u c C ~ (f2) and imbedding (1) is proved. 

Now let f2k denote the intersection of f2 with a k-dimensional plane H,  let 
~k,p = {x ~ R ~ : dist(x, ~k) < P}, and let u and all its derivatives be extended 
to be zero outside f2. Since Cx,p C Bp(x), the ball of radius p with centre at x, 
we have, using (10) and denoting by dx' the k-volume element in H,  

f. [D~u(y)[Pdy 
Ioll_<m k p(x) 

= K Z f. ID~u(y)lPdy f~t d x ' < K 1  IlullP,p,~, 
iotl_< m ~,p OBp(y) 

and W m'p (ft) --+ L p (~k). But (9) shows that W m'p (~'2) "---> L ~ (~k) and so 

imbedding (2) follows by Theorem 2.11. 1 

L e t  Xr be the characteristic function of the ball Br ( 0 )  - -  {x E ~n : Ix l < r }. In the 
following discussion we will develop estimates for convolutions of L p functions 
with the kernels O) m (X) : I x I m-n and 

Ixl m-n i f lxl  < r, 
XrO)m (x )  --  0 if Ix l >__ r .  



90  The Sobolev Imbedding Theorem 

Observe that if m < n and 0 < r < 1, then 

Xr(X) <~ XrO)m(X) ~ O)m(X). 

4.17 L E M M A  L e t p  > 1, 1 < k < n, a n d n - m p  < k. There e x i s t s a  
constant K such that for every r > 0, every k-dimensional  plane H C R n , and 

every v E L p (Rn), we have XrO)m * Ivl ~ L p ( H )  and 

IlXrCOm, Ivlllp,H _ Krm-(n-k)/P Ilvllp,R.. (11) 

In particular, 

IIx1 * Ivlllp,/4 ~ IlXlCOm, Ivlllp,H <_ K Ilvllp,R.. 

Proof .  If p > 1, then by H61der's inequality 

XrO)m * Ivl(x) - f. I v ( y ) l l x  - y l - S l x  - ylS+m-n dy  
r(X) 

( f B  ) l ip  ( f  B )a/p' < ]v(y)lp] x _ yl-Sp dy Ix -- yl(S+m-n)p' dy 
r(X) r(x) 

__ KrS+m-(n/p) ]v(y)lp] x _ yl-Sp dy , 
r(X) 

provided s + m - ( n / p )  > 0. If  p = 1 the same estimate holds provided 

s + m - n _> 0 without using H61der's inequality. 

Integrating the p th  power  of  the above estimate over H (with volume element  

dx ' ) ,  we obtain 

]]XrO)m * [U][] f. IXrCOm * dx '  

< Kr (S+m)p -n fn  d x ' ~  I v ( y ) l P l x - y l - S p d y  
r(X) 

p < Kr  (s+m)p-n r k-sp Ilvll p - Kr  mp-(n-k) IlVllp,R,, 
- -  p , R "  ' 

provided k > sp.  

Since n - m p  < k there exists s satisfying ( n / p )  - m < s < k / p ,  so both 

estimates above are valid and (11) holds. | 

4.18 L E M M A  L e t p  > 1, m p  < n , n - m p  < k < n, a n d p * - k p / ( n - m p ) .  
There exists a constant K such that for every k-dimensional  plane H in R n and 

every v ~ L p (~n) ,  we have 09 m * ] V ] E  L p* ( H )  and 

]IX1 * Ivlllp,,n ~ []XlO)m * Ivlllp,,n ~ ]]O)m * ]vlllp,,n ~ K ]]V]lp,R,. (12) 
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Proof .  Only the final inequality of (12) requires proof. Since m p  < n, for each 
x 6 R n H61der's inequality gives 

fRn-Br (x) 
fR ) lip' I v ( y ) l l x  - yl m-n d y  <_ Ilvllp,in "--Sr(X~ Ix - -  yl(m-n)p' d y  

= K1 [[Vllp,R. t (m-n)p'+n-1 dt 

__ Klrm-(n/p) [[Vllp,R.. 

If t > 0, choose r so that K1 rm-(n/p) Ilvllp,e~ - t / 2 .  If 

~Om * Iwl(x) = fR~ Iw(y)llx - yl m-n d y  > t, 

then 

Thus 

Xr(-Om * Iwl(x) - L Iv(y)llx - yl m-n d y  > t / 2 .  
r(X) 

#~({x 6 H'~om �9 [v](x) > t}) _< #~({x 6 H'XrCOm * [v[(x) > t /2}) 

<_ IlXrOOm * Ivlll~,H 

< K r m p - n +  k ilvll p - g z r  ~ 
- -  p , R  ~ 

g l  Ilvllp,e,, 

by inequality (11). But r ~ -- (2K1 Ilvllp,Rn/t) p*, so 

u~({x e H 'O~m * IVI(x~ > t}) _< K2 ~ IlVllp,R. 

Thus the mapping I �9 v w-~ ((_O m * ]UI)[H is of weak type (p,  p*). 

For fixed m, n, k, the values of p satisfying the conditions of this lemma constitute 
an open interval, so there exist pl  and p2 in that interval, and a number  0 satisfying 
0 < 0  < l s u c h t h a t  

1 1 - 0  0 

p pl  p2 

and 
1 n / k  m 1 - 0  0 __ __ 

p* p ~ p~ p~ 
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Since p* > p, the Marcinkiewicz interpolation theorem 2.58 assures us that I is 
bounded from L p (]~n) into L p* (H) ,  that is, (12) holds. 1 

4.19 (Proof of Part I, Case C of Theorem 4.12 for p > 1) We have m p  < n ,  

n - m p  < k <_ n, and p <_ q <_ p ,  -- k p / ( n  - rap). Let u ~ C ~ (f2) and extend 
u and all its derivatives to be zero on ~n _ f2. Taking r -- p in Lemma 4.15 and 
replacing Cx,r with the larger ball B1 (x), we obtain 

l u ( x ) l < ~ K (  ~-~lot [ <m-  1 X l * l D ' ~ u l ( x ) - + - ~ - ~ X l ~ 1 7 6  " l o t  I : m  
(13) 

If 1/q -- O/p  + (1 - O ) / p *  where 0 < 0 < 1, then by the interpolation inequality 
of Theorem 2.11 and Lemmas 4.17 and 4.18 

0 1-0 
Ilullq,~ < Ilullp n Ilull - -  , p * , H  

~ 

< K Ilu Ilm,p,a 

1-0 

as required. 1 

4.20 (Proof of Part I, Case B of Theorem 4.12 for p > 1) We have mp = n ,  

1 _< k _< n, and p _< q < cx~. We can select numbers pl ,  p2, and 0 such that 

1 < pl  < P < p2, n - rap1 < k, 0 < 0 < 1, and 

1 0 1 - 0  1 0 

P Pl P2 q Pl 

As in the above proof of Case C for p > 1, the maps v w-~ (Xl * Ivl)lH and 

1) !----> (XlO) m * Ivl)lH are bounded from L pl (]~n)into L pl ( ~ )  and so are of weak 
type (pl,  pl) .  As in the proof of Case A, these same maps are bounded from 
Lp2 (]~n) into L ~ (R k) and so are of weak type (p2, 00). By the Marcinkiewicz 

theorem again, they are bounded from L p (]~n) into L q (]~k) and 

[IX1 * [vlllq,n ~ IlXlWm. Ivlllq,n ~ K IlO[Ip,Rn 

and the desired result follows by applying these estimates to the various terms of 

(13). 1 
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Imbeddings by Averaging 
4.21 We still need to prove the imbeddings for Cases B and C with p = 1. We 
first prove that W 1'1 (S2) --+ L n/(n-1) (f2) and deduce from this and the imbeddings 

already established for p > 1 that all but one of the remaining imbeddings in 
Cases B and C are valid. The remaining imbedding is the special case of C where 
k = n - m, p = 1, p ,  = 1 which will require a special proof. 

We first show that any domain satisfying the cone condition is the union of 
finitely many subdomains each of which is a union of parallel translates of a 
fixed parallelepiped. Then we establish a special case of a combinatorial lemma 
estimating a function in terms of averages in coordinate directions. Both of these 
results are due to Gagliardo [Gal] and constitute the foundation on which rests 
his proof of all of Cases B and C of Part I. 

4.22 L E M M A  (Decomposition of Y2) Let F2 C F '  satisfy the cone condi- 
tion. Then there exists a finite collection { f21 . . . . .  fZi } of open subsets of f2 such 
that fZ - Uf=l  f27, and such that to each f2j there corresponds a subset Aj C f2j 
and an open parallelepiped Pj with one vertex at 0 such that f2j - U~c~Aj (x + Pj). 

If f2 is bounded and p > 0 is given, we can accomplish the above decomposition 
using sets Aj each satisfying diam (Aj)  < p. 

Finally, if f2 is bounded and p > 0 is sufficiently small, then each f2j will satisfy 
the strong local Lipschitz condition. 

Proof. Let C be the finite cone with vertex at 0 such that any x E f2 is the vertex 
of a finite cone C~ c ~2 congruent to C. We can select a finite number of finite 
cones C1 . . . . .  CN each having vertex at 0 (and each having the same height as C 
but smaller aperture angle than C) such that any finite cone congruent to C and 
having vertex at 0 must contain one of the cones Cj. For each j ,  let Pj be an open 
parallelepiped with one vertex at the origin, contained in Cj, and having positive 
volume. Then for each x E f2 there exists j ,  1 _< j _< N, such that 

x + p j c x + c j c c ~ c ~ .  

Since f2 is open and x + Pj is compact, y + Pj C f2 for any y sufficiently close 
to x. Hence every x E f2 belongs to y + Pj for some j and some y E f2. Let 

aj  - {y E -~ " y + Pj C f2} and let f2j - [,-Jyeaj (Y + PJ)" Then ~ -- uU=l ~j .  

Now suppose S2 is bounded and p > 0 is given. If diam (Aj)  >_ p we can 
decompose Aj into a finite union of sets Aji each with diameter less than p and 
define the corresponding parallelepiped Pji = Pj. We then rename the totality of 

such sets Aji as a single finite family, which we again call {Aj } and define ~"2j as 
above. 

Figure 2 attempts to illustrate these notions for the domain in IR 2 considered in 
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Example 3.20" 

a = {(x, y) E IR 2 �9 0 < Ixl < 1, 0 < y < 1}, 

C = { ( x , y )  ER2 . x > 0 ,  y > 0 ,  x 24-y2 < 1/4}, 

p < 0.98. 

Finally, we show that if p is sufficiently small, then ~ j  satisfies the strong local 
Lipschitz condition. For simplicity of notation, let G = Uxsa (x + P), where 
diam (A) < p and P is a fixed parallelepiped. We show that G satisfies the 
strong local Lipschitz condition if p is suitably small. For each vertex vj of P let 
Qj -- {y = l)j -q t- ~.(X -- l)j) : X E P, )~ > 0} be the infinite pyramid with vertex l)j 
generated by P. Then P = n Q j, the intersection being taken over all 2 ~ vertices 
of P. Let Gj = Uxea (x + Q j). Let 6 be the distance from the centre of P to 
the boundary of P and let B be an arbitrary ball of radius cr = 6/2. For any fixed 
x 6 G, B cannot intersect opposite faces of x + P so we may pick a vertex vj of 
P with the property that x + vj is common to all faces of x + P that intersect B, 
if any such faces exist. Then B N (x + P) = B n (x + Q j). Now let x, y 6 A 
and suppose B could intersect relatively opposite faces of x + P and y + P, that 
is, there exist points a and b on opposite faces of P such that x + a 6 B and 
y 4-b E B. Then 

p >_ dist(x, y) = dist(x + b, y + b) 

>_ dist(x + b, x + a) - dist(x + a, y + b) 

> 28 - 2a  = 8. 

It follows that if p < 8, then B cannot intersect relatively opposite faces of x 4- P 
and y + P for any x, y 6 A. Thus B n (x + P) = B n (x + Q j) for some fixed j 
independent of x ~ A, whence B n G = B G Gj. 

Choose coordinates ~ = (~', ~n) - (~1 . . . . .  ~n-1, ~n) in B so that the ~n-axis 
lies in the direction of the vector from the centre of P to the vertex vj. Then 

B n (x + Qj) is specified in B by an inequality of the form ~ < fx(~') where 
fx satisfies a Lipschitz condition with constant independent of x. Thus B n G j, 
and hence B N G, is specified by ~n < f (~ ' ) ,  where f ( ~ ' )  = SUPx~a fx(~') is 
itself a Lipschitz continuous function. Since this can be done for a neighbourhood 
B of any point on the boundary of G, it follows that G satisfies the strong local 
Lipschitz condition. I 
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Fig. 2 

4 . 2 3  L E M M A  (An Averag ing  L e m m a )  Let S2 be a domain  in R n where 

n > 2. Let k be an integer satisfying 1 < k < n, and let x - (Xl . . . . .  xk) be a 

k-tuple of  integers satisfying 1 < xl < x2 < . . .  < x~ < n. Let S be the set of  all 
n (k) such k-tuples. Given x E g n, let xK denote the point (xK, . . . . .  x~ k) in/~k and 

let d x ~  - d x ~  . . .  dxK~. 

For tc E S let E~ be the k-dimensional  plane in R n spanned by the coordinate axes 

corresponding to the components  of xK" 

E x  - { x  E ]~n . x i  - - 0 i f i  ~'x},  
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and let f2~ be the projection of f2 onto E~" 

f 2 ~ - - { x 6 E ~  �9 x K = y ~ f o r s o m e y 6  f2}. 

Let F~ (xK) be a function depending only on the k components of x~ and belonging 

to L z (f2~), where )~ - (n-1)k_l . Then the function F defined by 

F(x) -- 1-I F~(xK) 
xES 

belongs to LI(~), and IIFIII,~ ~ I-IK~s IIF~ I1~,~, that is, 

(flF(x)l dx) z ~I~~sf~ IF'~(xK)lZdxK" (14) 

Proof.  We use the mixed-norm H61der inequality of Paragraph 2.49 to provide 
the proof. For each x 6 S let p~ be the n-vector whose ith component is )~ if i 6 x 
and c~ if i ~ x. For each i 1 < i < n, exactly (k/n) (" , _ _ 1,) -- ~, of the vectors p~ 
have ith component equal to )~. Therefore, in the notation of Paragraph 2.49 

1 1 
m m 

p ~  w 

where w is the n-vector (1, 1 . . . . .  1). 

Let FK (xK) be extended to be zero for x~ r g2~ and consider F~ to be defined on 
It~ n but independent of xj if j r x. Then F~ is its own supremum over those xj 
and 

II FK IIz,~ - II FK IIpK,R, �9 

From the mixed-norm H61der inequality 

II F II 1,K2 ~ II F Ilw,Rn ~ 17  II F~ IIpK,Rn : I-I  II F~ I1~,~ 
x~S  x~S  

as required. I 

4.24 L E M M A  If ~ satisfies the cone condition, then WI' 1 (~-2) ~ LP (g2) for 

1 < p < n / ( n - - 1 ) .  

Proof.  By Lemma 4.22, g2 is a finite union of subdomains each of which is a 
union of parallel translates of a fixed parallelepiped. It is therefore sufficient to 
prove the imbedding for one such subdomain. Thus we assume f2 = ~xsa (x + P) 
where P is a parallelepiped. There is a linear transformation of/t~ n onto itself that 
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maps P onto a cube Q of unit edge with edges parallel to the coordinate axes. By 
Theorem 3.41 it is therefore sufficient to prove the lemma for f2 = Ux~A (x .ql.. Q). 

For x E f2 let s be the intersection of f2 with the line through x parallel to the 
x 1-axis. Evidently s contains a closed interval of length 1 containing x l, say the 

[~1, ~2]" If f 6  c l ( [ o ,  1]), then If(t0)l < If( t ) l  + If/0 i f ( r ) d r [ , '  interval and 

integrating over t over [0, 1 ] yields 

fo f f  If(t0)l _ ( I f ( t ) l  +1 ( t ) l )d t .  

For u 6 C~(f2)  we apply this inequality to u(t, Xl) (where Xl ~--" (X2 . . . . .  Xn) ) to 
obtain 

lu(x)l _< (lu(t, ~1)1 + IDau(t, ~1)1) dt 
1 

<_ f (lu(t, + IDlU(t, ~1)1) dt. 

Let ~"21 be the orthogonal projection of f2 onto the hyperplane of coordinates X l ,  

and let (f ) l/(n-1) 
/'/1 (Xl) - -  (lu(t, Xl)l + IOlu(t,-~l)l) dt . 

(Evidently u 1 (Xl) is independent of Xl) We have 

Ilullll/(n-1),s2, = f~ lul(x)l n-1 dfCl < Ilulll,l,~. 
1 

Similarly, for 2 < j < n we can define/,/j to be independent of xj and to satisfy 

lu(x)l _< (Uj(X)) 1/(n-l) and 

Ilujlll/<~ 1~ ~ ~ ilulli,a ~ .  

n Since lu(x)l n/(n-1) ~ H j = I / g j ( x ) ,  applying inequality (14) with k - n - 1 = )~ 
now gives 

_ _ II n / ( n - 1 )  lu(x)] n/(n-1) dx < [ujl(~cj)l n-1 d~cj < Ilu,,1,1, • . 
"--- j 

For the original domain f2, this will imply that 

IlUlln/(n_l),~ ~ K [[Ulll,l,~ 
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where the constant K depends on n and the cone C of the cone condition. These 
determine the number N of subdomains needed, and the size of the determinant 
of the linear transformation needed to transform the parallelepipeds for each 
subdomain into Q. The imbedding W 1'1 (~"2) ~ L P ( ~ )  for 1 <_ p < n / ( n -  1) 
now follows by L p interpolation (Theorem 2.11) | 

4 .25  ( P r o o f  o f  Par t  I, C a s e s  B and  C o f  T h e o r e m  4 .12  for  p = 1, k > n --  m )  

Let m _< n. By the above lemma and previously proved parts of Cases B and C 
for p > 1, we have 

W m'l (~2) ~ W m-l 'p  (~"2) f o r l  <_ p < n / ( n - 1 ) .  

S i n c e k  > n - m ,  thereforek  > n - m + l  > n - ( m - 1 ) p f o r a n y p  > 1. 
Therefore W m-l 'p (~'2) -"+ L q (~k) holds for 

kp k n / ( n -  1) k 
1 < q  < p * =  = - ~ .  

n -  ( m -  1)p n -  ( m -  1 ) n / ( n -  1) n -  m 

Combining these imbeddings we get W m'l (f2) ~ L P ( ~ ) ,  1 <_ q <_ k / ( n -  m). 

For p = 1, m = n the imbedding W n'l (~2) --+ L q (f2k), 1 < q <_ e~, 1 < k <_ n 
was already proved under Case A. I 

4 .26  ( P r o o f  o f  P a r t  I, C a s e  C o f  T h e o r e m  4 .12  for  p = 1, k = n --  m )  In 
this case we want to show W m'l (~'2) ---> L 1 (~"2k). AS in the proof in Paragraph 
4.24 it is sufficient to establish the imbedding for a domain f2 that is a union of 
parallel translates of a unit cube with edges parallel to the coordinate axes. We 
can also assume that 0 ~ f2 and that 

~2k - {x = (x' ,  x")  e s2" x ' - 0 } ,  

where x'  - (Xl . . . .  Xm) and x" = (Xm+l . . . . .  Xn). For x 6 f2 let ~x be the 
intersection of f2 with the m-plane of variables x' passing through x. f2x contains 
an m-cube Qx of edge 1 containing x, and so by Case A of Theorem 4.12 applied 

to this cube, we have for u E C a (f2), 

lu(x)l ~ g ~_~ ~ ID~u(x ', x')l dx'. 
Iol l <_rn x 

Integrating x" over ~2~ then gives 

f lu(x)l dx" < K 
k 

fc~ ID=u(x)l dx .  
]~l<m 

The proof of Part I of Theorem 4.12 is now complete, l 
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Imbeddings into Lipschitz Spaces 
4.27 To prove Part II of  Theorem 4.12, we now assume that the domain S2 C R n 
satisfies the strong local Lipschitz condition defined in Paragraph 4.9, and that 
m p  > n > ( m  - 1)p. We shall show that wrn'p(~'~2) ~ C~ where: 

(i) O < ) ~ < m - ( n / p )  if n >  ( m - 1 ) p ,  or 

(ii) 0 < ) ~ <  1 i f n = ( m - 1 ) p a n d p >  1, or 

(iii) 0 < ) ~ <  1 i f n = m - l a n d p - 1 .  

In particular, therefore, wm'P(~'2) ~ C~ The imbedding constants may 
depend on m, p,  n, and the parameters 6 and M specified in the definition of the 
strong local Lipschitz condition. Since that condition implies the cone condition, 
we already know that W m'p (~'2) ---+ C 0 (~'2), SO if U ~ W m'p (~"2), then 

sup lu(x)l ~ K1 I lUllm,p,a.  
x E ~  

It is therefore sufficient to establish further that for the appropriate )~, 

lu(x) - u(y)l  
sup iz < K2 Ilu Ilm,p,~ �9 
x,y~a Ix - y - 
x#y 

Since m p  > n >__ ( m  - 1)p, Cases B and C of Part I of  Theorem 4.12 yields the 
imbedding W m'p ( f2 )  --+ W l'r (f2) where: 

(i) r = n p / ( n  - m + 1)p and so 1 - ( n / r )  = m - ( n / p )  if n > (m - 1)p, or 

(ii) p < r  < o c a n d s o 0 <  1 - ( n / r )  < l i f n  > ( m - 1 ) p ,  or 

(iii) r = o c a n d s o l - ( n / r ) = l i f n = m - l a n d p =  1. 

It is therefore sufficient to establish the special case m -- 1. 

4.28 L E M M A  Let f2 satisfy the strong local Lipschitz condition. If u belongs 
to W I'p (f2) where n < p < ec, and if 0 < )~ < 1 - ( n / p ) ,  then 

lu(x) - u(y)l  
sup < K Ilulll,p,a �9 (15) 
X,yEf2 IX --  y l  z -- 
xr 

Proof .  Suppose,  for the moment ,  that f2 is a cube having unit edge length. For 

0 < t < 1 let Qt denote a subset of f2 that is a closed cube having edge length t 

and faces parallel to those of f2. If x, y E f2 and Ix - Y l = cr < 1, then there is a 
fixed such cube Q,, such that x, y E Q~. 

Let u 6 C~( f2 )  If z E Q~, then 

fo l" u ( x )  - u ( z )  - -  -d-~u((x  + t ( z  - x ) )  d t ,  
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so that 

f0 
1 

lu(x) - u(z)l _< a x / ~  Igrad u((x  + t ( z  - x))l dt.  

It follows that 

,s u(x )  - u ( z ) d z  o.n 
cr 

__ 1 ~(U(X)-- u(z))dz 

f Q f o  1 < ff-n dz  Igradu((x  + t ( z  - x))l dt  
i o . n _  1 

 f0m fo = t - "  d t I grad u (~") [ d ~" 
o ' n - 1  t a  

< ~ Ilgradullo, p,a (vo l (Q) to) l /p ' t -n  dt  (16) 
- -  o . n _  1 

<_ K a  1-(n/p) Ilgradullo, p ,a ,  

where K = K (n, p)  = ~ fd  t -n/p dt  < oo. A similar inequality holds with y 
in place of x and so 

lu(x) - u(y)l  ~ 2 K l x  - yl 1-(n/p) Ilgradull0,p,a �9 

It follows that (15) holds for 0 < ~. < 1 - ( n / p )  for f2 a cube, and therefore via a 
nonsingular  linear transformation, for f2 a parallelepiped. 

Now suppose that g2 is an arbitrary domain satisfying the strong local Lipschitz 
condition. Let 3, M,  S2a, Uj and Vj be as specified in the definition of that condition 
in Paragraph 4.9. There exists a parallelepiped P of diameter 3 whose dimensions 
depend only on 3 and M such that to each j there corresponds a parallelepiped Pj 
congruent  to P and having one vertex at the origin, such that for every x ~ Vj • f2 
we have x + Pj C f2. Furthermore,  there exist constants 30 and 31 depending only 
on 3 and P,  with 30 < 3, such that if x, y 6 Vj n f2 and Ix - Y l < 30, then there 
exists z ~ (x + Pj) n (y + Pj) with Ix - zl + ly - zl < 311x - Yl. If follows f rom 
applications of (15) to x + Pj and y + Pj that if u 6 C ~176 (f2), then 

lu(x) - u(y)l  ~ lu(x) i u(z) l -+- lu(y)  i u(z)l 

<_ K l x  - zl x IlUlll,p,a + KIy  - zl x IlUlll,p,a 

<_ K l l x  - yl z Ilulll,p,a �9 (17) 

Now let x, y be arbitrary points in f2. If Ix - Y l < 30 < 3 and x, y 6 f2~, then 
x , y  6 Vj for s o m e j  a n d ( 1 7 )  holds. I f l x - y l  < 60, x ~ f2a, y 6 ~ 2 - f 2 a ,  
then x 6 Vj for some j and (17) still follows by an applications of (15) to x + Pj 
and y + Pj. If Ix - Y l < 30, x, y 6 f2 - fla, then (17) follows from applications 
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of (15) to x + P '  and y + P '  where P' is any parallelepiped congruent  to p and 
having one vertex at the origin. Finally, if ]x - y] >_ 60, then 

l u ( x )  - u(y)l _< lu(x)[ + lu(y)[ __ g l  IlUlll,p,a ~ g6oXlX  - yl ~ I lu l l l ,p ,a  �9 

Thus (15) holds for all u 6 C~(~2) and, by Theorem 3.17, for all u 6 C ~ (~) .  | 

This completes the proof of Part II of Theorem 4.12 and therefore of the whole 
theorem since, as remarked earlier, Part III follows from the fact that Parts I and 
II hold for ~ - IR ~ . 

Sobolev's Inequality 
4.29 (Seminorms)  For 1 < p < cx~ and for integers j ,  0 _ j < m, we 
introduce functionals ] ' ] j ,p  o n  W m ' p  (~'~) as follows: 

lulj,p = lulj,p,~ = ID a u(x) l  p d x  
I 

Clearly ]u]0,p -- ]]ul[0,p -- ]]Ul[p is the norm o n  L P ( ~ )  and 

]]U]]m, P = ] U l P p  �9 

j=O 

If j > 1, we call ].]j,p a seminorm.  It has all the properties of a norm except that 
]u]j,p = 0 need not imply u = 0 in W m,p (~) .  For example,  u may be a nonzero 
constant function if ~2 has finite volume. Under certain circumstances which we 
begin to investigate in Paragraph 6.29, ]']m,p is a norm on W o  'p (S2) equivalent to 
the usual norm I1" ]]m,p" In particular, this is so if g2 is bounded. 

For now we will confine our attention to these seminorms as they apply to functions 
in C ~  (I~ n ). 

4.30 The Sobolev imbedding theorem tells us that W o  'p (I~ ~) --+ L q (]~n) for 
certain finite values of q depending on m, p, and n; for such q there is a finite 
constant K such that for all ~b 6 C ~  (R ~) we have 

]l~bl[q ~ g I]%bl[m, p . 

We now ask whether such an inequality can hold with [']m,p in place of ]]'lira,p- 
That is, do there exist constants K < oc and q > 1 such that for all ~b ~ C ~  (IR n ) 

~ ]~b(X)] q d x  g q ]D~ p d x  ? (18) < 
n ] n 



102 The Sobolev Imbedding Theorem 

If so, for any given 4~ E C ~  (I~ n), the inequality must  also hold for all dilates 
ckt(x) = ck(tx),  0 < t < c~, as these functions also belong to C ~ ( I ~ ) .  Since 

114~t IIq = t -n/q 114~llq and IID~r -- t m-(n/p) IIO=4~llp if I~1 = m,  we must  have 

fR [4~(x)lq d x  Kqt n+mq-(nq/p) I D ~ ( x ) [  p d x  < 
n I n 

This is clearly not possible for all t > 0 unless the exponent of t on the right side 
is zero, that is, unless q = p* = n p / ( n  - mp) .  Thus no inequality of the form 
(18) is possible unless m p  < n and q = p* = n p / ( n  - mp) .  We now show that 
(18) does hold if these conditions are satisfied. 

4.31 T H E O R E M  (Sobolev's  Inequality) When m p  < n, there exists a 
finite constant K such that (18) holds for every ~b 6 C~ c (IR n ): 

II~llq,R. ~ K Ir (19) 

if and only if q -- p* = n p / ( n  - mp) .  This is known as Sobolev ' s  inequality.  

Proof .  The "only if" part was demonstrated above. For the "if" part note first 
that it is sufficient to establish the inequality for m = 1 as its validity for higher m 
(with m p  < n) can be confirmed by induction on m. We leave the details to the 
reader. 

Next, it suffices to prove the case m -- 1, p = 1, that is 

fR )n/(n-1) ~ [qb(x)ln/(n-1)dx<K s [Djdg(x)ldx 
" j = l  n 

(20) 

for if 1 < p < n and p* = n p / ( n  - p)  we can apply (20) to ]~b(x)l s where 
s --- (n - 1) p* / n and obtain, using H61der's inequality, 

(s f R  l~(x)lP* d x  <_ K s lc~(x) lS- l lDd~(X)[  d x  
j = l  

< K1 ]]q~llS-1 
j = l  

Since (s - 1)p'  = p* and p* - (s - 1 ) n / ( n  - 1) = n / ( n  - 1), it follows by 
cancellation that 

]]~b[lp, ~ K2 ]~b]l, p . 



Sobolev's Inequality 103 

It remains, therefore, to prove (20). Let r E C~(IR n) and for x e R ~ and 
1 < j < n let ~j -- (Xl . . . . .  Xj_l, Xj+l . . . . .  x,,). Let 

uj(Jcj) - IDjr dxj , 
i--] oc 

which is evidently independent of xj and satisfies 

( Ilu LI._l,  -i _< tUll,l,  . 

Since 

we have 

r  = f x ~  D i e ( t ,  xl) dt 

Similarly, Ir ~ (lgj(Xj)) n-1. Applying the inequality (14) from Lemma 4.23 
with k = n - 1 - )~ we obtain 

in Ir n/(n-1) dx ~ I-I uj(~cj) dx 
~j=l 

~(FI/Rj:l n-1 'l~J('~'J)ln-ld'~J) 
1 / ( n - l )  

tTJ ";. 1' 
_<lu 

which completes the proof of (20) and hence the theorem. | 

4.32 (REMARK)  For the case m = 1, 1 < p < n, Talenti [T] and Aubin, as 
exposed in Section 2.6 of [Au], obtained the best constant for the equivalent form 
of Sobolev's inequality 

IIr ~ K Ilgradr 

by showing that the ratio 
I[r 
][gradr 1,p 

is maximized if u is a radially symmetric function of the form 

u(x) - (a -+- blxlP/(P-l~) 1-(n/p) 

(21) 

which, while not in C ~  (R n) is a limit of functions in that space. His method 
involved first showing that replacing an arbitrary function u vanishing at infinity 

f 
oo 

Ir ~ IDlr fCl)ldt <__ (/,tl(Xl)) n-1. 
oo 
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with a radially symmetric, non-increasing, equimeasurable rearrangement of u 
decreased Ilgrad u IIp,R n while, of course, leaving Ilu [Inp/(n-p),R n unchanged. 

Talenti's best constant for (21) is 

g--Tr-1/2n-1/P(Pn - 1  1/p' ( P( l  + n /2 )F(n)  ) 

I"(n/p)P(1 + n - (n /p ) )  

1/n 

Variations of Sobolev's Inequality 

4.33 Mixed-norm LP estimates of the type considered in Paragraphs 2.48-2.51 
and used in the proof of Gagliardo's averaging lemma 4.23 can contribute to gen- 
eralizations of Sobolev's inequality. We examine briefly two such generalizations: 

(a) anisotropic Sobolev inequalities, in which different L p norms are used 
for different partial derivatives on the right side of (19), and 

(b) reduced Sobolev inequalities, in which the seminorm Iq~lm,p,R, on the 
fight side of (19) is replaced with a similar seminorm involving only a 
subset of the partial derivatives of order m of 4). 

Questions of this sort are discussed in [BIN1 ] and [BIN2]. We follow the treatment 
in [A3] and [A4] and most of the details will be omitted here. 

4.34 (A First-Order Anisotropic Sobolev Inequality) If pj ~ 1 for each j 
with 1 _< j _< n and 4) ~ C~  (I~ n ), then an inequality of the form 

[[~[Iq ~ K ~ IIDj II   
j = l  

(22) 

is a (first-order) anisotropic Sobolev inequality because different L p norms are 
used to estimate the derivatives of cp in different coordinate directions. A dilation 
argument involving ~b0~lXl . . . .  , XnXn) for 0 < ~j < c~, 1 < j < n shows that 
no such anisotropic inequality is possible for finite q unless 

n 1 1 1 @ ,  1 1 
j~l  > 1 and - = - Z~  .= pj q nj=l P j n 

If these conditions are satisfied, then (22) does hold. The proof is a generaliza- 
tion of that of Theorem 4.31 and uses the mixed-norm H61der and permutation 
inequalities. (See [A3] for the details.) 

4.35 (Higher-Order Anisotropic Sobolev Inequalities) The generalization 
of (22) to an ruth order inequality by induction on m is somewhat more problematic. 
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The mth order isotropic inequality (19) follows f rom its special case m -- 1 by 
simple induction. We can also obtain 

II~bllq ~ K ~ IID~q~llp~, 
]oe[=m 

where 
1 = 1 ~ m ( m )  1 m ( m ) _  m! 
q n m ot poe lit ol ol 1 !o121 . . . ol n I . _ _  �9 , 

by induction from (22) under suitable restrictions on the exponents poe, but the 
restriction 

1 ~ ( m )  1 m 
tim Ot Poe /It I = 

will not suffice in general  for the induction even though Y~loel=m (m) = nm. The 
conditions mpoe < n for each ot with lot] - m will suffice, but are stronger than 
necessary. 

For any multi- index/3 and 1 _< j < n, let 

f l [ j]  -- (ill . . . . .  ~ - 1 ,  flj + 1, ~ + 1  . . . . .  ]~n)- 

Evidently, [fl[j][ = 1/31 + 1 and it can be verified that if the numbers  poe are defined 
for all ot with ]ol[ -- m, then 

]fl]--m-1 /~ j--1 P f [ J ]  ]oel--m c~ poe 

This provides the induction step necessary to verify the following theorem, for 
which the details can again be found in [A3]. 

4.36 T H E O R E M  Let poe >_ 1 for all o~ with Joel -- m. Suppose that for every 
fl with 1/31 = m - 1 we have 

n 1 
> m .  

Then there exists a constant K such that the inequality 

]l~bl[q < g ~ I[Doe~b[lp~ 
[oel=m 

holds for all 4~ 6 C ~  (I~ n ), where 

1 l m  

t i m  ~--7"-,,. Ol poe t i  
I ~,. 
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4.37 (Reduced Sobolev Inequali t ies)  Another variation of Sobolev's inequal- 
ity addresses the question of whether the number of derivatives estimated in the 
seminorm on the right side of (19) (or, equivalently, (18)) can be reduced with- 
out jeopardizing the validity of the inequality for all ~b ~ C ~  (I~ n). If m >_ 2, 
the answer is yes; only those partial derivatives of order m that are "completely 
mixed" (in the sense that all m differentiations are taken with respect to different 
variables) need be included in the seminorm. Specifically, if we denote 

,M - . M ( n , m )  - {or �9 I~1- m, c~j = 0oro t j  = 1 for 1 < j < n, 

then the reduced Sobolev inequality 

II~llq ~ K Z IID~q~IIp 
otr.h/[ 

holds for all q~ 6 C~(]~n), provided m p  < n and q = n p / ( n  - mp) .  Again 
the proof depends on mixed-norm estimates; it can be found in [A4] where the 
possibility of further reductions in the number of derivatives estimated on the right 
side of Sobolev's inequality is also considered. See also Section 13 in [BIN1 ]. 

Wm,P(/~) as a Banach Algebra 

4.38 Given u and v in W m,p (~"2), where f2 is a domain in I~ ~, one cannot in 
general expect that their pointwise product uv will belong to w m ' P ( ~ " 2 ) .  The 
imbedding theorem, however, shows that this is the case provided m p  > n and f2 
satisfies the cone condition. (See [Sr] and [Mz2].) 

4.39 T H E O R E M  Let f2 be a domain in I~ n satisfying the cone condition. 
If m p  > n or p = 1 and m > n, then there exists a constant K* depending 
on m, p, n, and the cone C determining the cone condition for f2, such that for 
U, 1) E W m ' p  (~'2) the product uv, defined pointwise a.e. in f2, satisfies 

[luvllm,p,a <_ K* Ilullm,p,~ Ilvllm,p,a. (23) 

In particular, equipped with the equivalent norm II'll*m,p,~ defined by 

Ilull~,,p,~ - K* Ilullm,p,~, 

W m'p (~"2) is a commutative Banach algebra with respect to pointwise multiplication 
in that 

Iluvll,~p,~ < Ilull* , �9 , - -  m , p , ~  Ilpll~, p,~ 

Proof.  We assume m p  > n; the case p -- 1, m - n is simpler. In order to 
establish (23) it is sufficient to show that if Iotl _< m, then 

f lD~[u (x )v (x ) ] l  p < g~  Ilullm,p,a IlVllm,p,~, 
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where  K~ -- K~(m, p , n ,  C). L e t u s  assume for the m o m e n t t h a t  u E C ~ ( f 2 ) .  By 
the Leibniz rule for distributional derivatives, that is, 

it is sufficient to show that for any fi < or, loll < m, we have 

f lD~u(x)D~-~v(x) l  p dx <_% K~,~ IlullPm,p,~ IlvllPm,p,~, 

where  K~,~ -- K~,~(m, p, n, C). By the imbedding  theorem there exists, for 
any /3  with 1/31 < m, a constant  K(/3) -- K(fi ,  m, p , n ,  C) such that for any 
W G_. W m ' p ( ~ ) ,  

f a  lD~w(x)] r dx g ( f i )  (24) < Ilwllr p ,~ ,  

provided (m - ] / 3 1 ) p  ~ n and p < r < np / (n  - [m -J i l l ]P)  [or p ~ r < oc if 
(m - I f i l ) p  = n], or alternatively 

ID~w(x)l ~ K(f i)  IlWllm,p,S~ a.e. in S2 

provided (m - Ifi I)P > n. 

Let  k be the largest integer such that (m - k ) p  > n. Since mp > n we have k > 0. 

If  I/~1 _< k, then (m - I f i l ) P  > n, so 

L ID~u(x)D~-~v(x) l  p dx < g ( ~ )  p IlullPm p ~ [[O~-~vl[ p 
- -  , , O ,  p , S 2  

< K ( f l )  p IlullPm,p,a IlvllPm,p,a �9 

Similarly, if lot - /31  < k, then 

f lD~u(x)D~-~v(x)]  p dx < K(oe - [3) p Ilull p P m,p,~  Ilvll -- m,p,f2 " 

Now if Ifil > k and lot - fil > k, then, in fact, 1r ~ k + 1 and lot - fll > k + 1 
so that n >_ (m - ] f l l ) p  and n >_ (m - l o t  - f i l )p.  Moreover ,  

n - ( m  - I f i ] ) P  n - ( m  - l o t  - fil)P ( 2 m  - I c c l ) p  mp 
+ = 2 -  < 2 - - - < 1 .  

/1 g/ /'/ g/ 

Hence  there exist positive numbers  r and r '  with ( 1 / r )  + ( 1 / r ' )  - 1 such that 

np np 
p < rp < , p < r 'p  < . 

- n - ( m  - [ f i ] ) p  - n - ( m  - ] o r  - fi[)p 
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Thus by H61der's inequality and (24) we have 

(ff2 )l/r (ff2 )l/r' s2 l D ~ u ( x ) D ~  p d x  < [D~u(x ) [  rp d x  [ D ~ - ~ v ( x ) [  r'p d x  

< (K (fl))1/r (K (Ol fl))1/r' - Ilull p P -- m,p,f2 Ilvllm,p,a. 

This completes the proof of (23) for u E C ~ (f2), v ~ W m'p (~"l). 
If u ~ wm'p(~"2) then by Theorem 3.17 there exists a sequence {uj} of C~(f2) 
functions converging to u in W m'p (~'2). By the above argument, {uj v} is a Cauchy 
sequence in W m'p (~'2) and so it converges to an element w of that space. Since 
m p  > n, u and v may be assumed to be continuous and bounded on f2. Thus 

_ IIw- uj llo  + It llo, ,  Iluj- ulloe 
--+0 as j --+ oo. 

Hence w = u v  in L p (~) and so w = uv  in the sense of distributions. Therefore, 
w = uv  in W m'p (~"2) and 

Iluvllm,p,a -Ilwllm,p,a ~ l i m s u p  IlujVllm,p,~ ~ K* Ilullm,p,~ IlVllm,p,~ j---~ c~ 

as was to be shown. | 

We remark that the Banach algebra W m'p (~"2) has an identity element if an only 
if f2 is bounded. That is, the function e ( x )  = 1 belongs to W m'p (~"2) if and only 
if f2 has finite volume, but there are no unbounded domains of finite volume that 
satisfy the cone condition. 

Optimality of the Imbedding Theorem 

4.40 The imbeddings furnished by the Sobolev Imbedding Theorem 4.12 are 
"best possible" in the sense that no imbeddings of the types asserted there are 
possible for any domain for parameter values m, p, q, )~ etc. not satisfying the 
restrictions imposed in the statement of the theorem. We present below a number 
of examples to illustrate this fact. In these examples it is the local behaviour of 
functions in W m'p (~"2) rather than their behaviour near the boundary that prevents 
extending the parameter intervals for imbeddings. 

There remains the possibility that a weaker version of Part I of the imbedding 
theorem may hold for certain domains not nice enough to satisfy the (weak) cone 
condition. We will examine some such possibilities later in this chapter. 
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4.41 E X A M P L E  Let k be an integer such that 1 < k < n and suppose that 
m p  < n a n d q  > p * - - k p / ( n - m p ) .  We construct a function u e wm'p(~"2)such 

that u fJ L q (~k) ,  where f2k is the intersection of f2 with a k-dimensional  plane, 
thus showing that W m'p (~"2) does not imbed into L q (~2k). 

Without  loss of generality, we can assume that the origin belongs to f2 and that 

f2k - -  {x e f2 �9 Xk+l . . . . .  Xn --  0}. For R > 0, let BR = {x e ]~n . Ix] < R}. 
We fix R small enough that B2R C ~ .  Let v ( x )  --  ]x]~; the value of # will be 
set later. Evidently v e C ~ ( R  ~ - {0}). Let u e C ~ ( I ~  n - {0}) be a function 

satisfying u ( x )  - v ( x )  in Be and u ( x )  - 0 outside BZR. The membersh ip  of u in 
W m'p (~'2) depends only on the behaviour of v near the origin: 

U E w m ' P ( ~ ' 2 )  ", ,~ u E W m 'p  (Be). 

It is easily checked by induction on lot] that 

D ~ v ( x ) -  e ~ ( x ) l x l ~ - 2 1 ~ l ,  

where P~ (x) is a polynomial  homogeneous  of degree lot] in the components  of x. 
Thus ID~  < K~lx] ~-I~1 and, setting p -- ]x], 

fo R ]D~ d x  < K n K ~  p(IZ-]otl)p+n-1 d p ,  

R 

where Kn is the (n - 1)-measure of the sphere of radius 1 in R n . Therefore 
1) U_. W m'p (BR)  and u e W m'p ( ~ ) p r o v i d e d  lz > m -  ( n / p ) .  

On the other hand, denoting Yck = (xl  . . . . .  xk )  and r -- Ixk l, we have 

L fo" l u ( x ) l  q dYck > I v (x ) l  q dYck = Kk  r Izq+k-1 dr.  
k R)k 

Thus u fJ L q (~k)  i f /z  < - ( k / q ) .  

Since q > k p / ( n  - m p )  we can pick # so that m - ( n / p )  < lz < - ( k / q ) ,  thus 

complet ing the specification of u. | 

Note that # < 0, so u is unbounded  near the origin. Hence no imbedding of the 
form W m'p (~"2) ~ C O (~2) is possible if m p  < n. 

4.42 E X A M P L E  Suppose m p  > n > ( m -  1)p, and let A > m -  ( n / p ) .  Fix 

# so that m - ( n / p )  < # < )~. Then the function u constructed in Example  4.41 
continues to belong to W m'p (~) .  However,  if Ixl < R, 

lu(x)-u(O)l 
Ix - OI z 

-Ixl  ~ - ~ ~  as lx l~O.  
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Thus u r C ~ (~) ,  and the imbedding W m'p (~'~) ~ C 0')~ (~ )  is not possible. | 

4.43 E X A M P L E  Suppose p > 1 and m p  = n. We construct a function u 
in W m' P (f2) such that u r L ~ (f2). Hence the imbedding W m, p (f2) --+ L q (~'2), 

valid for p < q < cx~, cannot be extended to yield wm'P(~"2) ~ Lc~(~"2) or 
W m'p (~'2) ~ C 0 (~ )  unless p = 1 and m = n. (See, however,  Theorem 8.27.) 

Again we assume 0 6 f2 and define u (x) as in Example  4.41 except with a different 
function v(x)  defined by 

v(x)  = log ( log (4R / l x l ) ) .  

Clearly v is not bounded near the origin, so u ~ L ~ (S2). It can be checked by 

induction on Ic~l that 

D ~ v ( x )  -- Z P=,J(X)lxl-21=l(l~ - j  
j=l  

where Po,,j(x) is a polynomial  homogeneous  of degree I~1 in the components  of 
x. Since p = n / m ,  we have 

IO~v(x) l  p ~ ~ g,~,j lxl-I~176 - jp ,  
j=l  

so that, setting p = Ix I, 

fBR IDOtu(x)[Pdx <~ gj~l (l~ 

The right side of the above inequality is certainly finite if loll < m. If loll = m, 

we have, setting cr = l o g ( 4 R / p ) ,  

Iotl c ~  

fBR ]Dav(x)lPdx<-Kj~lflog4 cr-JPdff 

which is finite since p > 1. Thus v ~ W m' p (BR) and u ~ W m' p ( ~ ) .  I 

It is interesting that the same function v (and hence u) works for any choice of m 

and p with mp = n. 

4.44 E X A M P L E  Suppose (m - 1)p = n and p > 1. We construct u in 
W m,p (~2) such that u r C ~ (~) .  Hence the imbedding W m,p (~2) - ,  C ~ (~ ) ,  

valid for 0 < )~ < 1 whenever  ~2 satisfies the strong local Lipschitz condition, 
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cannot be extended to yield W m'p (~"~) ~ C 0'1 (~"~) unless p = 1 and m - 1 = n. 

Here u is constructed as in the previous example except using 

v ( x )  = [x[ l o g ( l o g ( 4 R / [ x [ ) ) .  

Since Iv(x) - v ( O ) l / l x  - 01 = l o g ( l o g ( 4 R / l x [ ) )  --+ ec  as x --+ 0 it is clear that 

v ~ C ~ (BR) and therefore u ~' C ~ (S2). The fact that v ~ W m'p (OR) and hence 
u ~ W m' p ( ~ )  is shown just as in the previous example. | 

Nonimbedding Theorems for Irregular Domains 

4.45 The above examples show that even for very regular domains there can exist 
no imbeddings of the types considered in Theorem 4.12 except those explicitly 
stated there. It remains to be seen whether any imbeddings of those types can 
exist for domains that do not satisfy the cone condition (or at least the weak 
cone condition). We will show below that Theorem 4.12 can be extended, with 
weakened conclusions, to certain types of irregular domains, but first we show 
that no extension is possible if the domain is "too irregular." This can happen if 
either the domain is unbounded and too narrow at infinity, or if it has a cusp of 
exponential sharpness on its boundary. 

An unbounded domain ~ C IR" may have a smooth boundary and still fail to 
satisfy the cone condition if it becomes narrow at infinity, that is, if 

lim dist(x, bdry ~)  = 0. 
Ixl~oc 

xc~2 

The following theorem shows that Parts I and II of Theorem 4.12 fail completely 
for any unbounded ~2 which has finite volume. 

4.46 T H E O R E M  Let S2 be an unbounded domain in It{" having finite volume, 
and let q > p. Then W m' P (~2) is not imbedded in L q ( ~ ) .  

Proof.  We construct a function u (x) depending only on distance p = ix[ of x 
from the origin whose growth as p increases is rapid enough to prevent membership 
in L q (f2) but not so rapid as to prevent membership in W m,p (~'~). 

Without loss of generality we assume vol(~2) = 1. Let A ( p )  denote the surface 
area ((n - 1)-measure) of the intersection of S2 with the surface Ix[ -- p. Then 

o ~  A (p)  dp  - 1. 

Let r0 = 0 and define r~ for k = 1, 2 . . . .  by 

l 
A (p)  dp  = 2~ = A (p)  dp .  

- 1  
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Since g2 is unbounded, rk increases to infinity with k. Let Ark = rk+ 1 - -  rk and fix e 
such that 0 < e < [ 1 / (mp)] - [ 1 / (mq)].  There must exist an increasing sequence 
{kj}j~=l such that Ark: >_ 2 -~kj, for otherwise Ark < 2 -~k for all but possibly 

finitely many values of k and we would have Y~k=0 Ark < ~x), contradicting 
lim rk -- co. For convenience we assume kl >_ 1 so kj > j for all j .  Let a0 -- 0, 
aj -- rkj+l, and bj -- rkj. Note that aj_l  <_ bj < aj and aj - bj = Arkj > 2 -~kj . 

Let f be an infinitely differentiable function on ]R having the properties: 

(i) 0 < f (t) < 1 for all t, 

(ii) f ( t ) = 0 i f t < 0 a n d f ( t ) - l i f t > _  1, 

(iii) I ( d / d t )  K f ( t ) l  < M for all t if 1 _< x < m. 

I f x � 9  

u ( x )  = 2kj_~/q + (2kj/q _ 2kj_l/q) f p -- bj 
aj bj 

f o r a j _ l  <_ p <_ bj 

for bj ~ p ~ aj. 

Clearly u E C ~ ( ~ ) .  Denoting ~ j  --  {X �9 ~ " a j -1  <_ t 0 ~ aj}, w e  h a v e  

) lu(x) l  p d x  - -t- ( u ( x ) )  p A ( p )  dp  
-1 

< 2 kj-~p/q A ( p )  dp  + 2 kjp/q aj A ( p ) d p  
-1 

2 -kj- ' (1-p/q)  n t- 2 -kj(1-p/q) 1 

2 - 2 (j-1)(1-p/q)" 

Since p < q, the above inequality forces 

lu(x)J p d x  - ]u(x)] p d x  < c~. 
j = l  J 

Also, if 1 _< x _< m, we have 

f~ j  dp ~ 
fbj ~j dX u P d x  - - -  A (p)  dp  

dp  ~ 

<MP2~JP/q(a j  b j ) - ~ P f b ~  _ - A ( p ) d p  

MP2-kj(1-p/q-~Kp) MP2-CJ  

2 - 2 ' 
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where C = 1 - p / q  - exp  > 0 because of the choice of e. Hence D~u ~ L p (~)  
for Iotl _< m, that is, u ~ W m'p ( ~ ) .  However,  u r L q (f2) because we have for 
each j ,  

fs lu(x)lq dx  > 2kJ-' faj'J _ A ( p )  dp 
j -1 

1 
_ 2k;-, ( 2 - k , - 1 - 1  __ 2 -kJ  - 1 )  > -- .  

- 4  

Therefore W m'p (~ )  cannot be imbedded in Lq (fa). | 

The conclusion of the above theorem can be extended to unbounded  domains 
having infinite volume but satisfying 

l imsup  vol({x E ~ 2 " N  ___ Ixl ~ N + 1 } ) -  0. 
N--+ ec 

(See Theorem 6.41.) 

4.47 Parts I and II of  Theorem 4.12 also fail completely for domains with 
sufficiently sharp boundary  cusps. If S2 is a domain in IR n and x0 is a point on 

its boundary,  let Br =- Br(xo) denote the open ball of  radius r and centre at x0. 
Let ~"2 r ~--- Br 71 f2, let Sr = (bdry Br) 71 ~,  and let A (r, ~2) be the surface area 

((n - 1)-measure) of Sr. We shall say that f2 has a cusp o f  exponential sharpness 
at its boundary  point x0 if for every real number  k we have 

A(r, S2) 
lim = 0. (25) 

r--+O+ r k 

4.48 T H E O R E M  If S2 is a domain in IR n having a cusp of exponential  sharp- 
ness at a point x0 on its boundary,  then W m'p ( ~ )  is not imbedded  in L q (~) for 
any q > p. 

Proof .  We construct u ~ w m ' p ( ~ ' 2 )  which fails to belong to Lq(~)  because 
it becomes  unbounded  too rapidly near x0. Without  loss of generali ty we may 

assume x0 -- 0, so t h a t r  -- Ixl. Let f2* - {x/ lx l  2 �9 x ~ f2, Ixl < 1}. Then f2* is 
unbounded  and has finite volume by (25), and 

A(r, f2*) - rZ(n-1)A(1/r, f2). 

Let t satisfy p < t < q. By Theorem 4.46 there exists a function ~ 6 C m ( 0 ,  0 0 )  

such that 

(i) ~ ( r ) - 0 i f 0 < r <  1, 

(ii) I~(J~l ' A(r, ~2")dr < oc if O _< j _< m, 
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f 
(X) 

(iii) I~(r ) lqA(r ,  f2*) d r  - oo. 

[Specifically, v ( y )  = ~([y[) defines v ~ W m't (~'2") but v ~g Lq(~*) . ]  
x -- y / [ y l  2 so that p = Ixl = 1/lyl = 1 / r .  Set ~, = 2 n / q  and define 

Let 

u ( x )  = f i (p)  = rZ~(r )  = l y lZv(y ) .  

It follows for I~1 - J < m that 

J ?.)~+j+i ~)(i) 
ID~u(x ) l  <_ Ifi(J)(p)l _< ~ Cij (r) ,  

i=1 

where the coefficients cij depend only on ~,. Now u ( x )  vanishes for Ix[ > 1 and 

SO 

ff2 fo 1 fl e~ [/g(X)] q d x  = [ f i (p )[qA(p ,  F l )dp  - [~(r)[qA(r ,  f 2 * ) d r  = oo. 

On the other hand, if 0 _< [c~[ = j _< m, we have 

fo 
f2 [Dau(x)[  p d x  < [u(J) (p)[PA(p ,  f2) dp  

<_ g I~(i)(r)[Pr()~+J+i)p-2nA(r, ~2") dr. 

i=0 

If it happens that (X + 2 m ) p  <_ 2n, then, since p < t and vol(f2*) < oo, all the 
integrals in the above sum are finite by H61der's inequality, and u ~ W m'p (~'~). 
Otherwise let 

t 
k - ((X + 2 m ) p  - 2 n ) t  - P + 2n. 

By (25) there exists a < 1 such that if p _< a, then A (p, f2) _< pk. It follows that 

i f r  >_ 1/a ,  then 
r l~-2n A (r, f2*) < r l~-2pl~ _ r -2 .  

Thus 

f oo 1~(i)(r)lPr(k+J+i)p-2nA( r, f2*) d r  

-- ]~(i)(r) lPr(k-2n)(t-p)/ tA(r,  f 2 * ) d r  

< [~)(i)(r)[tA(r, f 2 * ) d r  rk -2nA(r ,  f 2 * ) d r  
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which is finite. Hence u ~ W m'p (~"~) and the proof is complete. II 

Imbedding Theorems for Domains with Cusps 

4.49 Having proved that Theorem 4.12 fails completely for sufficiently irregular 
domains, we now propose to show that certain imbeddings of the types considered 
in that theorem do hold for less irregular domains that nevertheless fail to satisfy 
even the weak cone condition. Questions of this sort have been considered by 
many writers. The treatment here follows that in [A1 ]. 

We consider domains f2 in I~ ~ whose boundaries consist only of ( n -  1)-dimensional 
surfaces, and it is assumed that f2 lies on only one side of its boundary. For such 
domains we shall say, somewhat loosely, that f2 has a cusp at point x0 on its 
boundary if no finite open cone of positive volume contained in f2 can have its 
vertex at x0. The failure of a domain to have any cusps does not, of course, imply 
that it satisfies the cone condition. 

We consider a family of special domains in R n that we call s tandard cusps and 
that have cusps of power sharpness (less sharp than exponential sharpness). 

4.50 (S tandard  Cusps) If 1 < k < n - 1 and )~ > 1, let the standard cusp 
Qk,z be the set of points x - (Xl . . . . .  x~) in E~ that satisfy the inequalities 

2 2)~ 
X --~-' . .  + X  k < Xk+l ,  Xk+l > 0 . . . . .  X n > O, 

2 2 a 2 (x 2 - t - ' " - t -  x2) 1/~ -t- Xk+ 1 + ' ' ' - t -  x, < , (26) 

where a is the radius of the ball of unit volume in I~ ~ . Note that a < 1. The 
cusp Q~,z has axial plane spanned by the xk . . . . .  xn axes, and verticial plane (cusp 
plane) spanned by xk+2 . . . . .  xn. If k = n - 1, the origin is the only vertex point 
of Qk,z. The outer boundary surface of Qk,z corresponds to equality in (26) in 
order to simplify calculations later. A sphere or other suitable surface bounded 
and bounded away from the origin could be used instead. 

Corresponding to the standard cusp Qk,z we consider the associated s tandard cone 

Ck = Qk,1 consisting of points y = (YI . . . . .  Yn) in I~ ~ that satisfy the inequalities 

y2 - t - . . . - t -  y2 y2 
k < k + l '  

y2 + . . .  + y2 < a 2 
t/ 

Yk+l > 0  . . . . .  Yn > 0 ,  

Figure 3 illustrates the standard cusps Q 1,2 in R 2, and Q2,2 and Q 1,2 in •3, together 
with their associated standard cones. In R 3 the cusp Q2,2 has a single cusp point 
(vertex) at the origin, while Q 1,2 has a cusp line along the x3-axis. 

It is convenient to adopt a system of generalized "cylindrical" coordinates in R n , 
(r~, ~bl . . . .  , q~k-1 ,  Yk+l . . . . .  yn), SO that rk > O,--Jr  < ~1 <~ Yf, 0 < ~2 . . . . .  
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t~k_ 1 ~ ~ ,  and 

Yl - -  Fk sin ~1 sin ~2"'" sin ~k-L 

Y2 -- rk cos 4~1 sin ~2"'" sin q~k-1 

Y3 -- rkcos~b2. . ,  sin 4~k-I 

Yk - -  F k COS q~k-1. 

(27) 

In terms of these coordinates, Ck is represented by 

0 < rk < Yk+l, Yk+l  > 0 . . . . .  Yn > O, 
2 2 2 0 2" 

rk + Yk+l + " "  + Yn < 

X2 x2 

b. 

x~ 

CI 

xl 

x3 

xl 

X3 

C2 

! R 3 

X2 XI 
i, 

X2 
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X3 X3 

Fig. 3 

The standard cusp Q~,z may be transformed into the associated cone C~ by means 
of the one-to-one transformation 

X1 - -  r k i sin ~1 sin r �9 �9 �9 sin (#k-1 

X 2  - -  r k COS ~1 sin tP2.. �9 sin tPk-1 

x3  = r k costP2..- sin tPk-1 

X k  m 

X k + l  ~ Y k + l  

rl, cos 4~- 1 
(28) 

X n  ~ y n  , 

which has Jacobian determinant 

a ( X l  . . . . .  X n )  

a(yl . . . . .  Yn)  
--  )~ r~ z-1)~.  (29)  

We now state three theorems extending imbeddings of the types considered in 
Theorem 4.12 (except the trace imbeddings) to domains with boundary irregular- 
ities comparable to standard cusps. The proofs of these theorems will be given 

later in this chapter. 

4.51 T H E O R E M  Let f2 be a domain in ]t~ n having the following property: 
There exists a family 1-" of open subsets of f2 such that 

(i) f2 = UGEF G, 

(ii) F has the finite intersection property, that is, there exists a positive integer 
N such that any N + 1 distinct sets in 1-" have empty intersection, 
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(iii) at most  one set G 6 F satisfies the cone condition, 

(iv) there exist positive constants v and A such that for each G 6 F not satisfying 

the cone condit ion there exists a one-to-one function qJ = (TZl . . . . .  ~ )  

mapping G onto a standard cusp Qk,z ,  where ()~ - 1)k ___ v, and such that 

for all i, j ,  (1 < i, j < n), all x ~ G, and all y ~ Q k,~, 

-~x~ < A  and 
0 (1/f-1)j 

Oy~ 
< A .  

If v > m p  - n ,  then 

W m'p (~"2) ~ L q (~), for p < q < 
(v  + n ) p  

v + n - m p  

If v = m p  -- n ,  then the same imbedding holds for p < q < ~ ,  and for q = ~x~ 

i f p -  1. 

If v < m p  - n ,  then the imbedding holds for p < q < cxz. 

4.52 T H E O R E M  Let f2 be a domain in/t~ n having the fol lowing property:  

There  exist positive constants v < m p  - n and A such that for each x 6 ~2 there 

exists an open set G with x 6 G C g2 and a one-to-one mapping qJ = (Tel . . . . .  7t,) 
mapping G onto a standard cusp Qk,z ,  where 0~ - 1)k < v, and such that for all 

i , j , ( 1  < i , j  < n ) , a l l x  6 G ,  a n d a l l y 6  Q k,x, 

< A and 
O')q (1/_1"- 1)j 

Oyi 
< A .  

Then 
W m'p(~'2) ~ C 0 ( ~ ) .  

More  generally, if v < (m - j ) p  - n where 0 < j < m - 1, then 

W m'p (~'2) ~ CJB (~'2). 

4.53 T H E O R E M  Let f2 be a domain in ~" having the fol lowing property:  

There  exist positive constants v, 6, and A such that for each pair of points x, y ~ 

with Ix - Y l < 6 there exists an open set G with x, y 6 G C f2 and a one-to- 

one mapping qJ = (Ttl . . . . .  ~Pn) mapping G onto a standard cusp Q~,z, where 

0~ - 1)k < v, and such that for all i, j ,  (1 < i, j < n), all x E G, and all y ~ Qk,z, 

00s 
< A and 

0 (1/_,f- 1)j 

Oyi 
< A .  
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S u p p o s e t h a t ( m - j - 1 ) p  < v + n  < ( m - j ) p f o r s o m e i n t e g e r j , ( O  < j < m - l ) .  
Then 

W m'p (~'2) -"+ C j'Iz (~)  for 0 < / z  < m -  j n 4- v 
P 

If (m - j - 1) p = v 4- n, then the same imbedding holds for 0 < # < 1. In either 
event we have W m,p (f2) --+ C j (-~). 

4.54 REMARKS 

1. In these theorems the role played by the parameter v is equivalent to an 
increase in the dimension n in Theorem 4.12, where increasing n results 
in weaker imbedding results for given m and p. Since v > (X - 1)k, the 
sharper the cusp, the greater the equivalent increase in dimension. 

2. The reader may wish to construct examples similar to those of Paragraphs 
4.41-4.44 to show that the three theorems above give the best possible 
imbeddings for the domains and types of spaces considered. 

4.55 E X A M P L E  To illustrate Theorem 4.51, consider the domain 

~'~-~ {X = (Xl ,X2,  X3) E ~3 . X2 > O, X 2 < X l < 3X 21. 

If a = (4zr/3) -a/3, the radius of the ball of unit volume in E3, it is readily verified 
that the transformation 

Yl -- xl + 2x~, Y2 --- X2, Y3 -- x3 -- ( k / a ) ,  k - 0, 4-1,-+-2 . . . .  

transforms a subdomain Gk of f2 onto the standard cusp Q 1,2 C [[{3 in the manner 
required of the transformation ~ in the statement of the theorem. Moreover, 
{G ~ }k=-~ has the finite intersection property and covers S2 up to a set satisfying 
the cone condition. Using v -- 1, we conclude that wm'P(~'2) --+ Lq(~2)  for 
p < q < 4 p / ( 4 - m p )  i f m p  < 4, or f o r p  < q < oc i f m p  -- 4, or for 
p < q  < e c i f m p > 4 .  

Imbedding Inequalities Involving Weighted Norms 
4.56 The technique of mapping a standard cusp onto its associated standard cone 
via (28) and (29) is central to the proof of Theorem 4.51. Such a transformation 
introduces into any integrals involved a weight factor in the form of the Jacobian 
determinant (29). Accordingly, we must obtain imbedding inequalities for such 
standard cones involving LP-norms weighted by powers of distance from the axial 
plane of the cone. Such inequalities are also useful in extending the imbedding 
theorem 4.12 to more general Sobolev spaces involving weighted norms. Many 
authors have treated the subject of weighted Sobolev spaces. We mention, in 
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particular, Kufner's monograph [Ku] which focuses on a different class of weights 
depending on distance from the boundary of f2. 

We begin with some one-dimensional inequalities for functions continuously dif- 
ferentiable on an open interval (0, T) in I~. 

4.57 L E M M A  L e t v  > 0 a n d u  6 CI(0, T). If f0 ~ l u ' ( t ) l t  ~ d t  < ~ , t h e n  
limt~0+ lu( t ) l t  ~ = O. 

Proof. Let ~ > 0 be given and fix s in (0, T / 2 )  small enough so that for any t, 
0 < t  < s ,  wehave 

f t  s < E/3. lu ' (r) l r  ~ d r  

Now there exists 6 in (0, s) such that 

6~ lu ' (T /2 ) l  < e/3 and I 
T~2 

(6 / s )  ~ lu ' (r) lr  v d r  < e/3. 
J s  

I f 0 < t < 3 ,  then 

lu(t)l ~ l u ( T / 2 ) l  + f T / 2  lu'(r)l d r  

so that 

ft s l T/2 t~lu( t) l  <_ 6 ~ l u ( T / 2 ) l  + lu'(v)lr ~ d r  + (6 / s )  ~ lu'(r)lv ~ dr  < e. 
,is 

Hence limt~0+ lu( t ) l t  ~ -- O. II 

4.58 L E M M A  L e t v > 0 ,  p >  1, a n d u 6 C  l ( 0 , T ) . T h e n  

fo  r lu( t) lPt  ~-1 d t  < f0 
T 

v T  lu(t) lPt  v d t  + - l u ( t ) l P - l l u ' ( t ) l t  ~ d t .  (30) 
13 

Proof. We may assume without loss of generality that the right side of (30) is 
finite and that p - 1. Integration by parts gives 

fo ( lu(t)l vt  v-1 v -k- 1 
T ) j0 ( ) - ~ t  v d t  - - t v  l t v + l  d - T ~-~ lu( t ) l  d t ,  

the previous lemma assuring the vanishing of the integrated term at zero. Trans- 
position and estimation of the term on the right now yields 

fo v+,fo  fo v lu( t ) l t  ~-1 d t  < lu( t ) l t  ~ d t  + lu ' ( t ) l t  ~ d t ,  
- T 
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which is (30) for p = 1. | 

4.59 L E M M A  Let v > 0, p > 1, and u E C 1 ( 0 ,  T). Then 

2fo fo sup [u(t)[ p < [u(t)[ p d t  + p l u ( t ) [ p - l l u ' ( t ) l  d t ,  
0 < t < T  - -  - ~  

v + 3  
sup lu(t)lPt v < 

0 < t < T  - -  T 

(31) 

f0 ~ f0 ~ lu(t)lPt ~ dt  + 2p  lu ( t ) lP- l lu ' ( t ) l t  ~ dt .  (32) 

Proof .  Again the inequalities need only be proved for p = 1. If 0 < t < T /2 ,  
we obtain by integration by parts 

fo r/2 u t + ~ - r  T fo T/2 d 
d r -  - ~ l u ( t ) l -  rd--; u t + ~ - - r  d r  

whence  

2fo Ji lu(t)l _< ~ lu(a)l  do- + lu ' (a) l  do-. 

For T / 2  < t < T the same inequality results f rom the partial integration of 

f~ /2  [u(t + r - T/2)I  d r .  This proves (31) for p -- 1. Replacing u(t)  by u( t ) t  ~ 
in this inequality, we obtain 

2fo yo sup lu(t)l t" < lu(t)l t" d t  + (lu '( t) l t"  + vlu( t ) l  t " - l )  d t  
0 < t < T  - -  - ~  

< -- lu(t) l t  ~ dt  + lu'( t) l t  ~ dt  
- T  

,fo ) + v lu(t) l t  ~d t  + - lu '( t) l t  ~d t  , 
v T  v 

where (30) has been used to obtain the last inequality. This is the desired result 
(32) for p = 1. | 

4.60 Now we return t o I~  n f o r n  >_ 2. I f x  ~ R n, we shall make use of  the 
spherical polar coordinate representation 

X - -  ( /9 ,  ~b) - -  ( p ,  ~bl . . . . .  q ~ n - 1 ) ,  

where p _> 0 , - J r  < 4~1 _< zr, 0 _< ~b2 . . . .  , 4~-1 _< Jr, and 

x l - p sin 4~1 sin 4~2" �9 �9 sin 4~n-1, 

x2 -- p cos 4~1 sin 4~2" �9 �9 sin 4~n-1, 

x3 = p cos 4~2"" sin 4~n-1, 

Xn = I 0 COS r  
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The volume element is 

n-1 

dx = dxl dx2 . . .  dxn = pn-1 17 sinJ-1 ~J dp dqb, 
j = l  

where d4~ = d ~ b l  . . .  d~n-1. 

We define functions rk = rk(x) for 1 < k < n as follows: 

n-1 

rl (x) -- Pl sin ~bll H sin 4~j, 
j=2 

n-1 

(x) -- p ]--1 sin ~bj, k -- 2, 3 . . . . .  n - 1, ?'k 
j=k  

r n ( X )  - -  p .  

For 1 < k < n - 1, rk (x) is the distance of x from the coordinate plane spanned 
by the axes Xk+l . . . . .  Xn; of course rn (X) is the distance of x from the origin. In 
connection with the use of product symbols of the form P = I-Ijmk Pj, we follow 
the convention that P = 1 if m < k. 

Let C be an open, conical domain in •n specified by the inequalities 

0 < p  < a ,  - /~1 < ~ 1  < / ~ 1 ,  0 < ~ j  </3j ,  ( 2 < j  < n -  1), (33) 

where 0 < /~i < 22". (Inequalities " < "  in (33) corresponding to any/~i - -  7/" are 
replaced by "<." If all/~i - -  7/', the first inequality is replaced with 0 < p < a.) 
Note that any standard cone Ck (introduced in section 4.50) is of the form (33) for 
some choice of the parameters/3i, 1 < i < n - 1. 

4.61 L E M M A  Let C be as specified by (33) and let p >__ 1. Suppose that either 
m - k - l ,  o r 2 < m  < n a n d l  < k < n .  L e t l - k < V l  < v < v 2  <cx~ .Then  
there exists a constant K -- K(m, k, n, p, v l ,  v2,/31 . . . . .  /3n-l) independent of v 
and a, such that for every u E C I(C) we have 

~ lu(x)lP[rk(x)]~[rm(X)] -1 dx 

<Kfc lu(x) lp- l ( l lu (x) l+lgradu(x) l ) [rk(x)]~dx .  
(34) 

Proof. Once again it is sufficient to establish (34) for p - 1. Let C+ be the set 
{x = (p, ~b) :~bl > 0} and C_ the set {x = (p, ~b) :~bl < 0}. Then C = C+ t3 C_. 
We prove (34) only for C+ (which, however, we continue to call C); a similar proof 
holds for C_, so that (34) holds for the given C. Accordingly, assume C = C+. 
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For k < m we may write (34) in the form (taking p -- 1) 

k-1 m-1 n-1 
fc [u ] H  sin J-1 C J H sinV+J-1 C J H sinV+J-2 C jpVWn-2 dR all) 

j =2 j =k j =m 

fc l (  )k-lH n-~ 
< K -lul + Igradul sin j-1Cj sin ~+j-1 c/)jp '~+'-1 dpdr  

a j =2 j =k 

For k > m > 2 we may write (34) in the form 

m-1 k-1 n-1 
fc lu I H sin J-1 C j H sin J-2 C J H sinV+J-2 C JPV+n-2 dp dr 

j=2 j=m j =k 

< g -[ul  + Igradul sin j-1Cj sin v+j-1 dpjp v+n-1 dpdr  
a j =2 j =k 

By virtue of the restrictions placed on v, m, and k in the statement of the lemma, 
each of the two inequalities above is a special case of 

i-1 n-1 
fc ]u [ H  sinl*J CJ H sinl*~-I CJ pV+n-2 dp de 

j=l j=i 

fC(  1 )n-I~ < K -lul + Igradul sinm Cjp~+n-1 dpdr  
a j=l 

(35) 

where 1 < i < n, #j > 0, and #j > 0 if j > i. We prove (35) by backwards 
induction on i. For i = n, (35) is obtained by applying Lemma 4.58 to u considered 
as a function of p on (0, a), and then integrating the remaining variables with the 
appropriate weights. Assume, therefore, that (35) has been proved for i = k + 1 
where 1 < k < n - 1. We prove it must also hold for i - k. 

If flk < Jr, we have 

sin r < r < K1 sin Ck, 0 < Ck _< ilk, (36) 

where K1 - -  K1 (ilk). By Lemma 4.58, and since 

OU n-1 
< p lgradul H sinCg, 

j=k+l 

we have 

fo ~lu(p, r sinlZk-1 Ck dr 



124 The Sobolev Imbedding Theorem 

f0 ~k 
lu I~b~ ~-1 dqbk 

So ( n H ) _< K2 [U[ + [gradulp sin~pj ~p~kl, d~Pk 
j=k+l  

<_ K3 lul + Igradu[p I-[ sin4~j sin "~ q~k d~k. (37) 
j=k+l 

Note that K2, and hence K3, depends on fl~ but may be chosen independent of Ixk, 
and hence of v, under the conditions of the lemma. If flk -- rr, we obtain (37) by 

writing f o  -- fo/2 § f~/2 and using the inequalities 

sin cPk < cPk < (7r/2)sin~Pk if 0 _< 4)I, < Zr/2 

sin 4)i, < J r -  ~Pk < (zr/2)sincpk if zr/2 < 4)i, < Jr. 

We now obtain, using (37) and the induction hypothesis, 

(38) 

k-1 n-1 

fc lul H sinai *J I-I sinai-1 *J p~+,-2 dp d ,  
j= l  j=k 

fo a ' < p v+n-2 dp l--I sin uj ~j d~j 
j= l  

t fo /o x sinlZJ-1 4~j d4~j • lul sin u~-I ~bk d~Pk 
j=k+l  

n-1 

K3 fc Igradul VI sinai dPJPV+n-i dpd~  < 
j = l  

k n-1 

+ K3 fc lul 1-I sin"J 4)1 H sinl'J-1 dPJPV+n-: dpdd? 
j = l  j=k+l  

( _< g - lul  + ]gradul sin"J (pip ~+n-1 dpddp. 
a j = l  

This completes the induction establishing (35) and hence the lemma. | 

The following lemma provides a weighted imbedding inequality for the Lq-norm 
of a function defined on a conical domain of the type (33) in terms of the W m'p- 
norm, both norms being weighted with a power of distance rk from a coordinate 
(n - k)-plane. It provides the core of the proof of Theorem 4.51. 

4.62 LEMMA Let C be as specified by (33) a n d l e t p  > l a n d l  < k < n .  
Suppose that max{ 1 - k, p - n} < Vl < v2 < c~. Then there exists a constant 
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K = K ( k ,  n, p, Vl, 1)2, ,81 . . . . .  /~n-1), independent of a, such that for every v 
satisfying Vl < v < v2 and every function u 6 C 1(C) A C(C) we have 

(fc )l/q [U(X)lq[rk(X)] v dx  

(re(at" ) t 1/p 1 ip (x)l p _< g ---:lu(x) + Igradu [rk(x)] dx  

(39) 

where q = (v + n ) p / ( v  + n - p).  

Proof. L e t 6  = ( v + n -  1 ) p / ( v + n - p ) , l e t s  = ( v + n -  1)/v, and let 
s' -- (v -+- n - 1) / (n  - 1). We have by H61der's inequality and Lemma 4.61 (the 
case m = k) 

fc (fc )l/s (fc )l/s' v-1 [n~/(n-1)r;V/(n-1) [u(x)lq[rk(x)] ~dx  < lul r k dx  [u dx  

(fc ( 1 ) ) l / s  < K1 lul ~-1 lul + [gradu[ r; dx  

(fc )l/s' . nv/(n-1) 
X [bl[n6/(n-1)r k dx  . (40) 

In order to estimate the last integral above we adopt the notation 

P* = (q~l . . . . .  ~n-1) ,  q~f -- (P, r . . . . .  ~j ,  Cj+l . . . . .  Cn-1),  1 <_ j _< n - l ,  

where the caret denotes omission of a component. Let 

C ~ - { p * ' ( p , p * ) E C f o r O < p < a }  

Cj = {q~f : (p, 4~) E C forO < 4~j < flj}. 

C~) and C], (1 < j < n - 1), are domains in ]~n-1, We define functions F0 on C~ 
and Fj on C] as follows: 

n-1 n-1 
(fo(p*)) n-1 -- sup (lul~p v+n-1) 17 sin~ ~)i I - I  sini-1 ~i,  

0<p<a i=k i=2 

(Fj(dPf))n-1--  \o<,p~<~j ( sup ([u[~sinV+n-aqbj))p v+n-2 

n-1 j -1  n-1 

x 1-I sin~ ~i 1 7  mini-1 ~i 1--I sini-e ~i" i=k i=2 i=j+l  
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Then we have 

n-1 n-1 
[uln~/(n-l)r; v/(n-1)pn-' I-- I sin i-1 r < Fo(p*) I--I Fj(,;). 

i=2 j=l 

Applying the combinatorial lemma 4.23 with k = n - 1 = )~ we obtain 

c luln~/(n-1)r~ ~/(n-1) dx 

n--1 
fc Fo(p*) 1--I Fj (r dp de < 

j=l 

<_ (Fo(p*)) n-1 ddp H (Fj(r n-I dpdCj . (41) 
j=l 

Now by Lemma 4.59, and since IOu/Opl <_ [gradul, 

fo a ( ) 
sup lul~p ~+n-1 < K2 lull_ 1 1 [ul + Igradu[ p,+n-ldp 

0<p<a a 

where K2 is independent of v for 1 - n  < vl < v < v2 < cx~. It follows that 

fc (F~162 K2 fc lu l ' - I  ( 1  [ul + -  Igradul) r~,dx. (42) 
a 

Similarly, by making use of (36) or (38) as in Lemma  4.61, we obtain from Lemma  

4.59 

sup lul ~ sin v+j-1 Cj 
O<r 

( g2,j lu lul + 

<_ K2,j fo ~j 

0ul) ~ j  sin v+J-1 ~j ddpj 

( n H ) lul ~-1 lul + Igradulp sinCi sin ~+j-1 r  
i=j-t-1 

n-1 
since I0 u/r I < P I'-Ii=j+ 1 sin ~i" Hence 

fcj, (Fj(dPg))n-l dp d~)J 

__< Ke, j ~ [gradullul~-lr~ dx + K2,j .]~ [u[ 3 vrl ' rj+l-1 dx 

<K3,Jfclul'-l(llul-+-[gradul)r~d.~c, (43) 
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where we have used Lemma 4.61 again to obtain the last inequality. Note that 
the c o n s t a n t s  K2,j and K3,j c a n  be chosen independent of v for the values of v 
allowed. Substitution of (42) and (43) into (41) and then into (40) leads to 

( ) f c  lulq r[, d x  <_ K4 ]Ul~_ 1 1 ]ul + Igradu] r[~ d x  
a 

(Ez l < K4 lu I q r k ~ d x  

X [2P-lfc ( 1 ) I1/P) (v+n)/(v+n-1) 
--a-~lulp + ]gradu[ p r[~ d x  

Since (v + n - 1)/(v + n)  - ( p  - 1 ) / p  - 1 / q ,  inequality (39) follows by 

cancellation for, since u is bounded on C and v > 1 - n, f c  lu]qr[r d x  is finite. | 

4 . 6 3  R E M A R K S  

1. The assumption that u 6 C ( C )  was made only to ensure that the above 
cancellation was justified. In fact, the lemma holds for any u 6 C 1 (C). 

2. I f l - k  < Vl < v2 < e c a n d v l  < v_< vz, w h e r e p  > v + n ,  then(39)  
holds for any q satisfying 1 < q < ~ .  It is sufficient to prove this for 
large q. If q > (v + n ) / ( v  + n - 1), then q - (v + n ) s / ( v  + n - s)  for 
some s satisfying 1 < s < p. Thus 

]ul q r k~ d x  _< K --]Ua s + ]grad u] r k 

( < K 2 (p-2)/s 1 ]p I p ~ d x  ~ d x  _ ~ ] u  + ] g r a d u  r k r k 

which yields (39) since the last factor is finite. 

3. If v - m, a positive integer, then (39) can be obtained very simply as 
follows. Let y -- (x, z) -- (Xl . . . . .  x~, Zl . . . . .  Zm) denote a point in IR ~+m 
and define u * ( y )  = u ( x )  for x 6 C. If 

C* - { y  e lR n+m �9 y - ( x , z ) ,  x e C, O < zj  < r k ( x ) ,  1 <_ j < m } ,  

then C* satisfies the cone condition in R n+m , whence by Theorem 4.12 we 

have, putting q - (n + m ) p / ( n  + m - p ) ,  )l q )l q 
]ulq rkm d x  --  �9 ]u*(y)] q d y  

< K ]u (y)]P n t- ]gradu (y)]P d y  
, 

- g lu] p § Igradul p r ~ ' d x  
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since Igradu*(y)l = Igradu(x)l ,  u* being independent of z. 

4. Suppose that u 6 C ~  (IR n), or, more generally, that 

L lu(x)l p [rk(x)] ~ dx < e~ 
n 

with v as in the above lemma. If we take/~i - -  7 / ' ,  1 < i < n - 1, and let 
a --+ c~ in (39), we obtain 

lu(x)l q [rk(x)] ~ dx 
n 

< - K ( f  Rn [gradu(x)[P[rk(x)]Vdx) 
1/p 

This generalizes (the case m = 1 of) Sobolev's inequality, Theorem 4.31. 

As final preparations for the proofs of Theorems 4.51-4.53 we need to obtain 
weighted analogs of the L ~ and H61der imbedding inequalities provided by The- 
orem 4.12. It is convenient here to deal with arbitrary domains satisfying the cone 
condition rather than the special case C considered in the lemmas above. The 
following elementary result will be needed. 

4.64 L E M M A  
0 < v  < k ,  then 

Let z 6 I~ g and let f2 be a domain of finite volume in I~ k . If 

L K 
Ix - zl -~ dx < ~ ( v o l ( f f 2 ) )  1-v/k 

- k - v  

where the constant K depends on v and k, but not on z or g2. 

Proof .  Let B be the ball in It{ k having centre z and the same volume as g2. It is 

easily seen that the left side of the above inequality does not exceed fB Ix -- Z l -~ dx, 
and that the inequality holds for f2 - B. | 

4.65 L E M M A  Let f2 C I~ n satisfy the cone condition. Let 1 < k < n and let 

P be an (n - k)-dimensional plane in 11~ n . Denote by r(x) the distance from x to 
P.  If 0 < v < p - n, then for all u 6 C 1 (f2) we have 

(fu2 )lip sup lu(/) l  <_ K (lu(x)l  p + Igradu[ p) [r(x)] ~ dx 
x E f 2  

(44) 

where the constant K may depend on v, n, p, k, and the cone C determining the 

cone condition for f2, but not on u. 

Proof .  Throughout this proof Ai and Ki will denote various constants depending 

on one or more of the parameters on which K is allowed to depend above. It is 
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sufficient to prove that if C is a finite cone contained in ~ having vertex at, say, 
the origin, then 

(fc t lu(O)l <_ K (lu(x)l p + Igradul p) [r(x)] ~ dx (45) 

For 0 < j _< n, let Aj denote the supremum of the Lebesgue j -d imens ional  mea- 

sure of the projection of C onto IRJ, taken over all j -d imens ional  subspaces IRJ of 
IR ~ . Writing x - (x', x") where x'  - (xl . . . . .  x~_~) and x" - (x~-k+l . . . . .  x~), 
we may assume, without loss of generality, that P is orthogonal to the coordinate 
axes corresponding to the components  of x". Define 

S -  {x' ~ I[{ n-k �9 (x', x")  ~ C for some x" ~ I~ k }, 

R(x  t) = {x" E I~ k " (x', x")  E C} for each x'  6 S. 

For 0 < t < 1 we denote by Ct the cone {tx �9 x E C} so that Ct C C and Ct = C 
if t - 1. For Ct we define the quantities At,j,  St, and Rt (x') analogously to the 
similar quantities defined for C. Clearly At,j -- tJ Aj.  If x 6 C, we have 

fo l d  u(x)  -- u(O) -+- --d-tU(tX) dt ,  

so that 

f0 
1 

lu(O)l ~ lu(x)l + Ixl Igradu(tx)l  dt.  

Setting V = vol(C) and a - SUPxec Ixl, and integrating the above inequality over 
C, we obtain 

fc lcfo 1 V]u(O)] < ]u(x)] dx  + a ]gradu(tx)] dt  dx  

= lu(x)l dx + a t -n dt  Igradu(x)l  dx.  
t 

(46) 

Let z denote the orthogonal projection of x onto P.  Then r (x) -- ix" - zt'l. Since 

0 _< v < p - n, we have p > 1, and so by the previous lemma 

f c [ r ( x ) ] - v / ( P - 1 ) d x - f s  d x ' f g  I x ' - z t t l - v / (P -1 )  dx"  
, , ,(x') 

< K1 i s  [At'k]l-v/(k(p-1))dx' 
t 

< Kl[At,k]l-v/(k(p-1))[At,n_k] = Kztn-v/(P -1) 
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It follows that 

f c  lgradu(x)l dx 
t 

( f c  ) l / p ( f  c )l/p' < Igradu(x)lP[r(x)] ~ dx [r(x)] -~/(p-1) dx 
t t 

(fc )l/p <__ K3 tn-(v+n)/p ]gradu(x)]P[r(x)] v dx . 
t 

(47) 

Hence, since v < p - n, 

fo t - n d t / c  ' ]gradu(x) ldx<K4(fc lgradu(x)]P[r(x)]Vdx ) 
1/p 

(48) 

Similarly, 

ffl u(x)l  (fC )l/P(fc ) dx <_ lu(x)lP[r(x)] ~ dx [r(x)] -v/(p-1) dx 

(f )l/p < K5 lu(x)lP[r(x)] ~ dx . 

1/p' 

(49) 

Inequality (45) now follows from (46), (48), and (49). II 

4.66 L E M M A  Suppose all the conditions of the previous lemma are satisfied 
and, in addition, ~ satisfies the strong local Lipschitz condition. Then for all 
u 6 C 1 (f2) we have 

lu(x) - u(y)l 
sup 
x , y E f 2  IX -- yl ~ x#y (ff2 )l/p < g ( lu(x)l  p + Igradu(x)lP)[r(x)] ~ dx (50) 

where lZ = 1 - (v + n) /p  satisfies 0 < / z  < 1, and K is independent of u. 

Proof.  The proof is the same as that given for inequality (15) in Lemma 4.28 
except that the inequality 

Igradu(z)l dz <_ K1 tn-(v+n)/p (Igradu(z)lP[r(z)] ~ dz) lip 
t a  

(51) 

is used in (16) in place of the special case v = 0 actually used there. Inequality 
(51) is obtained in the same way as (47) above. I 
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Proofs of Theorems 4.51-4.53 

4.67 L E M M A  Letf i  > 0 .  Iff i  > p - n ,  l e t l  < q  < ( g ; + n ) / ( g ~ + n - p ) ;  

otherwise, let 1 < q < oc. There exists a constant K = K (n, p,  fi) such that for 
every standard cusp Qk,z (see Paragraph 4.50) for which (X - 1)k -- v _< fi, and 
every u ~ C a (Qk , z ) ,  we have 

[[Ullo,q,Q~,~ ~ K []ulll,p, Qk,x . (52) 

Proof ,  Since each Qk,z has the segment property, it suffices to prove (52) for 
u E C 1 (Qk , z ) .  We first do so for given k and X and then show that K may be 
chosen to be independent of these parameters.  

First suppose fi > p - n. It suffices to prove (52) for 

q --  (g; + n ) / ( F ;  + n -  p ) .  

For u ~ CI(Q~,z) define fi(y) = u ( x ) ,  where y is related to x by (27) and (28). 
Thus fi E C 1 (C~) A C(C~) ,  where C~ is the standard cone associated with Qk,z.  By 
L e m m a  4.62, and since q < (v + n ) p / ( v  4- n - p ) ,  we have 

[[U[lo, q,Q~,~ = X [ f i (y)[q[rk(y)]  ~ d y  
k )l q 

_< K1 ([fi(y)[P 4- [grad f i ( y ) [P) [ rk (y ) ]  ~ d y  . (53) 
k 

)~-1 Now xj  = r k 39 if 1 _< j _< k a n d x j  --  39 if k 4 -  1 _< j _< n. Since 
2 = y2 4 - . . .  4- y2 rk k we have 

X--1 X-3  Oxj 6i jr  k + (X 1) yj  _ , _ = - rk Yi if 1 < i j < k 
Oyi (~ij otherwise, 

where 6ii -- 1 and 6ij = 0 if i -y= j .  Since r~(y )  < 1 on Ck it follows that 

[grad fi (y)[ < K2 ]grad u (x) [. 

Hence (52) follows from (53) in this case. For fi _< p - n and arbitrary q the proof  
is similar, being based on Remark  2 of Paragraph 4.63. 

In order to show that the constant K in (52) can be chosen independent of k and 
X provided v - (X - 1)k _< fi, we note that it is sufficient to prove that there is a 
constant K such that for any such k, X and all v ~ C 1 (Ck) A C (Ck) we have 

]v (y ) [q[rk (y ) ]  ~ d y  
k (54) 

<_ ~; ( I v ( y ) l  p 4- Igrad v ( y ) l P ) [ r k ( y ) ]  v d y  . 
k 
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In fact, it is sufficient to establish (54) with K depending on k as we can then use 
the max imum of K (k) over the finitely many values of k allowed. We distinguish 
three cases. 

C a s e l  ~ < p - n , l _ < q < o e .  By Lemma 4.65 we have for 0 _< v _< fi, 

sup Iv(y)[ < K(v)  (Iv(y)[ p + [grad v(y) lP)[rk(y)]  ~ dy  
yECk k 

(55) 

Since the integral on the right decreases as v increases, we have K (v) < K (fi) 

and (54) now follows from (55) and the boundedness of Ck. 

Case II  ~ > p - n. Again it is sufficient to deal with q -- (~; + n)p/(~; + n - p) .  
From Lemma  4.62 we obtain 

(fc t 1Is (fc t Iv[ ~r~k dy  _< K1 (Iv[ p + [grad vlP)r~ dy  
k k 

1/p 
(56) 

wheres  = ( v + n ) p / ( v + n - p )  > q andK1 i s i n d e p e n d e n t o f v f o r p - n  < vo < v. 
By H61der's inequality, and since rk(y)  _< 1 on Ck, we have 

1/q [Sr~ dy (vol(Ck)) (s-q)/sq [vlqr~ dy  < Iv k 
k k 

so that if v0 < v < fi, then (54) follows from (56). 

If p - n < 0, we can take v0 -- 0 and be done. Otherwise, p > n > 2. Fixing 
vo = (~; - n + p ) / 2 ,  we can find Vl such that 0 < Vl < p - n (or Vl -- 0 if p = n) 
such that for Vl < v < v0 we have 

(v + n)(~; + n ) p  p 
l < t =  < 

- (v  + n)(~; + n)  + (~; - v ) p  - 1 + Eo 

where E0 > 0 and depends only on ~, n, and p. Because of the latter inequality 

we may also assume t - n < Vl. Since (v + n ) t / ( v  -t- n - t) - q we have, again 
by L e m m a  4.62 and H61der's inequality, 

(fc )l/q (fc )lit [vl qrtv dy  _< K2 (Iv[ t + [grad wit)r; dy  
k k 
2 (p-t)/pt K2 (Iv[ p + [grad riP)r; dy (vol(Ck)) (p-t)/pt, 

k 
(57) 

where K2 is independent  of v for l) 1 ~ 1) ~ 13 0.  

In the case 131 > 0 we can obtain a similar (uniform) estimate for 0 ~ v ~ vl by 

the method of Case I. Combining this with (56) and (57), we prove (54) for this 
case. 
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Case  I I I  ~ = p - n ,  1 < q < cx~. Fix s > m a x { q , n / ( n -  1)} and let 

t -- ( v + n ) s / ( v + n + s ) , s o s  = ( v + n ) t / ( v + n - t ) .  Then 1 < t <_ p s / ( p + s )  < p 

for 0 < v < D. Hence we can select Vl > 0 such that t - n < Vl < p - n. The 

rest of the proof  is similar to Case II. This completes  the proof  of the lemma. 1 

4.68 (Proof of T h e o r e m  4.51) It is sufficient to prove only the special case 

m -- 1, for the general  case then follows by induction on m. Let  q satisfy 

p <_ q < (v + n ) p / ( v  + n - p )  if v + n > p,  or p ___ q < cx~ otherwise. Clearly 

q < n p / ( n  - p )  if n > p so in either case we have by Theorem 4.12 

IlUllO,q,a ~ K1 Ilulll,p,a 

for every u E c l ( ~ )  and that e lement  G of F that satisfies the cone condit ion 

(if such a G exists). If G 6 F does not satisfy the cone condition, and if 

~P �9 G --+ Qk,z,  where ()~ - 1)k < v, is the 1-smooth mapping specified in the 

s tatement  of the theorem. Then by Theorem 3.41 and L e m m a  4.67 

[lUll0,q,G < g 2 lit/o qJ-~ I[O,q,Q~,~ ~ K3 ]]u o k~-- l l[1, p, Qk,x ~ K4 ][/'/]]l,p,G , 

where K4 is independent  of G. Thus, since q / p  > 1, 

Ilull q < y ~  II/,/ll q < g 5 ~ (I IRllp )q/P O,q,f2 ~ O,q,G m 1,p,G 
G~F GEF 

(G~E F )q/P < K5 [lull~,p,a <_ K5N q/p Ilullq,p,a, 

where  we have used the finite intersection property of F to obtain the final in- 

equality. The required imbedding inequali ty now follows by complet ion.  

If v < m p  - n, we require that W m'p (f2) --~ L q (~) also holds for q = ~ .  This 

is a consequence  of Theorem 4.52 proved below. | 

4.69 L E M M A  Let 0 5_ D < m p -  n. Then there exists a constant  

K -- K ( m ,  p ,  n, D) such that if Qk,z is any standard cusp domain  for which 

( ) ~ -  1)k = v ___ D and if u E C m ( Q k , z ) ,  then 

sup lu(x)l ~ K [lullm,p, ak,~. (58) 
xEOk,x 

Proof. Again it is sufficient to prove the l emma for the case m - 1. If u belongs  

to C l ( Q k , z )  where ()~ - 1)k = v < ~, then we have by L e m m a  4.65 and via the 
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method of the second paragraph of the proof of Lemma 4.67, 

sup [u(x)[ - sup I fi (Y) I 
x ~  Qk,x y~Ck 

( f c  )alp < K1 ([fi(y)lP + [gradfi(y)lP)[rk(y)] v dy  
k )l/p 

< K2 (lu(x)l  p + Igradu(x)l p) dx  . 
k,~. 

(59) 

Since rk(y) _< 1 for y E Ck it is evident that K1, and hence K2, can be chosen 
independent  of k and ~. provided 0 _< v - 0~ - 1)k _< ft. | 

4.70 (Proof of T h e o r e m  4.52) It is sufficient to prove that 

W m'p (~'2) ~ C 0 (~'2). 

Let u 6 C ~ (f2). If x 6 f2, then x ~ G C f2 for some domain G for which there 
exists a 1-smooth transformation q~ �9 G --+ Qk,z, 0~ - 1)k < v, as specified in 
the statement of the theorem. Thus 

lu(x)l ~ sup lu (x) l -  sup [u o ~ - l ( y ) [  
x~G Y~Qk,x 

<__ g l [I u o q1-1 [[m,p, ak,x ~ K2 Ilu Ilm,p,a 
< K2 [lullm,p,a, (60) 

where K1 and K2 are independent of G. The rest of the proof  is similar to the 
second paragraph of the proof in Paragraph 4.16. | 

4.71 (Proof of T h e o r e m  4.53) As in Lemma  4.28 it is sufficient to prove that 

W 1,p (~'~) ~ C~ if 0 < / ~ < 1  
n + v  

that is, that 
lu(x) - u(y)l 

sup I ~ < g Ilulll,p,~ (61) 
x,y~ Ix - y - x~y 

holds when v + n < p and 0 < # <_ 1 - (v + n ) / p .  For x, y ~ f2 satisfying 
[x - y[ >_ 6, (61) holds by virtue of (60). If [x - y[ < 6, then there exists G C f2 
with x, y ~ G, and a I -smooth transformation ~ from G onto a standard cusp 
Qk,z with (X - 1)k _< v, satisfying the conditions of the theorem. Inequality (61) 
can then be derived from L e m m a  4.66 by the same method used in the proof  of 
L e m m a  4.69. The details are left to the reader. | 



5 
INTERPOLATION, EXTENSION, 

AND APPROXIMATION THEOREMS 

Interpolation on Order of Smoothness 

5.1 We consider the problem of determining upper bounds for L p norms of 
derivatives D~u,  0 < Ir < m, of functions in wm'p(~'2) in terms of the L p 
norms of u and its partial derivatives of order m. Such estimates are conveniently 
expressed in terms of the seminorms I'lj,p defined in Paragraph 4.29. Theorem 
5.2 below provides such an estimate for the seminorm ]ulj,p in terms of lulm,p and 
Ilu lip, as well as some elementary consequences of this estimate. Such estimates 
arose in the work of of Ehrling [E], Nirenberg [Nrl,  Nr2], Gagliardo [Gal,  Ga2], 
and Browder [Brl, Br2], and were frequently proved under the assumption that 
f2 satisfies the uniform cone condition, at least if f2 is unbounded. However, we 
will prove Theorem 5.2 assuming only the cone condition. In fact, even the weak 
cone condition is sufficient for the proof, as is shown in [AF1 ]. 

5.2 T H E O R E M  Let S2 be a domain in IR n satisfying the cone condition. For 
each ~0 > 0 there exist finite constants K and K',  each depending on n, m, p, ~0 
and the dimensions of the cone C providing the cone condition for f2 such that if 
0 < ~ < Co, 0 < j < m, and u E W m'p (~'~), then 

[u]j,p < K(~  ]g[m,p -'~ 6--J/(m-J) []U]lp), 

[[u[[j,p < K ' ( e  [lUl[m,p -[-6 -j/(m-j) [[U[lp) , 

[]u[]j,p < 2K '  [lull jim [lull (m-j)/m 
m , p  p " 

(1) 

(2) 

(3) 



136 Interpolation, Extension, and Approximation Theorems 

5.3 Inequality (2) follows from repeated applications of (1), and (3) by setting 
E0 -- 1 in (2) and choosing E in (2) so that the two terms on the right side are equal. 
Furthermore, (1) holds when E < E0 if it holds for E < E1 for any specific positive 
el; to see this just replace e by EEl/e0 and suitably adjust K. Thus we need only 
prove (1), and that for just one value of E0. 

We carry out the proof in three lemmas. The first develops a one-dimensional 
version for the case m = 2, j = 1. The second establishes (1) for m = 2, j = 1 
for general f2 satisfying the cone condition. The third shows that (1) is valid for 
general m > 2 and 1 < j < m - 1 whenever the case m = 2, j = 1 is known to 
hold. 

5.4 L E M M A  If p > 0, 1 < p < oo, Kp - -  2p-19 p, and g 6 C2([0, p]), then 

; fo fo ) [g,(0)jp < Kp l~ p Ig'(t)[ p dt + p-P [g(t)[ p dt . 
P 

(4) 

Proof.  Let f ~ C2([0, 1]), let x E [0, 1/3], and let y ~ [2/3, 1]. By the 
mean-value theorem there exists z ~ (x, y) such that 

If ' (z)l  = 
f (y) - f (x) 

y - x  
31f(x)l  + 31f(y)l .  

Thus 

r f0 z I If ' (0)l  = f ' ( z ) -  f " ( t ) d t  

f0 
1 

_%< 31f(x)l  + 31f(y)l  + If"( t ) l  dt. 

Integration o f x  over [0, 1/3] and y over [2/3, 1] yields 

1 f, f01/3 ~1 (o)1 _< f2 1 1 ~01 
I f (x) l  dx + I f (y) l  dy + 

/3 
I f " ( t ) l d t .  

For p > 1 we therefore have (using H61der's inequality if p > 1) 

[f'(O)lP ~ g p ( f o  I f01 ) I f"( t ) l  p dt + I f  (t)l p dt . 

where Kp -- 2p-19 p. 

Inequality (4) now follows by substituting f ( t )  = g(pt) .  | 

5.5 L E M M A  If 1 < p < 00 and the domain f2 C En satisfies the cone 
condition, then there exists a constant K depending on n, p, and the height P0 and 
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aper ture  angle  x of  the cone  C provid ing  the cone  condi t ion  for S2 such that  for 

all E, 0 < E < P0 and all u E W 2,p (~"2) we  have  

I.Ii,p <_ X(~ lul2,p + ~-~ Ilullp). (5) 

Proof .  Le t  E = {a 6 R" �9 lal  - 1 } be the uni t  sphere  in R" with  v o l u m e  

e l emen t  do" and (n - 1 ) -vo lume Ko -- Ko(n) = f z  dcr. If  x ~ f2 let crx be the uni t  

vector  in the di rect ion of  the axis of  a cone  Cx C ~ congruen t  to C and hav ing  

ver tex at x,  and let Ex - {or 6 E �9 /(or, ax) _< x/2}. 

Let  u 6 C ~ ( f 2 ) .  If  x 6 S2, cr 6 Ex,  and 0 < p _< P0, then 

[cr. gradu(x)[ p < Kp I (p  p , u  x or) 
P 

where  

f0 f0 I ( p , p , u , x , ~ )  = p p ID~u(x + t ~ ) ] P d t - l - p  -p ]u(x +t~r)]Pdt. 

There  exists a cons tan t  K1 = K1 (n, p ,  x)  such that  

f : c [ ~ ' g r a d u ( x ) ] P d ~ > ~  [~ 'gradu(x)[Pdcr>Kl lgradu(x)[  p. 
x 

Accord ing ly ,  

s "pf  s [gradu(x)[ p dx < dcr I(p,  p, u, x, or) dx. 
- Kip 

In order  to es t imate  the inner  integral  on the right,  regard  u and its derivat ives as 

ex tended  to all of  R n so as to be ident ica l ly  zero outs ide  f2. For  simplici ty,  we 

suppose  cr -- en = (0 . . . . .  0, 1) and wri te  x = (x', Xn) with x '  E R n-a . We have  

f I p, u, x, en) (p, dx 

ff fo - dx'  dx ,  (pPlD2u(x ', Xn + t)l p + p-P[u(x', Xn + t)l p) dt 
n-- l  O0  

fo/o /  - dx' dt (pPlD~u(x)l p + p-P[u(x)l p) dx. 
n--I O0  

5 p ]~ (pplD2.,u(x)lp + p-Plu(x) lp)dx ,  

In general ,  for cr E 
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and since IOj(u)l  ~ Igradul and the measure of E is K0, 

n K p K o  p _p 
lul p < (,o p lUlz, p -t- p IlullpP). 

1,p - K1 

Inequali ty (5) now follows by taking p th  roots, replacing p with ~, and noting that 
C ~ (f2) is dense in W 2,p (f2). | 

5.6 L E M M A  Let m > 2, let 0 < 80 < e~, and let E0 = min{80, 82 . . . . .  8~-1 }. 
Suppose that for given p,  1 < p < cx~, and given f2 C I~ n there exists a 
constant K -- K (80, p,  f2) such that for every 8 satisfying 0 < 8 < 80 and every 
u ~ W 2'p (f2), we have 

lull,p _< K8 I/gl2,p + K6 -1 lul0,p �9 (6) 

Then there exists a constant K = K (E0, m, p,  f2) such that for every E satisfying 
0 < E < Eo, every integer j satisfying 0 < j < m - 1, and every u ~ W m'p (~"~), 
we have 

lulj,p < KE lUlm,p -k- KE - j / (m-j)  lulo, p .  (7) 

Proof .  Since (7) is trivial for j = 0, we consider only the case 1 < j < m - 1. 
The proof  is accomplished by a double induction on m and j .  The constants 

K1, K2 . . . .  appearing in the argument  may depend on 8o (or co), m, p,  and f2. 
First we prove (7) for j -- m - 1 by induction on m, so that (6) is the special case 
m = 2. Assume,  therefore, that for some k, 2 < k < m - 1, 

lUlk-l,p < K18 lulk,p + g18 -(k- l )  lulo, p (8) 

holds for all 8, 0 < 8 < 80, and all u ~ W k'p (f2). If u 6 W k+l'p (S2), we prove 

(8) with k + 1 replacing k (and a different constant K1). If Ic~l = k - 1 we obtain 
from (6) 

ID~ < K26 ID~ p -+- K28 -1 ID~ p .  

Combining  this inequality with (8) we obtain, for 0 < r / <  80, 

lulk,p _< K3 Z ID~ 
I~l=k-1 

< K4S lulk+l,p -t- K4 S-1 [Ulk-l,p 

< K4S lUlk+l,p -k- KaK1S-lr / lulk,p + K4Kl(~-lrl  1-k lul0,p �9 

We may assume without prejudice that 2K1 K4 _> 1. Therefore,  we may take 

r / - -  ~ / (2K1K4) and so obtain 

lulk,p < 2K48 lulk+l,p -k- ( 8 / ( 2 K 1 K 4 ) )  -k lUlo,p 

< K58 lulk+l,p -t- K58 -k lUlo,p �9 
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This completes the induction establishing (8) for 0 < 6 < 60 and hence (7) for 
j - - m - l a n d 0 < ~  <60.  

We now prove by downward induction on j that 

lulj,p <_ K66 m-j lUlm,p + K66-j lUlo,p (9) 

holds for 1 < j < m -  1 a n d 0  < 6 < 60. Note that (8) w i t h k - -  m i s t h e  
special case j - m - 1 of (9). Assume, therefore, that (9) holds for some j ,  
2 < j < m - 1. We prove that it also holds with j replaced by j - 1 (and a 
different constant K6). From (8) and (9) we obtain 

l u l j - l , p  < K76 lulj,p -t- K761-j lul0,p 

<_ K76(K66m-j Ibllm,p 't- K66-j lul0,p) + K761-j lul0,p 

<_ K86m-(j-1) lUlm,p --[- K861-j l u l 0 , p  �9 

Thus (9) holds, and (7) follows by setting 6 - E 1~(m-j) in (7) and noting that 

_< e0 if 6 _< 60. I 

This completes the proof of Theorem 5.2 

5.7 R E M A R K  Careful consideration of the proofs of the previous two lemmas 
shows that if the height of the cone providing the cone condition for f2 is infinite, 
then inequalities (5) and (7) (and therefore (1) and (2)) hold for all ~ > 0, the 
corresponding constants K being independent of ~. This is the case, for example, 
if f2 -- I~ n or a half-space like IR~_. 

Interpolation on Degree of Summability 
The following two interpolation theorems provide sharp estimates for L q norms of 
functions in W m'p (~-2). Some of these estimates follow from Theorem 4.12 while 
others have traditionally been obtained for regular domains from imbeddings of 
Sobolev spaces of fractional order. (See Chapter 7.) We obtain them here assuming 
only that the domain satisfies the cone condition. Again, the weak cone condition 
would do as well; see [AF1]. 

5.8 T H E O R E M  Let f2 be a domain in R n satisfying the cone condition. 
I f m p  > n, l e t p  < q < oe; i f m p  = n, let p < q < oe; i f m p  < n, let 
p < q < p* = n p / ( n  - m p ) .  Then there exists a constant K depending on 
m, n, p, q and the dimensions of the cone C providing the cone condition for f2, 
such that for all u E W m' p ( ~ ) ,  

Ilu IIq < K II u I1~ 1-o 
- m , p  IlUllp , (10) 

where 0 -- ( n / m p )  - ( n / m q ) .  
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Proof .  The case m p  < n, p < q < p* follows directly from Theorems 2.11 and 

4.12" 
II b/[Iq -- < l] U I[0p. l[ U II lp-0 __< g II u II ~ [I/g Ilpl-0 , 

where 1/q  -- ( O / p * ) + ( 1 - O ) / p  f rom which it follows that0 -- ( n / m p ) - ( n / m q ) .  

For the cases m p  -- n, p < q < cx~, and m p  > n, p < q < oo we use the local 
bound obtained in L e m m a  4.15. If 0 < r < p (the height of the cone C), then 

l u ( x ) l < g l (  ~ l o t  I_<m- 1FI'~I-nxr*ID~uI(x)-k-~(Xr~ ' l o t  I =m (11) 

where Xr is the characteristic function of the ball of radius r centred at the origin in 
IR " , and O) m (X) ~- Ixl m-n. We estimate the L q norms o fbo th  terms on the right side 
of  (11) using Young's  inequality from Corollary 2.25. If ( 1 / p ) + ( 1 / s )  - 1 + ( 1 / q ) ,  
then 

IIXr * ID=ulllq <- IlXrlls IID~ullp = K2 rn-(n/p)+(n/q) IID=ullp 
I[(Xr(-Om) * ID=ulllq < IlXr~Omlls IID~ullp - K3 rm-(n/p)+(n/q) IlD=ullp �9 

(Note that m - ( n / p )  -t- ( n / q )  > 0 if q satisfies the above restrictions.) Hence 

Ilullq ~K4(~rJ-(n/P)+(n/q)lulj,p+rm-(n/P)+(n/q)lulm,p). 
\ j=O 

By Theorem 5.2, 

lulj,p ~ K5(r  m-j  lUlm,p -+-r - j  Ilullp), 

SO 
Ilullq ~ K6(rm-(n/p)+(n/q) IlUllm,p + F-(n/P)+(n/q) Ilullp). 

Adjusting K6 if necessary, we can assume this inequality holds for all r < 1. 
Choosing r to make the two terms on the fight side equal, we obtain (10). | 

A special case of the above Theorem asserts that if m p  > n, then 

n/mp lp-(n/mp) 
II u II ~ _< K II u IIm,p II u II (12) 

A similar inequality with Ilullp replaced by a more general Ilullq is sometimes 

useful. 

5.9 T H E O R E M  Let g2 be a domain in IR" satisfying the cone condition. 
L e t p  > 1 a n d m p  > n. Suppose that either 1 < q < p o r b o t h q  > p a n d  
m p  - p < n. Then there exists a constant K depending on m, n, p,  q and the 
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dimensions of the cone C providing the cone condition for f2, such that for all 
bl E w m ' P ( ~ ) ,  

II u II ~ < K II u II ~ ~ - 0  - m , p  IlUllq , 

where 0 -- n p / [ n p  + ( m p  - n)q].  

Proof .  It is sufficient to show that the inequality 

l u ( x ) l  < K Ilull ~ 1-0 -- m,p Ilullq , 0 -- n p / [ n p  + ( m p  - n)q] (13 )  

holds for all x E S2 and all u ~ W m'p (~-2) 0 C a ( ~ ) .  

First we observe that (13) is a straightforward consequence of Theorems 5.8 and 
2.11 if 1 < q < p; since (12) holds we can substitute 

Ilullp _ Ilull q/p Ilull 1-(q/p) 

and obtain (13) by cancellation. 

Now suppose q > p, and, for the moment,  that m -- 1 and p > n. We reuse the 

local bound (11); in this case it says 

lu(x)l ~ Kl ( f ' -nx r  * lul(x) + ~ (XrO)l) * ID~ul(x)), 
I~1=1 

for 0 < r < p, the height of the cone C. By H61der's inequality, 

Xr * lul(x)  _ K2 rn-(n/q) Ilullq, 

and, for loci = 1, 

(XrO)l) * ID~ul(x) ~ K3 rl-(n/p) IID~ullp. (14) 

Since IlUllq ~ Ks IlUlll,p (by Part I Case A of Theorem 4.12), and since inequality 
(14) may be assumed to hold for all r such that 0 < r 1-(n/p)+(n/q)  < KS provided 

K4 is suitably adjusted, we can choose r to make the two upper bounds above 

equal. This choice yields (13) with m - 1. 

For general m, we have wm'p(~'2) "-~ W l'r ( ~ ) ,  where r = n p / ( n  - m p  + p)  

satisfiesn < r < c x ~ s i n c e ( m - 1 ) p  < n < mp.  Hence, i fu  ~ wm'p(~"2)OCC~(~'~), 

we have 
1-0 < K7 II u II0m p II U II lq-O l u ( x ) l  _< K6 Ilull0,r IlUlIq _ , , 

where 0 - n r / [ n r  + (r - n)q] - n p / [ n p  + ( m p  - n)q].  II 

The following theorem makes use of the above result to provide an alternate direct 

proof of Part I Case C of the Sobolev imbedding theorem 4.12 as well as a hybrid 
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imbedding inequality that will prove useful for establishing compactness of some 
of these imbeddings in the next chapter. 

5.10 T H E O R E M  Let f2 be a domain in R n satisfying the cone condition. 
Let m and k be positive integers and let p > 1. Suppose that m p  < n and 
n - m p  < k < n .  Let v be the largest integer less than m p ,  so that n - v < k. Let 
ftk be the intersection of f2 with a k-dimensional plane in E". Then there exists a 
constant K such that the inequality 

IlU[lO,~q/n,~, < K Ilull 1-~ (15) - -  0 , q , a  Ilu II~ 

holds for all u ~ W m'p (~"2), where 

q _ p ,  = n p  and 0 = v p  
n - m p  v p  + ( m p  - v ) q  

Note that 0 < 0 < 1. 

Proof.  Again it is sufficient to establish the inequality for functions in 
W m,p (~'2) O CC~(~"2).  Without loss of generality we assume that H is a coor- 
dinate k-plane ~ in I~", and, as we did in Lemma 4.24, that f2 is a union of 
coordinate cubes of fixed edge length, say 2. 

( k ) , a n d l e t E  i l < i < / z  d e n o t e t h e v a r i o u s c o o r d i n a t e p l a n e s i n  Let # = n-~ . . . .  

~k having dimension n - v. Let ~'2 i be the projection of f2~ o n t o  E i, and for each 
x E ~"2 i let g2 / denote the intersection of f2 with the v-dimensional plane through 
x perpendicular to E i. Then f2 / contains a v dimensional cube of unit edge length 
having a vertex at x, so it satisfies a cone condition with parameters independent 
of i and x. By Theorem 5.9 

1 - 0  
Ilull0,~,~x ~ K1 Ilull0,q,~/Ilull~ �9 

Let s = (n  - v ) p / ( n  - m p ) ,  and let d x  i and d x  i denote the volume elements in 
E i and its orthogonal complement (in Ii~ n) respectively. Since 

q ( m p -  v )  v 
s(1 - 0) - and sO - -  - - ,  

m p  m 

we have 

f sup l u ( y ) l  s d x  i 
y ~  

i / !~ lul___m 

iis<l-o~ so < K1 Ilu o,q,~ I lUl lm,p,~,  
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the last line being an application of H61der's inequality. 

Let d x  1' denote the k-dimensional volume element in H.  We apply the averaging 
Lemma 4.23 to the family of # subspaces E i o f  It{ k . The parameter i, for this 

application of the lemma is )~ -- ( k-1 ) _ ( n - v ) # / k .  Since ( k q / n ) ( ~ . / # )  --  s n - v - 1  
we obtain 

kq/n f.(-I Ilullo,~q/~,~ <_ K2 sup lu (y ) l  ~q/~n d x  k 
k i=1 y~f2~ 

1 _< g2 ~ sup lu(y)] ~ d x  i 
i f2~ �9 = y~ 

# 
-- I - I  Ilkq(1-O)/#n kqO/#n 
< K 3  [lu I I0 ,q ,a  II b / [ [ m , p , a  , 

i=1  

so that 

IlUllO,kq/n,~ < K Ilull 1-~ 0 0,q,~ Ilull ,p,~ - -  m 

as required. I 

5.11 R E M A R K  If we take k = n in inequality (15), then the imbedding 
wm'P(~"2) ---+ L q ( f 2 )  follows for q = n p / ( n  - m p )  by cancellation. The corre- 
sponding imbedding inequality Ilu [[0,q,~ < K Ilu Ilm,p,~ can then be used to further 
estimate the right side of (15), yielding the trace imbedding W m'p (~"2) ~ L r ( ~ k )  

for r = k p / ( n  - m p ) .  

Interpolation Involving Compact Subdomains 
Sometimes it is useful to have bounds for intermediate derivatives D ~ u ,  of a 
function u 6 wm'p(~ '2) ,  where 1 < Ir _< m -  1,in terms of the  seminorm lUlm,p,~ 

and the L P-norm of u over a compact subdomain f2' ~ f2. Such inequalities 
are typically not possible unless f2 is bounded, but for bounded f2 they can be 
established under the assumption that f2 satisfies either the segment condition or 
the cone condition. (A bounded domain f2 satisfying the cone condition can be 
decomposed into a finite union of subdomains each of which satisfies the strong 
local Lipschitz condition, and therefore the segment condition. See Lemma 4.22.) 
We will prove the following hybrid interpolation theorem. (See Agmon [Ag].) 

5.12 T H E O R E M  Let f2 be a bounded domain in I~ n satisfying the segment 
condition. Let 0 < ~0 < oo, let 1 < p < c~, and let j and m be integers with 
0 < j < m - 1. There exists a constant K - K(~0, m, p, ~ )  and for each 
satisfying 0 < ~ < E0 a domain f2, ~ f2 such that for every u ~ W m'p (~'2) 

lu[j,p,a < K ~  ]ulm,p,a + K e  - j / ( m - j )  IlUllp,a~ . (16) 
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Note that this theorem implies Theorem 5.2 extends to bounded domains satisfying 

the segment  condition. 

As in the proof  of Theorem 5.12, we begin with a one-dimensional  inequality. 

5.13 L E M M A  Let 1 < p < cxz and let 0 < l l < 12 < oo. Then there 
exists a constant K = K (p, 11,12) and, for every E > 0, a number  6 = 3(r ll,  12) 
satisfying 0 < 23 < ll such that if (a, b) is a finite open interval in I~ whose length 
b - a satisfies 11 < b - a < 12, and g 6 C 1 (a, b), then 

fa fa /a ]g(t)l p dt  < K~ Ig'(t)] p d t  + K Ig(t)] p dt .  +3 (17) 

Proof .  I f f 6 C  l ( 0 , 1 ) , 0 < t  < 1, a n d l / 3 < r  < 2 / 3 ,  then 

I f ( s ) l  - f 
s 

f ( r ) +  f ' ( ~ )  d~ fo f '  I f (v l  + I (~) ld~.  

Integrating r over (1/3,  2 /3) ,  applying H61der's inequality if p > 1, and finally 

integrating s over (0, 1) gives 

fo 
f2/3 fo 1 If(s)[ p <_ gp I f ( s ) l  P ds + Kp If'(s)l p ds, ,11/3 

where Kp - -  3 . 2  p - 1 .  Now substitute f (s) -- g(a  + s(b - a)) = g( t )  to obtain 

fab fab f(a+2b)/3 Ig(t)l p < Kp(b -- a) p Ig'(t)l p dt  + Kp Ig(t)l p dt .  d (2a+b)/3 

ForgivenE > O pick a positive integer k such that k -p  < ~. Leta j  = a + ( b - a )  j / k 
for j = 0, 1 . . . . .  k and pick 6 so that 0 < 6 < (b - a ) /3k .  Then 

/a b 
Ig(t)l p dt  = Ig(t) l  p dt  

�9 ~ a j  1 

k [( )pfa:j faj-3 1 < Kpj~=l b -a  g, - k I (t)l p d t  + Ig(t)l p d t  
-1  d a j _ l  + 3  

Ira fa ] < Kp max{l ,  (b - a) p} E Ig'(t)] p dt  + Ig(t)l p d t  +3 

which is the desired inequality (17). | 
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5.14 L E M M A  Let f2 be a bounded domain in IR n that satisfies the segment 
condition. Then there exists a constant K -- K (p, f2) and, for any positive number 
e, a domain f2, ~ f2, such that 

lul0,p,~ ~ Ke lull,p,~ + K lul0,p,a, (18) 

holds for every u ~ W I'p (~~g). 

Proof. Since f2 is bounded, and its boundary is therefore compact, the open 
cover { Uj } of bdry f2 and corresponding set {yj } of nonzero vectors referred to 
in the definition of the segment condition (Paragraph 3.21) are both finite sets. 
Therefore open sets Vj @ Uj can be found such that bdry f2 C U j  Vj and even, 
for sufficiently small 6, f2~ = {x 6 f2 : dist(x, bdryf2) < 6} C Uj  vj. Thus 

g2 - Uj  (Vj n f2) U (2, where (2 ~ f2. It is thus sufficient to prove that for each j 

lul0,p,Vjna, < K1 ep lul p P -- 1,p,a -F g l  lul0,p,a,,j 

for some f2,,j ~ f2. For simplicity, we now drop the subscripts j .  

Consider the sets Q, Qo, 0 _< ~ < 1, defined by 

Q = { x + t y : x  ~ u n f 2 , 0  < t < 1}, 

Q o = { x + t y : x  E v n f 2 ,  r / < t  < 1}. 

If r/ > 0, then Q0 ~ Q, and by the segment condition, Q c f2. Any line s parallel 
to y and passing through a point in V n g2 intersects Q0 in one or more intervals 
each having length between lYl and diam f2. By 5.13 there exists q > 0 and a 
constant K1 such that for every u 6 C ~ (f2) and any such line s 

fnQo lu(x)lP ds ~ KIEP f IOyu(x)lP ds -q- Kl ~ " lu(x)lP ds, 
NQo na~ 

Dy denoting differentiation in the direction of y and ds being the length element 
in that direction. We integrate this inequality over the projection of Q0 on a 
hyperplane perpendicular to y and so obtain 

P < KI~iP lulP Qo + K1 lu p luloPp, gna ~ lulo,p, Qo - ,p, [O,p,e, 

<-- K1 ~2p lulf, p,a + g l  luloPp,Q , 

where f2, = ~2o ~ ~2. By density, this inequality holds for every u ~ W I'p (~'~). 

5.15 (Completion of the Proof of Theorem 5.12) 
derivatives D ~u, I~l : m - 1 to obtain 

We apply Lemma 5.14 to 

[Ulm_l,p,f2 ~ KE [Ulm,p,a + K1 lulm_l,p,~ , (19) 
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where f2, ~ S2. Since ~ ,  is a compact subset of f2, there exists a constant 8 > 0 
such that dist(f2,, bdry f2) > 8. The union ~ '  of open balls of radius 8 about 
points in ft ,  clearly satisfies the cone condition and also f2' ~ ~.  We can use f2' 
in place of f2, in (19), and so we can assume f2, satisfies the cone condition. By 
Theorem 5.2, for given G0 > 0 the inequality 

lUlm_l,p,s2, ~ K2E lUlm,p,s2, + K2E -(m-l) lul0,p,~, �9 

Combining this with inequality (19) we obtain the case j = m - 1 of (16). 

The rest of the proof is by downward induction on j .  Assuming that (16) holds 
for some j satisfying 1 < j < m - 1, and replacing E with em-j (with consequent 
alterations to K and f2,), we obtain 

lulj,p,a ~ K3e m-j lUlm,p,a -k- K3E - j  lul0,p,a,,, �9 

Also, by the case already proved, 

[u[j_l,p,c~ < K4E lulj,p,s2 + K4 E-(j-1) [ul0,p,a,,2 �9 

Combining these we get 

lulj_l,p,~ ~ K5 Em-(j-1) lulm,p,a -+- K5 E-(j-1) lul0,p,a,, 

where K5 = K4(K3 + 1) and g2~ = ~ , 1  U ~'2e,2. Replacing E by E 1/(m-j+l)  w e  

complete the induction. | 

5.16 R E M A R K  The conclusion of Theorem 5.12 is also valid for bounded 
domains satisfying the cone condition. Although the cone condition does not 
imply the segment condition, the decomposition of a domain ft satisfying the cone 
condition into a finite union of subdomains each of which is a union of parallel 
translates of a parallelepiped (see Lemma 4.22) can be refined, for bounded f2, 
so that each of the subdomains satisfies a strong local Lipschitz condition and 
therefore also the segment condition. 

Extension Theorems 

5.17 (Extension Opera tors )  Let f2 be a domain in It~ n . For given m and p 
a linear operator E mapping W m'p (f2) into W m'p (~n) is called a simple (m, p)- 
extension operator for f2 if there exists a constant K = K (m, p) such that for 
every u ~ W m'p (f2) the following conditions hold: 

(i) Eu(x)  = u(x) a.e. in f2, 

(ii) ]]Eul[m,p,R,, < g Ilullm,p,~. 
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E is called a strong m-ex tens ion  operator  f o r  ~2 if E is a linear operator mapping 
functions defined a.e. in ~2 to functions defined a.e. in R n and if, for every p, 
1 < p < cx~, and every integer k, 0 < k _< m, the restriction of E to W ~'p (~2) is a 
simple (k, p)-extension operator for ~2. 

Finally, E is called a total extension operator  f o r  ~2 if E is a strong m-extension 
operator for ~2 for every m. Such a total extension operator necessarily extends 
functions in C m (~) to lie in C m (R  n ). 

5.18 The existence of even a simple (m, p)-extension operator for ~2 guarantees 
that W m'p (~2) inherits many properties possessed by W m,p (R  ~ ). For instance, if 
an imbedding W m'p (~n) ~ Lq (Rn) is known to hold, so that 

II u II q,R n ~ K1 II u II m,p,R n , 

then the imbedding W m'p ( ~ )  ~ L q ( ~ )  must also hold, for if u e W m'p (~"~), then 

[]U]10,q,S2 __< ]]EUllO,q,R, <__ gl  IlEUllm,p,R, <_ K1K ]lUllm,p,s2. 

The reason we did not use this technique to prove the Sobolev imbedding theorem 
4.12 is that extension theorems cannot be obtained for some domains satisfying 
such weak conditions as the cone condition or even the weak cone condition. 

We will construct extension operators of each of the three types defined above. 
First we will use successive reflections in smooth boundaries to construct strong 
and total extension operators for half spaces, and strong extension operators for 
domains with suitably smooth boundaries. The method is attributed to Whitney 
[W] and later Hestenes [He] and Seeley [Se]. Stein [St] obtained a total extension 
operator under the minimal assumption that ~2 satisfies the strong local Lipschitz 
condition. He used integral averaging instead of reflections. We will give only 
an outline of his proof here, leaving the interested reader to consult [St] for the 
details. See also [Ry]. The third construction, due to Calder6n [Ca l ] involves the 
use of the Calderdn-Zygmund theory of singular integrals. It is less transparent 
than the reflection or averaging methods, and only works when 1 < p < cx~, 
but requires only that the domain ~2 satisfies the uniform cone condition. Unlike 
the other methods, it has the property that if the trivial extension fi belongs to 
W m'p (R n), then fi is the extension produced by the method. By Theorem 5.29 
below, this happens if and only if u e W o  'p (~2). The paper [Jn] provides an 
extension method that works under a geometric hypothesis that is necessary and 
sufficient in I~ 2, and is nearly optimal in higher dimensions. 

Except for very simple domains all of our constructions require the use of partitions 
of unity subordinate to open covers of bdry ~2 chosen in such a way that the 
functions in the partition have uniformly bounded derivatives. 

To illustrate the reflection technique we begin by constructing a strong m-extension 
operator and a total extension operator for a half-space. Then we extend these to 
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apply to domains that satisfy the uniform Cm-regularity condition and also have a 

bounded boundary. 

5.19 T H E O R E M  Let f2 be the half-space E~_ - {x 6 En . Xn > 0 } .  Then 
there exists a strong m-extension operator E for f2. Moreover, for every multi- 
index ct satisfying I~1 _< m there exists a strong (m - Iotl)-extension operator E~ 
for ~2, such that 

D ~ -- Eo~D~ 

Proof.  For functions u defined a.e. on I~_ we define Eu and E,~u, I~1 ~ m a.e. 
on I~ n via 

u (x) if X n > 0 
Eu(x )  = _ _ m + l  

~-.~j=l "~'J bl(xl  . . . . .  Xn-1,  --jXn) if X n < 0 ,  

u(x) ifxn > 0 
Eo~u(x) --  _ _ m + l  

2.~,j=1 (-j)'~"XjU(Xl . . . . .  Xn-1, --.jXn) if Xn < O, 

where the coefficients ~. 1 . . . . .  ~,m+l are the unique solutions of the (m 4-1) • (m 4-1) 
system of linear equations 

m+l 
~_~(--j)kxj  = 1, 
j = l  

k - 0  . . . .  ,m.  

If u ~ C m (]~n__ F ) ,  it is readily checked that Eu E C m (I~ n ) and 

D~Eu(x )  = Eo~D'~u(x), I~1 < m. 

Thus 

fR ID '~ Eu(x) l  p dx 
n 

~ f R l o ~ b l ( x ) l P d x - ' ~ f R [  n_ j = l  . . . . .  Xn--l'  

< K(m,  p, or) fRn ID'~u(x)IP dx.  
+ 

--jXn) 

P 

dx 

By Theorem 3.22, the above inequality extends to functions u ~ W k'p (~n+), 
m > k > I~1. Hence, E is a strong m-extension operator for ~_ .  Since 
D ~ E,~u(x) -- E,~+Zu(x), a similar calculations shows that E~ is a strong (m - I ~ l ) -  

extension. | 
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The reflection technique used in the above proof  can be modified to yield a total 
extension operator�9 The proof, due to Seeley [Se], is based on the following 
lemma. 

5.20 LEMMA 
integer n we have 

and 

There exists a sequence {ak }k~=O such that for every nonnegat ive 

O<3 

E 2nkak = ( -  1)n, (20) 
k=0 

OO 

2"klakl < ~ .  (21) 
k=0 

Proof .  For fixed N, let ak,N, k -- 0, 1 . . . . .  N be the solution of the system of 
linear equations 

N 
E nk 2 ak ,  N - -  (--1)  n 
k=0 

n -- 0, 1 . . . . .  N. (22) 

In terms of the Vandermonde determinant  

V ( X o ,  X l  . . . . .  X N )  - -  

1 1 . . .  1 

Xo X l  �9 �9 �9 X N  
2 . 

�9 �9 o 

�9 �9 ~ 

Xo . . .  

N 

- I-I (xj - x ~ ) ,  

i , j = O  

i < j  

ak,N as given by Cramer ' s  rule is 

V (1, 2 . . . . .  2 k-1 , - 1, 2 k+l , . . . ,  2 N) 
a k ,  N ~-  

V ( 1 , 2  . . . . .  2 N) 

1 
k-1 N N 

= ~ (2J -- 2i) 17(--1i=0 -- 2i) j=kH+l (2j + 1) " i, --- (2J -- 2/) 

= Ak Bk, N 

where 
~ 1 + 2  i 

Ak -- 2i _ 2k, 
i=1 

N l+2J 
1-[ 

B k , u  I I  2 J - - 2  k'  
j=k+l 
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it being understood t h a t  I-Iim=l ei - -  1 if 1 > m. Now 

k-1 2i+1 IA~l _< ~.= ~ _< 2(5k-k2)~2. 

Also 

N ( l + 2 k  ) 2 J -  2 k log Bk, N = E log 1 + 
j = k + l  

N , - - , ~ k  N 1 
< E 2J'-t-L-2 k < ( 1 + 2  k) E 2J-1 < 4 '  

j = k + l  j = k + l  

where we have used the inequality log(1 + x) < x valid for x > 0. It follows that 
the increasing sequence {Bk,N }co converges to a limit Bk < e 4. Let ak -- Ak Bk, N=0 
so that 

[akl < e 4" 2 (5k-k2)/2. 

Then for any n 
(N3 OO 

Z 2nklakl <- e4 Z 2(2nk+5k-k2)/2 < 00. 
k=0 k=0 

Letting n ~ ec in (22) completes the proof. | 

5.21 T H E O R E M  Let ~ be a half-space in IR " . Then there exists a total 
extension operator E for f2. 

Proof. The restrictions to I~_ of functions ~b �9 C ~  (I~ n ) being dense in W m'p (I~n+) 
for any m and p, we need only define the extension operator for such functions. 
Let f be a real-valued function, infinitely differentiable on [0, c~) and satisfying 
f (t) - 1 if 0 < t < 1/2 and f (t) = 0 if t > 1, If q~ �9 C~ c (IR ~ ), let 

E C ( x )  -- E ~ ( x ' ,  Xn) = { ~(X) 
Y~k=0 ak f (--2kXn)r x'' --2kXn) 

if Xn >0, 
ifXn < 0 ,  

where {ak} is the sequence constructed in the previous lemma. E4~ is well-defined 
on I~ n since the sum above has only finitely many nonvanishing terms for any 
particular x �9 I~ n = {x �9 I~ n �9 x,  < 0}. Moreover, E4~ has compact support and 

belongs to C ~ (IR~_) A C ~ (R n ). If x �9 lt{~_, we have 

D~E4)(x) = E Z (--2k)~" f(~n-J)(--2kXn)DJD~'c/)(X" --2kxn) 
k--0 j--0 

0o 

= ~ r 
k=O 
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Since 0h(x) = 0 when -x~  > 1/2 k-1 it follows from (21) that the above series 
converges absolutely and uniformly as Xn --+ 0 - .  Hence by (20) 

OO 

lim D ~' Edp(x) = Z(--2k)~'a1,D~dp(x ', 0+) 
x, --+ O- k=O 

= D~dp(x ', 0 + ) -  lim D ~ E ~ ( x ) -  D~Edp(O). 
x ,  ---~ 0 +  

Thus Edp ~ C~(~n) .  Moreover, if I~l ~ m, 

I7~(x)l p <_ KPlakIP2 kmp ~ I D ~ (  x', --2kXn)l p, 
I/~l_<m 

where K1 depends only on m, p, n, and f .  Thus 

I 117t~ll0,p,eL __ Kl la~:12 km I D ~ ( x  ', --2kxn)l p dx 
n 

[ _ 

_ Kllakl2k m 1 [ D ~ ( y ) l  p dy - 

< g l  lakl 2km 114~llm,p,X~ �9 

It follows from (21) that 

OG 

IID~ p,RL < K1 II~bllm,p,R~ ~ 2kmlakl-%< K2 114~llm,p,R~ �9 
k=0 

Combining this with a similar (trivial) estimate for [I Da Eqbll0,p,R~ _, we obtain 

IlE~bllm,p,R, ~ K3 II~bllm,p,R% 

with K3 - K3 (m, p, n). This completes the proof. II 

5.22 T H E O R E M  Let f2 be a domain in JR n satisfying the uniform C m- 
regularity condition and having a bounded boundary. Then there exists a strong 
m-extension operator E for f2. Moreover, if ot and Y are multi-indices with 
Iyl _< lot] < m, then there exists a linear operator E~• continuous from W j'p (f2) 
into W j'p (~n) for 1 _< j < m - Iotl, 1 _< p < cx~, such that if u ~ W I~I'p (f2), 

then 
D ~ (Eu)(x)  -- ~ E,~• D • u(x). (23) 

I• 
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Proof. Since f2 is uniformly Cm-regular and has a bounded boundary the open 
cover {Uj } of bdry f2 and the corresponding m-smooth maps ~ j  from Uj onto 
B referred to in Paragraph 4.10 are finite collections, say 1 < j < N. Let 

a = {y - (y', y,)  6 IR" "ly'l < 1/2, lYnl < ~/3/2}. Then 

{Y ~ I~n "IYl < 1/2} C Q c B - {y ~ R" �9 lyl < 1}. 

By condition (ii) of Paragraph 4.10 the open sets Vj = ~j(Q) ,  1 < j < N, form 
an open cover of f2~ = {x 6 f2 : dist(x, bdry f2) < 8} for some 8 > 0. There 
exists an open set V0 C f2, bounded away from bdry f2, such that f2 C ~7= 0 Vj. 
By Theorem 3.15 we can find infinitely differentiable functions w0, COl . . . . .  WN 
such that the support of wj is a subset of Vj and }--~7=0 coj (x) - 1 for all x 6 f2. 
(Note that the support of o)0 need not be compact if f2 is unbounded.) 

Since f2 is uniformly Cm-regular it satisfies the segment condition and so restric- 
tions to f2 of functions in C ~  (I~ n ) are dense in W ~'p (S2). If r 6 C ~  (I~ n ), then 

for x ~ f2, 4~ (x) -- Y~-~=0 CJ (x), where Cj - coj. ~. 

For j _> 1 and y E B let ~pj (y) = q~j (qJj (y)). Then lpj E C ~  (Q). We extend ~pj 
to be identically zero outside Q. With E and E~ defined as in Theorem 5.19, we 
have E~pj ~ C~(Q),  E~pj = ~/j on Q+ = {y ~ Q : Yn > 0}, and 

II E ~  II ~,~, ~ -< K1 II ~J II ~,~, ~+ ,  0 _< k _ m, 

where K1 depends on k, m, and p. If Oj(x) = E~pj(*j(x)), then Oj e C~(Vj)  
and Oj (x) = dpj (x) if x E f2. It may be checked by induction that if I~1 _< m, then 

D'~OJ (x) -- E E aj;~(x)[E~(bj;~• . (D• o tPj))]( , j (x)) ,  
Ifl_<lotl I• 

where aj;o~, ~ cm-I~ and bj;,• ~ c m - I ~ l ( n )  depend on the transformations 
(I)j and q/j - -  (I)j -1 and satisfy 

1 i f y  =or  
E aj;o~fl(x)bj.fly(~j(x))= 0 otherwise. 

I/~1_<1~1 

By Theorem 3.41 we have for k < m, 

II 0j I1 ~,~,~ -< K~ II E ~j II ~,~, ~ ~ K, K2 II ~J II ~,~, ~+ -< K3 II ~J II ~,~,~, 

where K3 may be chosen to be independent of j .  The operator ~; defined by 

N 
~:r - 4,o(x) + ~ '  Oj(x) 

j=l 
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clearly satisfies E~b (x) = ~b (x) if x 6 f2, and 

N 

< II 4)0 II/,, p, a + K3 E I I  q~J l[ 1,, p, ~ < K4 (1 + N K3) 11 ~b II 1,, p, ~ ,  
j = l  

(24) 

where 
K4 - -  max max sup I Dacoj (x)l < oc. 

O<j<N Iotl<__m 

Thus E is a strong m-extension operator for f2. Also 

D ~E~b(x) -- E (E~• • 
Izl_<l~l 

where 

N 

E~• - Z E aj .~(x)[E~(bj;~•  . (v . coj) o ~Pj)](*j(x))  
j=l I~l_<lal 

if ol ~: g, and 

N 

j = l  Ir 

We note tha t i fx  E f2, then E,~• -- 0 forc~ 5/= F and E~,~v(x) = v(x).  Clearly 
E~y is a linear operator. By the differentiability properties of aj;,~ and bj;~• E~• 
is continuous on W j'p (f2) into W j'p (It~ '~) for 1 _< j _< m - [otl. This completes 
the proof. | 

5.23 R E M A R K S  

1. If f2 is uniformly Cm-regular for all m, and has a bounded boundary, then 
we can use the total extension operator of Theorem 5.21 in place of that of 
Theorem 5.19 in the above proof to obtain a total extension operator for f2. 

2. The restriction that bdry f2 be bounded was imposed in Theorem 5.22 so 
that the open cover { Vj } would be finite. This finiteness was used in two 
places in the proof, first in asserting the existence of the constant K4, and 
secondly in obtaining the last inequality in (24). This latter use is, however, 
not essential for the proof because (24) could still be obtained from the finite 
intersection property (condition (i) in Paragraph 4.10) even if the cover { Vj } 
were not finite. Theorem 5.22 extends to any suitably regular domain for 
which there exists a partition of unity {0)j } subordinate to { Vj } with Dao)j 
bounded on I~ ~ uniformly in j for any given ol. The reader may find it 
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interesting to construct, by the above techniques, extension operators for 
domains not covered by the above theorems, for example, quadrants, strips, 
rectangular boxes, and smooth images of these. 

3. The previous remark also applies to the Calder6n Extension Theorem 5.28 
given below. Although it is proved by methods quite different from the 
reflection methods used above, the proof still makes use of a partition 
of unity in the same way as does that of Theorem 5.22. Accordingly, 
the above considerations also apply to it. The theorem is proved under 
a strengthened uniform cone condition that reduces to the uniform cone 
condition of Paragraph 4.8 if f2 has a bounded boundary. 

Clearly subsuming the extension theorems obtained above is the following theorem 
of Stein [St]. 

5.24 T H E O R E M  (The Stein Extension Theorem) If f2 is a domain in I~ n 
satisfying the strong local Lipschitz condition, then there exists a total extension 
operator for f2. 

We will provide here only an outline of the proof. The details can be found in 
Chapter 6 of [St]. 

5.25 (Outline of the Proof of the Stein Extension Theorem) . 

1. Let g2e = ~n _ f2 be the open exterior of g2. The function 8(x) = dist(x, f2) 
is Lipschitz continuous on ~2e since 

16(x) - 6(y)l _ Ix - Yl for x, y ~ ~'2e, 

but might not be smooth there. However, there exists a function A in 
C ~ (fZe) and positive constants Cl, c2, and Ca for all multiindices oe such 
that for all x 6 fZe, 

Cl~(X) ~ A(x)  ~ c2~(x), 

I D ~ A ( x ) I _  Cc~(~(x)) 1-1~ 

and 

2. There exists a continuous function ~p on [ 1, cx~) for which 

(a) lim tk~(t) - 0 for k - O, 1, 2 . . . . .  
t----~ oo 

(b) ~ ( t )  d t  = 1 

(c) t k4~(t) = 0 for k = 1, 2 , . . . .  

eIm(e-W(t-1)l/4 ) wherew-e-irc/4, issuchafunction. In fact, 4~ (t) - Jr t 
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3. For the special case f2 -- {(x, y) �9 x 6 I~ n - 1  , y E IR, y > f (x) where f 
satisfies a Lipschitz condition loP(x) - ~P(x')l _< M i x  - x'l ,  there exists a 
constant c such that if (x, y) 6 ~e, then 4)(x) - y _< cA (x, y). 

4. For f2 as specified in 3, A* (x, y) -- 2cA(x,  y), and u 6 C ~ ( R  n), the 
operator E defined by 

u(x ,  y) 

E ( u ) ( x ,  y) -- f~ u(x, y + tA*(x, y ) ) r  

if y > f ( x )  

i f y  < f ( x )  

satisfies, for every m > 0 and 1 < p < ec, 

IIE(u)llm,p,R. ~ K Ilullm,p,~, (25) 

where K = K (m, p, n, M). Since f2 satisfies the strong local Lipschitz 
condition it also satisfies the segment condition and so, by Theorem 3.22 
the restrictions to f2 of functions in C ~  (R") are dense in W m'p (~"2) and so 
(25) holds for all u ~ W m'p (~"2). Thus Stein's theorem holds for this f2. 

5. The case of general f2 satisfying the strong local Lipschitz condition now 
follows via a partition of unity subordinate to an open cover of bdry ~ by 
open sets in each of which (a rotated version of) the special case 4 can be 
applied. 1 

5.26 The proof of the Calder6n extension theorem is based on a special case, 
suitable for our purposes, of a well-known inequality of Calder6n and Zygmund 
[CZ] for convolutions involving kernels with nonintegrable singularities. The 
proof of this inequality is rather lengthy and can be found in many sources (e.g. 
Stein and Weiss [SW]). It will be omitted here. Neither the inequality nor the 
extension theorem itself will be required hereafter in this monograph. 

Let BR = {x E R n : Ixl _< R}, let ER = {x ~ IR" : Ixl = R}, and let dcrR be the 
area element (Lebesgue (n - 1)-volume element) on Ng. A function g is said to 
be homogeneous  o fdegree  # on BR - {0} if g ( t x )  = tUg(x)  for all x E BR - {0} 
and 0 < t < 1. 

m 

5.27 THEOREM (The Calder6n Zygmund Inequality) Let 

g(x )  -- G(x)lxl -n, 

where 

(i) G is bounded on I~ n - {0} and has compact support, 

(ii) G is homogeneous of degree 0 on BR -- {0} for some R > 0, and 

(iii) fzR G ( x )  daR -- O. 
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If 1 < p < c~ and u 6 LP (I~"), then the principal-value convolution integral 

s 
�9 g ( x )  = lim / u(x  - y ) g ( y ) d y  U 

~----~0-}- JR  n-B e 

exists for almost all x 6/~n, and there exists a constant K = K (G, p) such that 
for all such u 

Ilu �9 gllp <_ K Ilullp. 

Conversely, if G satisfies (i) and (ii) and if u �9 g exists for all u 6 C ~  (I~ n), then 
G satisfies (iii). 

5.28 T H E O R E M  (The Calder6n Extension Theorem) Let f2 be a domain 
in ]~n satisfying the uniform cone condition (Paragraph 4.8) modified as follows" 

(i) the open cover { Uj } of bdry f2 is required to be finite, and 

(ii) the sets Uj are not required to be bounded. 

Then for any m ~ { 1, 2 . . . .  } and any p satisfying 1 < p < ~ ,  there exists a 
simple (m, p)-extension operator E = E ( m ,  p)  for f2. 

Proof. Let {U1 . . . . .  UN} be the open cover of bdry f2 given by the uniform 
cone condition, and let U0 be an open subset of f2 bounded away from bdry f2 
such that ~ C [,.ff=o Uj. (Such a U0 exists by condition (ii) of Paragraph 4.8.) 
Let coo, Wl . . . . .  Wg be a C ~ partition of unity for f2 with supp (co)j C Uj. 

For 1 _< j < N we shall define operators Ej so that if u ~ W m'p (f2), then 
Ej u ~ W m' p (I~" ) and satisfies 

Eju  -- u in Uj N f l ,  
II Ilm, ,R, -< K m , p , j  IlU Ilm,p,f2. 

The desired extension operator is then clearly given by 

N 

=o)ou +  ojEju. E u  
j= l  

We shall write x 6 I1~ n in the polar coordinate form x - p a  where p >_ 0 and a 
is a unit vector. Let Cj, the the cone associated with Uj in the description of the 
uniform cone condition, have vertex at O. Let Cj be a nontrivial function defined 
in ~n _ {0} satisfying 

(i) Cj(x) > 0 for all x --# O, 

(ii) supp (r C - C j  U {0}, 

(iii) Cj ~ C~(II~ n - {0}), and 
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(iv) for some e > 0, 4~j is homogeneous  of degree m - n in B, - {0}. 

Now p,,-14~j is homogeneous  of degree m - 1 > 0 on B~ - {0} and so the function 
7tj(x) -- (O/Op)m(p"-l~j(x))  vanishes on B, - {0}. Hence gg, extended to be 

zero at x - 0, belongs to C ~  ( - C j ) .  Define 

E j u ( y ) -  Kj ( - 1 )  m dpj(pa)pn_ 1 0 -~p ~(y - pa)  dp da  

/ fo ) - grj(pa)fi(y - pa)  dp da  (26) 

where fi is the zero extension of u outside f2 and where the constant Kj will 
be determined shortly. If y E Uj D f2, then, assuming for the moment  that 
u E C~( f2 ) ,  we have, for pa  E supp (4~j), by condition (iii) of Paragraph 4.8, that 

(y - pa)  = u (y - pa)  is infinitely differentiable. Now integration by parts m 
times yields 

(_l)m pn-~ej(p~) ~ .(y -- p,,) dp 

m-1 ( 0 )k (_ff_~) 
__ Z ( _ _  1)m-k (pn-1 a 

m-k-1 

+ c~ 0 (pn-l~j(po'))u(y -- pa)  dp 

-- (0--~) m-1 

u (y -- pa  ) [[ P=~ 

I p=0 

f0 ~ 
(y) + 7rj(pa)u(y pa)  dp (pn-lqbj(pcr))lp=OU -- . 

Hence 

r E ( O )  m-1 E j u ( y ) -  Kju(y)  -~p -1 do. (pn qbj(pcr))lp= 0 

Since (O/Op) m-1 (pn- l~ j (p f f ) )  is homogeneous  of degree zero near 0, the above 

integral does not vanish if 4~j is not identically zero. Hence K; can be chosen so 
that Eju(y)  = u(y) for y E Uj A f2 and all u E C~(f2) .  Since C~( f2 )  is dense 
in W m'p (~ )  we have Eju(y)  = u(y) a.e. in Uj n f2 for every u E W m'p (~~). The 
same argument shows that if fi E W m'p (I~ n), then Eju(y)  = fi(y) a.e. in IR n . 

It remains, therefore, to show that 

II O Eju Ilu [[m,p,g2 

holds for any ot with I~l ~ m and all u E C ~ (f2) A W m,p (~'~). The last integral in 
(26) is o f t h e  form 0j �9 5(y) ,  where Oj(x) - ~j(x)lx[ 1-n. Since Oj E LI(]~ n) and 
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has compact support, we obtain via Young's inequality for convolution (Corollary 
2.25), 

[[ o~(oj  * ~) []0,p,R~ - {[o, �9 (bVu) _< ][oj [10,1,R~ [[O~ullo,p,a. 

It now remains to be shown that the first integral in (26) defines a bounded map 
from W m'p (~2) into W m'p ( R  n ). Since (O/Op) m = )--~1~1=-, (m !/ot!)cr '~ D ~ we obtain 

~j(po.)pn_ 1 O fi(y - p a )  dp d o  

m! fR 

lul=m 

where ~ = (-1) l~l(m!/ot!)~4~j  is homogeneous of degree m - n in B~ - {0} 
and belongs to C~(I~ ~ - {0}). It is now clearly sufficient to show that for any r 
satisfying Ir _< m 

[[ D t~ ( ~  �9 v)[[0,p,i, < g~,/~ Ilvll0,p,i, �9 (27) 

If 1/31 < m -  1, then D / ~  is homogeneous ofdegree not exceeding 1 - n  in Be -{0} 
and so belongs to L I(N n). Inequality (27) now follows by Young's inequality for 
convolution. Thus we need consider only the case [fll -- m, in which we write 
D ~ = (O/qoxi )D y for some i, 1 _< i < n, and some ~, with IV] = m - 1. Suppose, 
for the moment,  that v ~ C ~  (I~ n). Then we may write 

D ~ ( ~  �9 v)(x)  = ( D •  �9 v (x) -- Div(x  - y)D• 
n 

= lim f Div (x  - y ) D •  dy.  
6--+0+ JRn-Bs 

We now integrate by parts in the last integral to free v and obtain D ~ ~ under the 
integral. The integrated term is a surface integral over the spherical boundary Es 
of Bs of the product of v(x - .) and a function homogeneous of degree 1 - n near 
zero. This surface integral must therefore tend to K v ( x )  as 6 --+ 0+,  for some 
constant K. Noting that Div(x  - y) -- - (O /Oy i ) v (x  - y), we now have 

D ~ ( ~  �9 v)(x)  = lim f v(x - y ) D ~ , ~ ( y ) d y  4- K v ( x ) .  
&-~O+ JR" 

Now D / ~  is homogeneous of degree - n  near the origin and so, by the last 
assertion of Theorem 5.27, D r ~ satisfies all the conditions for the singular kernel 
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g of that theorem. Since 1 < p < ~ ,  we have for any v ~ L p (~) (regarded as 
being identically zero outside S2) 

�9 l)[[0,p,~n ~ gol,fl I l v l l 0 , p , R ~  �9 

This completes the proof. | 

As observed in the proof of the above theorem, the Calder6n extension of a function 
bl E W m'p (~2) coincides with the zero extension/~ of u if fi belongs to W m'p (]~n). 
The following theorem (which could have been proved in Chapter 3) shows that 
in this case u must belong to W o  'p (~ ) .  

5.29 T H E O R E M  (Characterization of W o ' P ( I 2 )  by Exterior Extension) 
Let S2 have the segment property. Then a function u on f2 belongs to W o  'p (f2) if 
and only if the zero extension fi of u belongs to W m'p (Rn). 

Proof. Lemma 3.27 shows, with no hypotheses on f2, that if u E W o  'p (f2), then 
bt E wm'p(Rn) .  

Conversely, suppose that f2 has the segment property and that fi E W m'p (]~n). 
Proceed as in the proof of Theorem 3.22, first multiplying u by a suitable smooth 
cutoff function f ,  to approximate u in W m'p (~'~) by a function in that space with a 
bounded support. Replace u by that approximation; then fi is replaced by f,  fi, and 
so still belongs to W m'p (]~n). NOW split this u into finitely-many pieces uj, where 
0 <_ i _< k, with uj supported in a set Vj and the union of the sets Vj covering the 
support of u. In the context of that theorem, u0 already belongs to W o  'p (S2). 

For the other values of j ,  use a translate uj,t of ~j mapping x to ~j (x - ty)  rather 
than to ~j (x + ty)  as we did in the proof of Theorem 3.22. For small enough 
positive values of t, using x - ty shifts the support of ~j strictly inside the domain 
S2. Then uj,t belongs to W m'p (R n) since ~j does. Since uj,t vanishes outside a 
compact subset of f2, the restriction of uj,t to ~2 belongs to W o  'p (f2). As t --+ 0+, 
these restrictions converge to uj in wm'P(~) .  Thus each piece uj belongs to 
W o'  P (f2), and so does u. | 

5.30 There is a close connection between the existence of extension operators and 
imbeddings into spaces of H61der continuous functions. For example, it is shown 
in [Ko] that the imbedding W m'p (~'2) -"+ C O'l-(n/p) (~) implies the existence of a 
simple (1, q)-extension operator for f2 provided q > p. 

A short survey of extension theorems for Sobolev spaces can be found in [Bu2]. 

An Approximation Theorem 

5.31 (The Approximation Property) The following question is involved in 
the matter of interpolation of Sobolev spaces on order of smoothness that will play 
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a central role in the development of Besov spaces and Sobolev spaces of fractional 
order in Chapter 7: 

If 0 < k < m does there exist a constant C such that for every u 6 W k' P (g2) 
and every sufficiently small E there exists u,  E W m'p (~'2) satisfying 

Ilu- u+llp ~ CE k Ilullk,p, and Ilu+ II,n,p ~ c~-k-m Ilu IIk, pg. 

If the answer is "yes," we will say that the domain g2 has the approximat ion  

property .  Combined with the interpolation Theorem 5.2, this property will show 
that W k'p (f2) is suitably intermediate between L p (~) and W m'p (~"2) for purposes 
of interpolation. In Theorem 5.33 we prove that R" itself has the approximation 
property. It will therefore follow that any domain ~2 admitting a total extension 
operator will have the approximation property for any choice of k and m with 
0 < k < m. In particular, therefore, a domain satisfying the strong local Lipschitz 
condition has the approximation property. 

There are domains with the approximation property that do not satisfy the strong 
local Lipschitz condition. The approximation property does not prevent a domain 
from lying on both sides of a boundary hypersurface. In [AF4] the authors obtain 
the property under the assumption that f2 satisfies the "smooth cone condition" 
which is essentially a cone condition with the added restriction that the cone must 
vary smoothly from point to point. Our proof of Theorem 5.33 is a simplified 
version of the proof in [AF4]. 

We begin by stating an elementary lemma. 

5.32 LEMMA If u ~ L p (I~ n) and B~ (x) is the ball of radius E about x, then 

[u(y)l dy  d x  < K p e np [[u[[ p - -  p , R  n , 

n +(x) 

where Kn is the volume of the unit ball B1 (0). 

Proof. The proof is immediate using H61der's inequality and a change or order 
of integration. | 

5.33 THEOREM (An Approximation Theorem for I~ ~) If 0 < k < m, 
there exists a constant C such that for u ~ W k'p (I~ n) and 0 < E < 1 there exists 
u, in C ~ (R n) such that the following seminorm inequalities hold: 

Ilu - u+ lip <_ CE ~ lulk,p, and 

< / C Ilu Ilk,p if j < k - 1 
lu+ Ij,p 

- I C E  k-jlulk,p i f j > k .  

In particular, I~ " has the approximation property. 
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Proof .  It is sufficient to establish the inequalities for u E C ~  (R n) which is dense 
in W k'p (R ~ ). We apply Taylor 's  formula  

k-1 1 
f (1) -- ~ f(J)(0) + ?. 1 f01 ( k -  1)! (1 - t)k-lf(k)(t)dt 

to the function f ( t)  -- u(tx + (1 - t)y) to obtain 

u(x) = 1 D~u(y)( x y)~ __ m 
Iotl_<k-1 

k f01 + ~ ~--~.v (x - y)~ (1 - t) k - 1 0 ~ u ( t x  + (1 - t)y)dt. 
I~l-k 

Now let 4~ 6 C ~ ( B I ( 0 ) )  satisfy 0 _< ~b(x) _< K0 for all x and fRn~(x)dx = 1. 
We mult iply the above Taylor formula  by e -n ~b ((x - y ) / e )  and integrate y over 

I~ n to obtain u (x) = u ~ (x) + R (x) where  

u~(x)=e_n Z 1 fR ( x - y )  
loci_ <k-1 -~. ~ dp e (x -- y)~D~u(y) dy 

R(x) _ e_n ~l k fR ( x - y )  )~ I = ~ n ~ E ( x - y  dy 

f0 
1 

• (1 - t) k - 1 D ~ u ( t x  + (1 - t)y)dt. 

We can estimate lu(x) - u , (x ) l  = IR(x)l by reversing the order  of  the double  

integral, substituting z = tx + (1 - t)y (so that z - x = (1 - t)(y - x) and 
dz = (1 - t) n dy), and reversing the order of  integration again: 

lu(x)-u~(x)l  ~ Ko ~ LE---n fo 1 fB I~1 =k Ot I (1 --  t) -1-n dt 
�9 ~(1- t )  ( x )  

z k E - n f B  ko~ fo 1-lz-xl/~ < K0 - -  Ix - zl I u(z)l dz 
i~l= k Or! ~(x) 

go ~ ~E-n f IX--zl~lO~u(z)ldz < 
i~1= k ot ! JR, (x) 

z k ,k-n  fB D ~ < K0 m I u(z) l dz. 
I~l--k Ot ! r (x) 

Ix-zl~lD~u(z)ldz 

(1 -- t) -n-1 dt 
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Estimating the L P-norm of the last integral above by the previous lemma, we 
obtain 

I l u ( x ) -  u~(x)llp < go Z kEk IlD'~ullp <-- CEk lulk,p �9 
I~l--k 

On the other hand, we have 

u ' ( x )  - -  " - n  ~ qb ( x - y Pk_l(U; x, y)dy, 

where 
J 

Pj(u; x, y) -- Z T/(u; x, y), 
i=0 

~l~j I D a  Tj(u; x, y) = --- u(y)(x - y)~. 

It is readily verified that 

0 . I Tj-I(Diu; x, y) if j > 0 
/ OXi Tj (lg, x, y) 0 if j = 0 

0 Pi Y)-- IPJ-l(Diu;x'Y) i f j  > 0  
OXi " (u ;x '  t 0 i f j  = 0  

0 ~Pj(u; x, y) = Tj(Diu; x, y) for j > O. Oy~ 

(xy) (xy) 
Since ~x/~b e - Oy---~ch , integration by parts gives 

DiUE(X) " n c]) ( x - y Pk_z(Diu; x, y) dy 

fR ( x - - Y )  Tk-l (Diu; x' y) dy" 
+ ~ E n 

By induction, if Ir - j -< k, 

D~U~(X)=E-nfRn4~( x-y)~ Pk-l-j(D~u;x'y)dy 

When j = k the sums Pk- l - j  are empty, leaving only the second line above, 
which becomes 

k~-nfiRndP( x-y)E T~ dy-ke-nfIR, d P ( x - Y )  D~u(y) 
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Write any multi-index 9/with l yl > k in the form fl + 6 with Ifll = k to get that 

D• - ke-n-I~l fR~ D~dp (x  - Y) D~u(y)dy 

in these cases. Apply the previous lemma to the various terms above to get that 

lu~lj,p < { C Ilullp 

- CE k-j lulk,p 

i f j < k - 1  

i f j > k .  

In deriving this when j < k, expand the (nonempty) s u m s  ek-l-j to see that 

] ID/3u~(x)l <_ Koe -n f IT/(D~u; Y)I + jlTk-j(D~u; Y)I dy. 
JB (x) k i=0 

This completes the proof. | 

Boundary Traces 

5.34 Of importance in the study of boundary value problems for differential 
operators defined on a domain f2 is the determination of spaces of functions 
defined on the boundary of f2 that contain the traces u lba~y ~ of functions u in 

wm'P(~"2). For example, if wm'P(~'2) -+ C~ then c l e a r l y  btlbdry~2 belongs to 

C(bdry f2). We outline below an Lq-imbedding result for such traces which can be 
obtained for domains with suitably smooth boundaries as a corollary of Theorem 
4.12 via the use of an extension operator. 

The more interesting problem of characterizing the image of W m'p (f2) under the 
mapping u -+ u [bdry f2 will be dealt with in Chapter 7. See, in particular, Theorem 
7.39. The characterization is in terms of Besov spaces which are generalized 
Sobolev spaces of fractional order. 

5.35 Let f2 be a domain in R n satisfying the uniform Cm-regularity condition of 
Paragraph 4.10. Thus there exists a locally finite open cover { Uj } of bdry f2, and 
corresponding m-smooth transformations ~j  mapping B = {y 6 R n : [y[ < 1} 
onto Uj such that Uj A bdry f2 = tPj(Bo), where B0 = {y 6 B : yn = 0}. If f is 
a function having support in Uj, we may define the integral of f over bdry f2 via 

fb f (x) da -- fuj 
dry f2 O bdry f2 

f (x) da -- ~ f o tpj(y', O) Jj(y') dy', 
o 
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where do" is the (n - 1)-volume element on bdry f2, y' - -  ( Y l  . . . . .  Yn-1),  and, if 
x = ~Pj(y), then 

jj(y,)_ [~(O(xl ..... ~k,...,Xn))2] 1/e 
k : l  0-(;1 . . . . .  Y,,-i) 

Yn --0 

If f is an arbitrary function defined on IR", we may set 

fbdry f2 f ( x ) d a = ~ j f b ,  dry ~ f ( x ) v j ( x ) d a ,  

where { vj } is a partition of unity for bdry fl subordinate to { Uj }. 

5.36 THEOREM (A Boundary Trace Imbedding Theorem) Let f2 be a 
domain in R n satisfying the uniform Cm-regularity condition, and suppose there 
exists a simple (m, p)-extension operator E for f2. Also suppose that m p  < n and 
p <_ q <_ p* = (n - 1 ) p / ( n  - rap).  Then 

W m'p (~'2) ----> L q (bdry f2). (28) 

If m p  = n, then imbedding (28) holds for p < q < ec. 

Proof. Imbedding (28) should be interpreted in the following sense. If 
u ~ W m'p (f2), then E u has a trace on bdry f2 in the sense described in Para- 
graph 4.2, and IlEullo,q,bdrya < K [lullm,p,a with K independent of u. Note that 
since Co(R n) is dense in W m'p (~'2), IIEUllo,q,bdrya is independent of the particular 
extension operator E used. 

We prove the special case m p  < n, q = p* = (n - 1 ) p / ( n  - m p )  of the theorem; 
the other cases are similar. We use the notations of the previous Paragraph. 

There is a constant K1 such that for every u ~ W m'p (~"2), 

[[Eullm,p,R, ~ K1 [[ullm,p,~. 

By the uniform Cm-regularity condition (see Paragraph 4.10) there exists a constant 
K2 such that for each j and every y 6 B we have x -- ~ j  (y)  ~ Uj, 

I Jj (y')l < K2, and 
O(yl . . . . .  Yn) 

O(xl . . . . .  Xn) 
__< K2. 

Noting that 0 < v j ( x )  < 1 on IR n, and using imbedding (4) of Theorem 4.12 
applied over B, we have, for u ~ W m'p (f2),  
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< K2 I[guo %ll q -- O,q ,Bo 
J 

--< g3 Z(llEu~ 
J 

(~i )q/P 
< K4 ]1Eu []Pm,p,Uj 

< K4R II Eu II q m,p,R n 
< K5 Ilu[Iq p,~. 

The second last inequality above makes use of the finite intersection property 
possessed by the cover {U j}. The constant K4 is independent of j because 
I D '~ qJj,i (Y)I < const for all i, j ,  where qJj - (qJj, 1 . . . . .  qJj,n). This completes the 

proof. | 

Finally, we show that functions in W m'p (~) belong to W o  'p (~)  if and only if they 

have suitably trivial boundary traces. 

5.37 T H E O R E M  (Trivial Traces) Under the same hypotheses as Theorem 
5.36, a function u in W m'p (~) belongs to W o  'p (f2) if and only the boundary traces 
of its derivatives of order less than m all coincide with the 0-function. 

Proof.  Every function in C ~  (f2) has trivial boundary trace, and so do all deriva- 
tives of such functions. Since the trace mapping is a continuous linear operator 
from W m'p (~) to W m-l'p (bdry f2), all functions in W o  'p (f2) have trivial boundary 
traces, and so do their derivatives of order less than m. 

To prove the converse, we suppose that u ~ W m'p (~) and that u and its deriva- 
tives or order less than m have trivial boundary traces. Localization and a suit- 
able change of variables reduces matters to the case where S2 is the half-space 
{x ~ R n �9 xn > 0}. We then show that the zero-extension fi must belong to 
wm,p (~n), forcing u to belong to W o  'p (f2) by Theorem 5.29. 

In fact, we claim that if u E W m'p (f2) has trivial boundary traces for u and its 
derivatives of order less than m, then the distributional derivatives D ~ fi of order 
at most m coincide with the zero-extensions D ~ u. To verify this, approximate the 

integrals 

and (-1)l~l  fiR (29) 

by approximating u with functions vj in C~(f2) ,  without requiring that these 

approximations have trivial traces. 

Let en be the unit vector (0 . . . . .  0, 1). Since vj ~ C ~ (~2), integrating by parts 
with respect to the other variables and then with respect to Xn shows that the 
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difference between the integrals 

s VJ(X)Da~(x) dx and (-1)1~1 fR~ O~'"~D(x)qb(x) dx 

is a finite alternating sum of integrals of the form 

fR D~ . . . . .  Xn-1, 0 ) D k - l t ~ ( X l  . . . . .  Xn-1, 0)dxl " ' "  dxn-1 
n--1 

(30) 

with k > 0. Choose the sequence {vj } to converge to u in W m'p (~'~). For each 
multi-index/3 with/3 < or, the trace of D~vj will converge in L p ( R  n - 1  ) t o  the 
trace of D~u, that is to 0 in that space. Since the restriction of Dnk-l~b to R n-1 
belongs to L p' (~n-1), each of the integrals in (30) tends to 0 as j --+ cx~. 

It follows that the two integrals in (29) are equal, and that fi 6 W m'p (~n). This 
completes the proof. | 



6 
COMPACT IMBEDDINGS 
OF SOBOLEV SPACES 

The Rellich-Kondrachov Theorem 

6.1 (Restricted Imbeddings) Let f2 be a domain in R n and let f20 be a 
subdomain of f2. Let X (f2) denote any of the possible target spaces for imbeddings 
of W m'p (~"2), that is, X (f2) is a space of the form C~ (~2), CJ (~),  C j'z (~),  L q (ff2k), 

or W J'q (f2k), where f2~, 1 < k < n, is the intersection of S2 with a k-dimensional 
plane in R n . Since the linear restriction operator i~ o �9 u --+ ul~ ~ is bounded from 
X(f2) into X(S20) (in fact IIi~0u; X(S20)ll _ Ilu; X(f2)ll) any imbedding of the 
form 

W m'p (~"2) ~ S (~'2) (1) 

can be composed with this restriction to yield the imbedding 

W m'p (f2) --+ X (f2o) (2) 

and (2) has imbedding constant no larger than (1). 

6.2 (Compact  Imbeddings) Recall that a set A in a normed space is precompact 
if every sequence of points in A has a subsequence converging in norm to an el- 
ement of the space. An operator between normed spaces is called compact if it 
maps bounded sets into precompact sets, and is called completely continuous if it 
is continuous and compact. (See Paragraph 1.24; for linear operators compactness 
and complete continuity are equivalent.) In this chapter we are concerned with the 
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compactness of imbedding operators which are continuous whenever they exist, 
and so are completely continuous whenever they are compact. 

If g2 satisfies the hypotheses of the Sobolev imbedding Theorem 4.12 and if f20 is 
a bounded subset of ~2, then, with the exception of certain extreme cases, all the 
restricted imbeddings (1) corresponding to imbeddings asserted in Theorem 4.12 
are compact. The most important of these compact imbedding results originated 
in a lemma of Rellich [Re] and was proved specifically for Sobolev spaces by 
Kondrachov [K]. Such compact imbeddings have many important applications in 
analysis, especially to showing that linear elliptic partial differential equations 
defined over bounded domains have discrete spectra. See, for example, [EE] and 
[ET] for such applications and further refinements. 

We summarize the various compact imbeddings of W m'p (~"2) in the following 
theorem 

6.3 THEOREM (The R e l l i c h - K o n d r a c h o v  T h e o r e m )  Let f2 be a domain 
in ~n, let f20 be a bounded subdomain of f2, and let f2ko be the intersection of 
f20 with a k-dimensional plane in I~ n . Let j > 0 and m _> 1 be integers, and let 
1 < p < c ~ .  

PART I If f2 satisfies the cone condition and m p  < n,  then the following 
imbeddings are compact: 

W jTm'p (~ '2)~  W j'q (~2 k) 

W j+m'p (~"2)--~ W j'q (~'2 k) 

if O < n - m p  < k < n and  

1 <_ q < k p / ( n  - m p ) ,  (3) 

if n - - m p ,  1 < k < n and  

1 < q < o0. (4) 

PART II If f2 satisfies the cone condition and m p  > n, then the following 
imbeddings are compact: 

W j+m'p (~'2) ---~ CJ(~'~O) 

W jTm'p (a )  ~ W j'q (~"2 k) 
(5) 

if 1 < q < cx~. (6) 

PART III If f2 satisfies the strong local Lipschitz condition, then the following 
imbeddings are compact: 

W j+m'p (~"2) ~ C j (~20) if m p  > m ,  (7) 

W j+m'p (~"2) ~ cJ '~(~2o)  if m p  > n > ( m -  1)p and 

0 < Z < m - ( n / p ) .  (8) 

PART IV If f2 is an arbitrary domain in En, the imbeddings (3)-(8) are compact 
wJ+m,P provided W j+m'p (~) is replaced by "0 (f2). 
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6.4 REMARKS 

1. Note that if f~ is bounded, we may have ~o = ~ in the statement of the 
theorem. 

2. If X, Y, and Z are spaces for which we have the imbeddings X -+ Y and 
Y --+ Z, and if one of these imbeddings is compact, then the composite 
imbedding X -+ Z is compact. Thus, for example, if Y -+ Z is compact, 
then any sequence {u j} bounded in X will be bounded in Y and will 
therefore have a subsequence {u~ } convergent in Z. 

3. Since the extension operator u -+ fi, where ~ ( x )  = u ( x )  if x 6 ~ and 
, U7 j+m'p wJ+m,p fi(x) = 0 if x ~( f2 defines an imbedding ,, 0 (f2) --+ ( ~ )  

by Lemma 3.27, Part IV of Theorem 6.3 follows from application of Parts 
I-III to ~n. 

4. In proving the compactness of any of the imbeddings (3)-(8) it is sufficient 
to consider only the case j = 0. Suppose, for example, that (3) has been 
proven compact if j - 0. For j >_ 1 and {u i} a bounded sequence in 
W j+m'p (~"~) it is clear that {D~ is bounded in wm'p(~"~) for each ot such 
that ]ot] < j .  Hence {Daui is precompact in L q (ff2~) with q specified as 

in (3). It is possible, therefore, to select (by finite induction) a subsequence 
{ u'~} of { u i} for which { D ~ u'~ ] a~ ~ } converges in Lq (f2~) for each ot such that 

Iotl < j .  Thus {u' i [a~} converges in WJo 'q (f2~) and (3) is compact. 

5. Since f20 is bounded, C~ --+ Lq( f2~)  for 1 < q _< oo; in fact 
llull0,q,a~ ~ _< Ilu" C~ Thus the compactness of (6) (for 
j = 0) follows from that of (5). 

6. For the purpose of proving Theorem 6.3 the bounded subdomain f20 of if2 
may be assumed to satisfy the cone condition in f2 does. If C is a finite cone 
determining the cone condition for f2, let (2 be the union of all finite cones 
congruent to C, contained in f2 and having nonempty intersection with f20. 
Then f20 C (2 C f2 and (2 is bounded and satisfies the cone condition. 
If W m'p (f2) ---> X (('z) is compact, then so is W m,p (f2) --+ X (f2o) by 
restriction. 

6.5 (Proof of Theorem 6.3, Part III) If m p  > n >_ (m - 1)p and if 
0 < ~ < m - ( n / p ) ,  then there exists # such that )~ < # < m - ( n / p ) .  Since 
f20 is bounded, the imbedding C~ -+ C~ is compact by Theorem 
1.34. Since w m ' p ( f 2 )  --+ C~ -+ C~ by Theorem 4.12 and restriction, 
imbedding (8) is compact for j - 0 by Remark 6.4(2). 

If m p  > n, let j* be the nonnegative integer satisfying the inequalities 
( m -  j * ) p  > n >_ ( m -  j * -  1)p. Then we have the imbedding chain 

W m,p (~~) ---+ wm- j* ,p  (~"~) -----> C~ ) --.-> C(~'~0) (9) 
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where 0 < lz < m - j *  - ( n / p ) .  The last imbedding in (9) is compact by Theorem 
1.34. Thus (7) is compact for j -- 0. | 

6.6 (Proof of Theorem 6.3, Part II) As noted in Remark 6.4(6), f20 may be 
assumed to satisfy the cone condition. Since f2o is bounded it can, by Lemma 4.22 
be written as a finite union, f20 = U k : l  ~'2k, where each f2k satisfies the strong 
local Lipschitz condition. If m p  > n, then 

wm,p (~'2) --.+ wm,P (~'2k) ----> C(~"2k), 

the latter imbedding being compact as proved above. If {ui} is a sequence bounded 
in wm'p(~"g), we may select by finite induction on k a subsequence {ul} whose 
restriction to f2k converges in C(f2~) for each k, 1 < k _< M. But this subsequence 
then converges in C o (f20), so proving that (5) is compact for j = 0. Therefore 
(6) is also compact by Remark 6.4(5). | 

6.7 L E M M A  Let f2 be a domain in/t~ n, f2o a subdomain of f2, and ftko the 
intersection of f20 with ak-dimensionalplanein/t~ n (1 _< k _< n). Let 1 _< ql < q0 
and suppose that 

and 

If q l _< q < q0, then 

wm,p(~'2) ~ t q~ (~'2 k) 

wm,p(~"2) ~ t ql (~'2 k) compactly. 

wm,p(~"2) ~ L q (~'2ko) compactly. 

Proof. Let ~ - -  q l  (qo - q ) / q ( q o  - ql) and/z = q o ( q  - q l ) / q ( q o  - ql). Then 
)~ > 0 and # > 0. By H61der's inequality there exists a constant K such that for 
all u ~ W m,p (~"2), 

Ilu IIo,q,~ o -< Ilu IIo,q,,~o Ilull 0,qo,K2k ~ _< g Ilu IIo,q, ,~o~ Ilu II~m'p' ~ 

A sequence bounded in W m,p (~"2) has a subsequence which converges in L q' ( ~ k )  

and is therefore a Cauchy sequence in that space. Applying the inequality above to 
differences between terms of this sequence shows that it is also a Cauchy sequence 
in L q (~k), SO the imbedding of W m'p (~2) into L q (~k) is compact�9 | 

6.8 (Proof of Theorem 6.3, Part I) First we deal with (the case j -- 0 of) 
imbedding (3). Assume for the moment that k - n and let qo - n p / ( n  - m p ) .  In 
order to prove that the imbedding 

wm'p(~'2) ~ L q ( f 2 o ) ,  1 < q < q0, (10) 
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is compact, it sufficed, by Lemma 6.7, to do so only for q = 1. For j = 1, 2, 3 . . . .  
let 

~'2j ~--- {X E ~ " dist(x, bdryf2) > 2 / j } .  

Let S be a set of functions bounded in W m'p (~'2). We show that S (when restricted 
to f20) is precompact in L l(~20) by showing that S satisfies the conditions of 
Theorem 2.32. Accordingly, let E > 0 be given and for each u E W m'p (~"2) set 

u(x) i f x E f 2 0  
5 (x) = 0 otherwise. 

By H61der's inequality and since W m,p (~"~) ---+ L q~ (~0),  we have 

fa lu(x)l d x  lu(x)l  q~ d x  <_ 
0 - -  ~'~j 0 - -  ~'~j 0 - -  ~'~j 

<_ KI Ilullm,p,a [vol(f20 - ~.~j)]l-l/qo 

1 dx) l-l/q0 

with K1 independent of u. Since q0 > 1 and f20 has finite volume, j may be 
selected large enough to ensure that for every u E S, 

fa < E lu(x)l d x  

and also, for every h E R n , 

f ~  E Ifi(x + h) - 5(x)[ d x  < - .  
o-aj 2 

Now if Ihl < 1 / j ,  then x + th E ~"~2j provided x E f2j and O _< t _< 1. If 
u E C ~ (f2), it follows that 

fK2j ] ~ i f o  l d  lu(x + h) - u(x)l dx  <_ d x  - ~ u ( x  + th)  d t  

fol/  _< Ihl dt  [gradu(y)l dy  
2j 

Ihl Iluill,i,~o ~ K21hl Ilullm,p,~, 

where K2 is independent of u. Since C ~ (f2) is dense in W m,p (~"~), this estimate 
holds for any u E W m'p (~'~). Hence if Ihl is sufficiently small, we have 

f l~(x + h) - fi(x)[ d x  < e. 
o 
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Hence S is precompact  in L 1 (S20) by Theorem 2.32 and imbedding (10) is compact.  

Next  suppose that k < n and p > 1. The Sobolev Imbedding Theorem 4.12 
assures us that wm'P(~"2) ~ LkP/(n-mp)(~'2k). For any q < k p / ( n  - m p )  we can 

c h o o s e r  suchthat  1 < r < p , n - m r  < k, a n d q  < k r / ( n - m r )  < k p / ( n - m p ) .  

Since g20 is bounded,  the imbeddings 

wm,p(~'2) ~ W m,p (~'2o) ~ W m,r (~'2o) 

exist. By Theorem 5.10 we have 

k < K111Ullkr/(n_mr),S2~o Ilullq,~ 0 _ 
1-0 0 

_< K2 Ilu I[nr/(n-mr),~o Ilu IIm,r, f20 

< K3 Ilull 1-~ Ilull ~ -- nr/(n-mr),~2o m,p,f2 ' 

where Kj and 0 are constants ( independent  of  u 6 wm'p(~'2))  and 0 satisfies 
0 < 0 < 1. S i n c e n r / ( n - m r )  < n p / ( n - m p ) , a s e q u e n c e b o u n d e d i n  wm'P(~'2) 

must  have a subsequence convergent  in t nr/(n-mr) (~"20) by the earlier part of  this 
proof. That sequence is therefore a Cauchy sequence in L nr/(n-mr) (~'20), and by the 
above inequality it is therefore a Cauchy sequence in L q (~k),  SO the imbedding 
W m'p (~"2) ---> L q (~k)  is compact  and so is W m'p (~"2) --> L 1 (~"2ko). 

I f p  = 1 a n d 0  < n - m  < k < n, then necessa r i lym > 2. Composing  the 
continuous imbedding W m'l (~'2) ~ W m- l ' r  (~"2), where r = n / ( n  - 1) > 1, 
with the compact  imbedding W m- l ' r  (~ )  ~ L l (~k) ,  (which is compact  because 

k > n - (m - 1) > n - (m - 1)r), completes the p r o o f o f  the compactness  of (3). 

To prove that imbedding (4) is compact  we proceed as follows. If n = m p ,  p > 1, 
a n d l  < q  < cx~, then we may select r so that l < r  < p , k > n - m r  > 0 ,  and 
k r / ( n  - m r )  > q. Assuming again that f20 satisfies the cone condition, we have 

W m'p (~"2) ----> W m'r (~'2o) ~ L q (~ko). 

The latter imbedding is compact  by (3). If p - 1 and n = m > 2, then, setting 
r - n / ( n - 1 ) >  l s o t h a t n - ( n - 1 ) r ,  w e h a v e f o r l  < q  <cx~, 

W n'l (~"2) "--> W n- l ' r  (~'2) ~ L q (~kO), 

the latter imbedding being compact  as shown immediately  above. Finally, if 
n - m -- p - 1, then k = 1 also. Letting q0 > 1 be arbitrarily chosen we prove 
the compactness  of W 1'1 (f2) --+ L l(f20) exactly as in the case k = n considered 

at the beginning of this proof. Since W 1'1 (f2) --+ L q (~0) for 1 < q < cx~, all 

these imbeddings  are compact  by L e m m a  6.7. | 
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Two Counterexamples 
6.9 (Quasibounded Domains) We say that an unbounded domain f2 C I~ n is 
quas ibounded  if 

lim dist(x, bdry f2) = 0. 
xEf2 

Ixl~oo 

An unbounded domain is not quasibounded if and only if it contains infinitely 
many pairwise disjoint congruent balls. 

6.10 Two obvious questions arise from consideration of the statement of the 
Rellich-Kondrachov Theorem 6.3. First, can the theorem be extended to cover 
unbounded f20? Second, can the extreme cases 

W j+m'p (~"2)-----> W j'q (~"2k) , O < n - , p < k < n ,  

q - k p / ( n - m p )  

and 
W j+m'p (~"2) ~ cJ')~(~'~2o) , m p  > n > ( m - 1 ) p ,  

~ = m - ( n / p )  

ever be compact? The first of these questions will be investigated later in this 
chapter. For the moment though we show that the answer is negative if k - n and 
f20 is not quasibounded. However, the situation changes (see [Lp]) for subspaces 
of symmetric functions. 

6.11 EXAMPLE Let f2 be an unbounded domain in /~n that is not qua- 
sibounded. Then there exists a sequence {Bi} of mutually disjoint open balls 
contained in f2 and all having the same positive radius. Let 4)1 6 C~  (B1) satisfy 
II~blllj,p,81 = Aj,p > 0 f o r e a c h j  -- 0 , 1 , 2  . . . .  and e a c h p  > 1. Let~bi b e a  
translate of ~bl having support in Bi. Then {~bi } is a bounded sequence in W o  'p (f2) 

for any fixed m and p. But for any q, 

]]t~i--~)kllj,q,~2 ~ (]]~t)illJ, q,Bi -Jr ]]~)kl]q,q,Bi) 1/q = 21/q Aj,q > 0 

so that {t~i } cannot have a sequence converging in W j'q (0  ~"2) for any j ___ 0. Thus 
no compact imbedding of the form Wd +m'p (~'~) ---+ W j'q (~"2) is possible. The 
non-compactness of the other imbeddings of Theorem 6.3 is proved similarly. | 

Now we provide an example showing that the answer to the second question raised 
in Paragraph 6.10 is always negative. 

6.12 EXAMPLE Let integers j , m ,  n be given with j > O a n d m ,  n > 1. 
L e t p  >_ 1. If rap < n, let k be an integer such that n - m p  < k <_ n and 
l e tq  - k p / ( n - m p ) .  I f ( m -  1)p < n < m p ,  le t~.  - m - ( n / p ) .  Letf2 
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be a domain in/~n and let f20 be a nonempty bounded subdomain of f2 having 
nonempty intersection f2k0 with a k-dimensional plane H in I~" which, without 
loss of generality, we can take to be the plane I~ k spanned by the x l, x2 . . . . .  xk 
coordinate axes. We show that the imbeddings 

W j+m'p (~'-2) ~ W j'q (~"2 k) 

wJ+m,p (~"~) ~ C j,)~ (~'2o) 

if mp < n (11) 

if (m - 1)p _< n < mp (12) 

cannot be compact. 

Let Br ( x )  be the open ball of radius r in It~ n centred at x and let q~ be a nontrivial 
function in C~(BI (0 ) ) .  Let {ai} be a sequence of distinct points in f2~, and let 
n i  = Bri (a i )  where the positive radii ri satisfy ri _< 1 and are chosen so that the 
balls Bi a r e  pairwise disjoint and contained in f20. We define a scaled, translated 
dilation (])i o f  ~ with support in Bi by 

d/)i (X ) = r /  +m-(n / P) ~) (y  ) , w h e r e  x --  ai -}- ri y .  

The functions (])i have disjoint supports in f20 and, since Dar -- r -I~1D~r 
n dy, we have, for loll < j + m and dx = r i _ , 

L lD~qbi(x)[ p dx = r{ j+m-la[)p ff2 IS~=q~(Y)IP dy. 

Therefore, {4) } is bounded in W j +m, p (~'2). 

On the other hand, d x l  " "  dx~ = r) d y l . . ,  dyk, so that if Ic~l = j ,  then 

f lD~dpi(x)[ q d x l . . ,  dxk - -  r k+q[m-(n/p)] f [D~(y)[  q d y l . . ,  dyk. 
JR 

Since k + q[m - ( n / p ) ]  - O, this shows that 

I1~ ][j,q,~ ~ ]qbi[j,q,~k o -- C1 I~[j,q,~:~ > 0 

for all i, and {(])i} is bounded away from zero in W j'q (~,~k). The disjointness of 
the supports of the functions (])i n o w  implies that {q~} can have no subsequence 
converging in W j,q (f2~), so the imbedding (11) cannot be compact. 

Now suppose that (m - 1)p < n < mp. Let a be a point in BI(0) and/3 be 
a particular multiindex satisfying [ill = J such that [O~4~(a)[ -- C2 > 0. Let 
bi - ai q- ria and let ci be the point on the boundary of Bi closest to bi. We have 

Io  ,(bi)l - = riZC2, 
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and, since D e ~i (Ci ) - -  0, 

[[~bi ; cJ ( )ll >__ [ D ~ O i ( b i ) -  D~dpi(ci)[  
[bi - ci 1~ = C2 > O. 

Again, this precludes the existence of a subsequence of of {@ } convergent in 
C j'z (f20), so the imbedding (12) cannot be compact. | 

6.13 R E M A R K  Observe that the above examples in fact showed that no 
imbeddings of I/vJ+m'P,, 0 ( ~ ) '  not just of the larger space W j+m'p (~"2), into the 
appropriate target space can be compact. We now examine the possibility of 
obtaining compact imbeddings of W o  'p (f2) for certain unbounded domains. 

Unbounded Domains---Compact Imbeddings of Wo'P(f~) 
6.14 Let f2 be an unbounded domain in ]1~ n . We shall be concerned below with 
determining whether the imbedding 

Wo'P(~) ~ Lp(~) (13) 

is compact. If it is, then it will follow by Remark 6.4(4), Lemma 6.7, and the 
second part of the proof in Paragraph 6.8 that the imbeddings 

WoJ+m'P(f2) --+ wJ'q(f21,) 0 < n - m p  < k < n p < q < k p / ( n  - rap) 

Wo j+m'p W j'q (f2k), n m p  1 <_ k <_ n, p <_ q < c~ ( ~ ) ~  = , 

are also compact. See Theorem 6.28 for the corresponding compactness of imbed- 
dings into continuous function spaces. 

As was shown in Example 6.11, imbedding (13) cannot be compact unless f2 
is quasibounded. In Theorem 6.16 we give a geometric condition on S2 that is 
sufficient to guarantee the compactness of (13), and in Theorem 6.19 we give an 
analytic condition that is necessary and sufficient for the compactness of (13). 
Both theorems are from [A2]. 

6.15 Let ~"2 r denote the set {x e f2 �9 Ix[ > r}. In the following discussion 
any cube H referred to will have its edges parallel to the coordinate axes. For a 
domain K2, a cube H,  and an integer v satisfying 1 < v < n, we define the quantity 
#n-~(H,  f2) to be the maximum of the (n - v)-measure of P ( H  - f2) taken over 
all projections P onto (n - v)-dimensional faces of H.  

6.16 T H E O R E M  Let v be an integer such that 1 < v < n and m p  > v (or 
m - p = v - 1). Suppose that for every e > 0 there exist numbers h and r 
with 0 < h < 1 and r > 0 such that for every cube H C I~ n having side h and 

nonempty intersection with ~'2 r w e  have 

# n - v ( H ,  f2) h p > 
h n -v  - E 

Then imbedding (13) is compact. 



176 Compact Imbeddings of Sobolev Spaces 

6.17 REMARKS 

1. We will deduce this theorem from Theorem 6.19 later in this section. 

2. The above theorem shows that for quasibounded f2 the compactness of (13) 
may depend in an essential way on the dimension of bdry f2. 

3. For v = n, the condition of Theorem 6.16 places only the minimum 
restriction of quasiboundedness on f2; if m p  > n then (13) is compact 
for any quasibounded f2. It can also be shown that if p > 1 and f2 is 
quasibounded with boundary having no finite accumulation points, then 
(13) cannot be compact unless m p  > n. 

4. If v - 1, the condition of Theorem 6.16 places no restrictions on m 
and p but requires that bdryf2 be "essentially ( n -  1)-dimensional." 
Any quasibounded domain whose boundary consists of reasonably regular 
(n - 1)-dimensional surfaces will satisfy that condition. An example of 
such a domain is the "spiny urchin" of Figure 4, a domain in R 2 obtained 
by deleting from the plane the union of the sets Sk, (k = 1, 2 . . . .  ), specified 
in polar coordinates by 

S k = { ( r , O )  �9 r > k ,  0 - - n r r / 2  k n - -  1 2 2 k+l} ~ ~ �9 �9 o ~  . 

Note that this domain, though quasibounded, is simply connected and has 
empty exterior. 

xxx\ \ \ / / l l  
! 

Fig. 4 

5. More generally, if v is the largest integer less than m p ,  the condition of 
Theorem 6.16 requires in a certain sense that the part of the boundary of f2 
having dimension at least n - v should bound a quasibounded domain. 
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6.18 (A Definition of Capacity) Let H be a cube of edge length h in I~ n and 
let E be a closed subset of H. Given m and p we define a functional I~ 'p on 
C ~ ( H )  by 

" Z IH 'p (U) -- h jp luljP, p,H : 
l<j<m 

~-~ hlulp fH ID~u(x)lP dx" 
l_<[otl_<rn 

Let C ~ (H, E) denote the set of all nontrivial functions u ~ C~(H) that vanish 
identically in a neighbourhood of E. We define the (m, p)-capacity Qm,p (H, E) 
of E in H by 

{ I~ 'p (u) COO ] Qm,p (H, E) --inf liuii~,p,~/ " u 6 (H, E) . 

Clearly Qm'p(H, E) < Qm+I'p(H, E)and, whenever E C F C H, we have 
Qm,p (H, E) < Qm,p (H, F). 

The following theorem characterizes those domains for which imbedding (13) is 
compact in terms of this capacity. 

6.19 T H E O R E M  Imbedding (13) is compact if and only if f2 satisfies the 
following condition: For every e > 0 there exists h _< 1 and r _> 0 such that the 
inequality 

Qm'p(H, H -  ~) > hP/e 

holds for every n-cube H of edge length h having nonempty intersection with g2r. 
(This condition clearly implies that f2 is quasibounded.) 

Prior to proving this theorem we prepare the following lemma. 

6.20 L E M M A  There exists a constant K (m, p) such that for any n-cube H 
of edge length h, any measurable subset A of H with positive volume, and any 
u ~ C 1 (H),  we have 

2p-lhn hn+p 
Ilull p < Ilull p p O,p,H -- vol(A) O,p,a + K vol(A) [Igradullo,p,H. 

Proof. Let y 6 A and x - (p,q~) E H, where (p,~b) denote spherical 
coordinates centred at y, in terms of which the volume element is given by 
dx - co(dp) pn-1 dp ddp. Let bdry H be specified by p - f (~p), q~ 6 E. Clearly 

f(~p) _< 4'-fih. Since 

fo p d u(x) - u(y) + -~rU(r, c/p)dr, 
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we have by Lemma 2.2 and H61der's inequality 

n lU(x)lP dx 

f.f d < 2 p - l h n l u ( y ) l P  -k- 2 p-1 (r, r  d x  
_ -~r  u 

f, fo fo" < 2 P - l h n l u ( y ) [  p -[- 2 p-1 09(r de  f in+p-2 d p  [grad u(r, r d r  

2p-1 fH Igradu(z)lP 
< 2 P - l h n I u ( y ) I P  + (~/-nh) n+p-1 In-1 dz. 
- n + p - 1  I z - y  

Integrating y over A and using Lemma 4.64 we obtain 

(vol(A)) Ilull~,p,n ~ 2p-lhn [lull~,p,A + Khn+P Ilgradull~,p,H, 

as required�9 | 

6.21 (Proof of Theorem 6 .19- -  Necessity) Suppose that f2 does not satisfy 
the condition stated in the theorem. Then there exists a finite constant K1 -- 1/e 
such that for every h with 0 < h < 1 there exists a sequence {H#} of mutually 
disjoint cubes of edge length h which intersect g2 and for which 

Q m ' p ( H j ,  H j -  ~ )  < K l h  p. 

By the definition of capacity, for each such cube Hj there exists a function 
uj E C~(Hj  Hj - S2) such that IluJl] p0,p,Hj -- hn u# P ][grad 11 < Klh n ' - -  ' O,p,Hj -- ' 

and Hujn p < K2(h) Let Aj - { x  E Hj'luj(x)l < �89 By the previous m,p,Hj -- 
Lemma we have 

2 p-lh n vol(Aj) K K 1  h2n+ p h n < . + ~  
- vol(Aj) 2P vol(Aj) 

from which it follows that vol(Aj) < K3h n+p. Let us choose h so small that 
K3h p <_ �89 whence vol(aj)  < �89 Choose functions w# e C~(Hj )  such 

2 vol(Hj), and that wj(x) - 1 on a subset Sj of H# having volume no less than 
such that 

sup max sup ID a wj (x)[ = K4 (h) < oo. 
j I~l <m x~Hj 

1 Then vj = ujwj E C~(Hj  A g2) C C~(~2) and Ivj(x)l ~ ~ on Sj f3 (Hi - Aj), 

a set of volume not less than h "/3 Hence [I Vg II p > h" /3"  2p On the other �9 O,p,Hj - -  " 
hand 

fH# [ D a u j ( x ) [  p . [D#wj(x)[ p dx <_ K4(h)K2(h) 
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provided Ic~l, I~1 ~ m. Hence {vj} is a bounded sequence in Wo'P(s2).  Since 
the supports of the functions vj are disjoint, live - v j  II p > 2 h " / 3 . 2  p so the 

0 , p , ~  - -  

imbedding (13) cannot be compact, l 

6.22 (Proof of Theorem 6.19 m Sufficiency) Suppose f2 satisfies the condi- 
tion stated in the theorem. Let E > 0 be given and choose r > 0 and h < 1 such that 
for every cube H of edge h intersecting ~'2 r w e  have Qm,p ( n ,  H - f2) > hP/E p. 
Then for every u e C ~  (f2) we obtain 

(5 p 
Ilull p < IH 'p p IlPm,p,H O p,H - ~ (u) ~ ~ Ilu 

Since a neighbourhood of S2r can be tessellated by such cubes H we have by 
summation 

Ilull0,p,ar _< E Ilullm,p,a. 

That any bounded set S in W o  'p (f2) is precompact in L P ( ~ )  now follows from 
Theorems 2.33 and 6.3. I 

6.23 L E M M A  There is a constant K independent of h such that for any cube 
H in R n having edge length h, for every q satisfying p < q < n p / ( n  - mp)  (or 
p < q < oc if mp -- n, or p < q _< oc if m p  > n), and for every u E C ~ (H)  we 
have 

Ilullo,q,n < g h I~ IIO'~ull p --  O,p,H " 

I 

Proof, We may suppose H to be centred at the origin and let [ t  be the cube 
of unit edge concentric with H and having edges parallel to those of H.  The 
stated inequality holds for fi e C ~ ( H )  by the Sobolev imbedding theorem. It 
then follows for H via the dilation u (x) = fi (x /h ) .  | 

6.24 L E M M A  I f m p  > n (or i f m  = p - n -  1), there exists a constant 
K ----- K (m, p, n) such that for every cube H of edge length h in I~ n and every 
u e C ~ (H)  that vanishes in a neighbourhood of some point y e H,  we have 

Ilull p < K IH 'p ( u )  O , p , H  - -  

Proof. Let (p, q~) be spherical coordinates centred at y. Then 

~ P  d 
u(p ,  ep) - --d~U(t, ~)  dt .  

I f n  > ( m -  1)p, t h e n l e t q  = n p / ( n - m p + p ) ,  so t h a t q  > n. Otherwise 
let q > max{n, p} be an arbitrary and finite. If (p, 40 6 H,  then by H61der's 
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inequality 

lu(p,~)lqp n-1 
q 

_ -d~u(t, ~) t n-1 dt 

fo I q <_ glh  q-1 -d-~U(t, q~) t n-l dt. 

t -(n-1)/(q-1) d t )  q-1 

It follows, using the previous lemma with m - 1 in place of m, that 

Ilull~,q,n <_ K2hq fH Igradu(x)l q dx 

_< K2h q 2 II D ~u II0,q,n q 

I~1=1 

( 2  )q/P < K3hq Z hl~lp-n+n/q II D~+~u II p 
m O,p,H 

i~1=1 Ir 

(14) 

If p > n (or p -- n -- 1) the desired result follows directly from (14) with q - p: 

m,p Ilull~,p,n ~ K ILP(u) <_ K I H (u). 

Otherwise, a further application of H61der's inequality yields 

Ilul[ p < I[ull p (vol(H)) (q-p)/q O,p,H -- O,q,H 
< KP/q 2 hl• IID• p,H = K I~i'P(u). 

l_<lYl_m 

6.25 (Proof  of Theo rem 6.16) Let mp > v (or m = p - v - 1) and let H be 
a cube in •n for which/zn_~(H, f2) > hP/e. Let P be the maximal projection of 
H - f2 onto an (n - v)-dimensional face of H and let E = P (H - f2). Without 
loss of generality we may assume that the face F of H containing E is parallel 
to the X~+l . . . . .  xn coordinate plane. For each point x - (x', x") in E, where 

X' = (Xl . . . . .  Xv) and x" = (X~+l . . . . .  Xn) let Hx,, be the v-dimensional cube 
of edge length h in which H intersects the v-plane through x normal to F. By 
the definition of P there exists y ~ Hx,, - g2. If u 6 C ~ (H, H - ~) ,  then 
u (., x") ~ C~(Hx,,, y). Applying the previous lemma to u (., x") we obtain 

fH lU(X', X')I pdx '  < K1 
t t  

Z hl~lP f/-/x 
l_<l~l_<m ,, 

ID~u(x ', x")l p dx', 
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where K1 is independent  of H ,  x", and u. Integrating this inequali ty over E and 

denoting H ' =  { x ' ' x  = (x' ,  x " )  E H for some x"}, we obtain 

m,p m ,P(u  ) 
Ilull p < KIlH,•  < K I I  H 

O , p , H ' x E  ~ ~ " 

Now we apply L e m m a  6.20 with A - H '  x E so that vol(A) -- h ~/z~_~(H, f2). 

This yields 
h 

?/-- l )  

Ilull p < K2 (H,  f2) IH'P (u) '  O,p,H ~ ~ n - v  

where K2 is independent  of H.  It follows that 

om,p(H, H - ~)  _> #n-v (H,  ~)  > h p 
K2h n-~ - ~ K2 

Hence f2 satisfies the hypothesis  of Theorem 6.19 if it satisfies that of Theorem 

6.16. 1 

The fol lowing two interpolat ion lemmas  enable us to extend Theorem 6.16 to 

cover imbeddings  into spaces of continuous functions. 

6.26 L E M M A  Let 1 ~ p < c ~ a n d 0  < # <__ 1. There  exists a constant  

K -- K (n, p , / z )  such that for every u 6 C ~  (R n ) we have 

sup lu(x)l __ < K Ilull z 0,p,R~ ( sup lu(x) - u(y)  l )  1 - k  

x~R~ x,~,~. Ix - yl ~ 
xCy 

(15) 

where ~ -- p # / ( n  + p # ) .  

Proof .  We may assume 

lu(x) - u(y) l  
sup l u ( x ) l -  N > 0 and sup -- M < oc. 
x~R, ~,:~, Ix - yl ~ 

x r  

Let e satisfy 0 < e _< N / 2 .  Then there exists a point  x0 in I~ n such that we have 

lu(x0)l >_ N - E > N / 2 .  Now lu(x0 - u ( x ) l / [ x o  - xl ~ <_ M for all x, so 

1 
lu(x)l  ~ l u ( x o ) l -  M l x o -  xl ~ ~ =lu(xo)l  

Z 

provided [x - x0[ < ( N / 4 M )  1/~ -- r. Hence 

f. [u(x)[ p d x  > d x  > K1 
n r(xo) - 2 

n/u 
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Since this holds for arbitrarily small e we have 

Ilu II0,p,R, > N l+(n/#p)M-n/Izp 
- 2 ~ 4U~p  

from which (15) follows at once. | 

6.27 L E M M A  Let g2 be an arbitrary domain in ~n, and let 0 < )~ < /x _< 1. 
For every function u e C ~ (~) we have 

II.; c~ ~ 3'-~/'~ II.; c<~)II 1-Z//z II.; c~ ~'/'~ �9 (16) 

Proof .  Let p = / z / X  and p' = p / ( p  - 1). Let 

A1--Uu;  C(-~)l] 1/p , B1 = x,yef2sup (lu(X)lx - - u ( Y ) ] )  r' 
x#y 

A2 = [[u; c(fi)ll 1/'' B2 sup lu(x) u(y) l  1/p' 
x, yef2 
x#y 

Clearly A ~ + B  p --]]u; c0.(~)l l  and B~"<_ 2 I1.; c (~) l l  By H61der's inequality 
for sums we have 

lu(x) - u(y)l 
II.; c ~  II - II u; c(~)II + sup 

x,yEf2 IX _ y lX  x#y 

<_ A1A2 + B1B2 

< (A p + Bp ) , /p (A p, + Bp, ) 1/p' 

_< II.; c~ ~/" (3 II.; c(~)ll)  l-x/" 

as required. I 

6.28 T H E O R E M  Let ~ satisfy the hypotheses of Theorem 6.16. Then the 
following imbeddings are compact: 

WJo +m'p (~"2) ---+ C j (-~) 

WJo +m,p (~"~) ~ C j,)~ (-~) 

if m p  > n 

if mp > n > ( m - 1 ) p  

0 < ~, < m - ( n / p ) .  

and 

(17) 

(18) 

Proof. It is sufficient to deal with the case j -- 0. If mp > n, let j* be the 
nonnegative integer satisfying (m - j * ) p  > n > (m - j* - 1)p. Then we have 
the chain of imbeddings 

Wo 'p (~) ~ Wo -j*'p (a )  ~ c ~ (a )  ~ c ( ~ ) ,  



An Equivalent Norm for Wo 'p (s2) 183 

where 0 < # < m - j*  - ( n / p ) .  If {ui} is a bounded sequence in W o  'p (f2),  

then it is also bounded in C~ (~).  By Theorem 6.16, {ui} has a subsequence {uti} 

converging in LP(~). By (15), which applies by completion to the functions ui, 

this subsequence is a Cauchy sequence in C(f2) and so converges there. Hence 
(17) is compact for j = 0. Furthermore, if m p  > n > (m - 1) p (that is, if j* = 0) 
and 0 < 2. < #,  then by (16) {u' i } is also a Cauchy sequence in C ~ (~)  whence 
(18) is also compact. | 

An Equivalent Norm for Wo'P(f~) 
6.29 (Domains of Finite Width)  Consider the problem of determining for 
what domains f2 in R n is the seminorm 

(c lUlm,p,a = IlD~ull p O,p,f2 
I 

actually a norm on W o  'p (f2) equivalent to the standard norm 

(c 1] b/[[m,p, ~ - -  [[D'~u[[ p 0,p,f2 
I 

This problem is closely related to the problem of determining for which unbounded 
domains f2 the imbedding W o  'p (f2) --+ L p (~) is compact because both problems 
depend on estimates for the L p norm of a function in terms of LP estimates for its 
derivatives. 

We can easily show the equivalence of the above seminorm and norm for a domain 
of f in i te  width ,  that is, a domain in IR ~ that lies between two parallel planes of 
dimension (n - 1). In particular, this is true for any bounded domain. 

6 .30  T H E O R E M  ( P o i n c a r 6 ' s  I n e q u a l i t y )  If domain f2 C 1t~ ~ has finite 
width, then there exists a constant K -- K (p) such that for all 4~ e C ~  (f2) 

II~llo,p,~ ~ K I~ll,p,~- (19) 

This inequality is known as Poincare ' s  Inequal i t y .  

Proof.  Without loss of generality we can assume that f2 lies between the hyper- 
planes xn = 0 and x,  = c > 0. Denoting x = (x', x~), where x' = (xl . . . . .  x~_l), 
we have for any 05 e C ~  (f2), 

fo xn d r  - ~ r  
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so that, by H61der's inequality, 

f0 c I1r p dx' I p 0,p,a = lop (x) dx,  
n- - I  

s f0 c /0 c <_ dx' XPn -1 dxn 
n - -  1 

C p 

< Ir p 1 , p , s  " 
P 

IDn~(X', t)l p dt 

Inequality (19) follows with K = c /p  1/p. 1 

6.31 C O R O L L A R Y  If f2 has finite width, I'lm,p,~ is a norm on Wo'P(g2) 
equivalent to the standard norm II'llm,p,~. 

Proof .  If r 6 C ~  (f2) then any derivative of r also belongs to C ~  (f2). Now 
(19) implies 

Ir p < I1r p P P < (1 -+- K p) I~bl p II,p,~ - 1,p,~ : II~ll0,p,~ + I~1 1,p,~ - 1,p,~, 

and successive iterations of this inequality to derivatives D ~ ~p, (l~l ~ m - 1) leads 
to 

Ir p,~ < IIr p ~ < g l  1r p , ~ , , m m , p , ~  " 

By completion, this holds for all u in Wo 'p (~). l 

6.32 (Quasicylindrical Domains) An unbounded domain ~2 in ~" is called 
quasicylindrical if 

lira sup dist(x, bdry f2) < oo. 
x~S2, Ixl--+c~ 

Every quasibounded domain is quasicylindrical, as is every (unbounded) domain 
of  finite width. The seminorm I'lm,p,~ is not equivalent to the norm II'llm,p,~ on 
W o '  P (f2) for unbounded f2 if f2 is not quasicylindrical. We leave it to the reader 
to construct a suitable counterexample.  

The following theorem is clearly analogous to Theorem 6.16. 

6.33 T H E O R E M  Suppose there exist an integer v and constants K, R, and h 
such t h a t l  < v < n ,  0 <  K < 1 , 0 <  R < c x ~ , a n d 0 < h  < c~. Suppose also 
that either v < p or v = p - 1, and that for every cube H in R" having edge 
length h and nonempty intersection with f2R = {x 6 f2 �9 Ix l >__ R} we have 

~n-v(H, ~2) 

h n m P  

>_K, 

where ~n-v(H, [2) is as defined prior to the statement of Theorem 6.16. Then 
I']m,p,~ is a norm on Wo 'p (f2) equivalent to the standard norm II'llm,p,~. 
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Proof. As observed in the previous Corollary, it is again sufficient to prove that 

Ilull0,p,a < K1 lUll,p,~ holds for all u E C~(f2) .  Let H be a cube of edge length 
h having nonempty intersection with f2R. Since v < p (or v -- p = 1) the proof  

of Theorem 6.16 shows that 

Ql,p (H,  H - g2) > lZn- , (H,  S2) > K 
K2h n-v - K2 

for all u 6 C ~  (f2), K2 being independent of u. Hence 

Ilull p < ( K 2 / K )  1,p p O,p,/-/ - 114 --  K3 lUll,p,H . 

By summing this inequality over the cubes comprising a tessellation of some 

neighbourhood of f2R, we obtain 

Ilullg, p,~R < K3 lul p 
- -  1,p,~ �9 (20) 

It remains to be proven that 

Ilull p < K3 lulx p ~ ,  O,p,BR -- p, 

where BR -- {x E It{ n : [xl < R}. Let (p, 4)) denote the spherical coordinates 
of the p o i n t x  6 R n (p > 0, 4) 6 E) s o t h a t d x  = p n - l w ( ~ ) d p d O .  For any 
u 6 C r (IR n ) we have 

R+p d 

u(p ,  4)t -- u (p  + R, ~) - dt  
,Jp 

u(t,  dp) dt  

so that (by L e m m a  2.2) 

lu(p,  ~)l p _< 2 p - l l u ( p  + R, q~)l p + 2 p - I R p - l p  1-n fp R+p Igradu(t ,  dp)lPt n-1 dt.  

Hence 

fo R I lul l p - co(O) dO lu(p qS)l ppn-1 dp O,p,BR - -  

fo < 2 p-1 o9(dp) ddp ]u(p + R, ~b)] p (p + R)  n-1 dp 

/o -F 2 p - 1 R  p o)(~) d~ [grad u(t, c/))lPt n-1 dt. 
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Therefore, we have for u 6 C~  (f2) 

Ilull p < 2 p-1 Ilull p 2p - IR  p p O,p,BR - -  O,p,B2n-BR + lUII,p,B2R 

< 2 p-1 ]]b/]] p + 2 p - I R  p Ill] p < K4 ]u p 0,p, f2R 1,p, f2 - ] 1,p,f2 

by (20). II 

Unbounded Domains-- Decay at Infinity 

6.34 The fact that elements of Wo 'p (f2) vanish in a generalized sense on the 
boundary of f2 played a critical role in our showing that the imbedding 

Wo'P(f f2)  ~ L P ( ~ )  (21) 

is compact for certain unbounded domains f2. Since elements of W m,p ( ~ )  do not 
have this property, there remains a question of whether an imbedding of the form 

W m'p (~"~) ~ L p (~"2) (22) 

can ever be compact for unbounded ~, or even for bounded S2 which are sufficiently 
irregular that no imbedding of the form 

W m'p (~"2) ~ L q ( ~ )  (23) 

can exist for any q > p. Note that if f2 has finite volume, the existence of 
imbedding (23) for some q > p implies the compactness of imbedding (22) by 
the method of the first part of the proof in Paragraph 6.8. By Theorem 4.46 
imbedding (23) cannot, however, exist if q > p and f2 is unbounded but has finite 
volume. 

6.35 EXAMPLE For j = 1, 2 . . . .  let Bj be an open ball in I~ n having radius 
oo rj, and suppose that Bj A Bi is empty whenever j # i. Let f2 -- [..Jj=l Bj. Note 

that f2 may be bounded or unbounded. The sequence {uj } defined by 

(vol(Bj)) lIp i f  x ~ Bj 
u j ( x ) - -  0 i f x ~ B j  

is bounded in W m'p (~"2) for every integer m > 0, but is not precompact in L p (f2) 
no matter how fast rj --+ 0 as j --+ ec. (Of course, imbedding (21) is compact by 
Theorem 6.16 provided limj__,~ rj = 0.) Even if f2 is bounded, imbedding (23) 
cannot exist for any q > p. 

6.36 Let us state at once that there do exist unbounded domains f2 for which the 
imbedding (22) is compact. See Example 6.53. An example of such a domain 
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was given by the authors in [AF2] and it provided a basis for an investigation of 
the general problem in [AF3]. The approach of this latter paper is used in the 
following discussion. 

First we concern ourselves with necessary conditions for the compactness of (23) 
for q >__ p. These conditions involve rapid decay at infinity for any unbounded 
domain (see Theorem 6.45). The techniques involved in the proof also yield a 
strengthened version of Theorem 4.46, namely Theorem 6.41, and a converse of 
the assertion [see Remark 4.13(3)] that W m'p (~"2) -"--> L q (~) for 1 < q < p if f2 
has finite volume. 

A sufficient condition for the compactness of (22) is given in Theorem 6.52. It 
applies to many domains, bounded and unbounded, to which neither the Rellich- 
Kondrachov theorem nor any generalization of that theorem obtained by the same 
methods can be applied. (e.g. exponential cusps - -  see Example 6.54). 

6.37 (Tessellations and A-fat Cubes) Let T be a tessellation of ]~n by closed 
n-cubes of edge length h. If H is one of the cubes in T, let N ( H )  denote the cube 
of edge length 3h concentric with H and therefore consisting of the 3 n elements 
of T that intersect H.  We call N ( H )  the neighbourhood of H.  By the fringe of 
H we shall mean the shell F(H)  -- N ( H )  - H. 

Let f2 be a given domain in R n and T a given tessellation as above. Let ~ > 0. A 
cube H e T will be called ~-fat (with respect to f2) if 

# ( H  A f2) > )~ lz (F(H) r) f2), 

where # denotes the n-dimensional Lebesgue measure in/t~ n . (We use /z  instead 
of "vol" for notational simplicity in the following discussion where the symbol 
must be used many times.) If H is not ,k-fat then we will say it is ,k-thin. 

6.38 T H E O R E M  Suppose there exists a compact imbedding of the form 

W m'p (~2) ---+ L q ( ~ )  

for some q > p. Then for every )~ > 0 and every tessellation T of ~n by cubes of 
fixed size, T can have only finitely many )~-fat cubes. 

Proof.  Suppose, to the contrary, that for some )~ > 0 there exists a tessellation 
T of ~n by cubes of edge length h containing a sequence { Hj }j~l of )~-fat cubes. 
Passing to a subsequence if necessary we may assume that N(Hj)  N N(Hi) is 
empty whenever j ~ i. For each j there exists dpj ~ C~ (N (Hj)) such that 

(i) ItPj (x)l < 1 for all x e R n , 

(ii) 4)j(x) = 1 for x e Hi, and 

(iii) I D ~ j ( x ) l  < M for all j ,  all x e ]~n, and all ot satisfying 0 < loll _< m. 
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In fact, all the Cj can be taken to be translates of one of them. Let 7zj -- cjCj, 
where the positive constants cj are chosen so that 

I[ II q0,q,f2 --> Cj q fHjN~ I~)J(x)lq dx  = C]t.L(H j n n )  --  1. 

But then 

II Jll m,p,f2 = ~ E ID~ P dX 
0<lc~l<m (Hj)nf2 

< M p c p lz ( N ( H j ) n  f2) 

< M P c ; I z ( H j N g 2 )  ( I +  1 )  = M P  ( I +  ~ ) c ;  -q, 

since Hj is )~-fat. Now lz(Hj N ~) < lz(Hj) -- h" so cj > h -n/q. Since 
p - q < 0, {Tzj} is bounded in wm'p(~).  But the functions 7zj have disjoint 
supports, so {70 } cannot be precompact in L q (~), contradicting the assumption 
that W m,p (~-2) ~ L q (~) is compact. Thus every T can possess at most finitely 
many )~-fat cubes. | 

6.39 C O R O L L A R Y  Suppose that W m'p (~'~) ~ L q (~) for some q > p. If T 
is a tessellation of I~" by cubes of fixed edge-length, and if ~, > 0 is given, then 
there exists e > 0 such that # (H n S2) > e for every )~-fat H 6 T. 

Proof.  Suppose, to the contrary, that there exists a sequence {Hj } of )~-fat cubes 
with l i m j ~  lz(Hj n f2) = 0. If cj is defined as in the above proof, we have 
l i m j ~ c j  = c~. But then limj_+~ II Jllm, ,  - 0 since p < q. Since {Tzj} 

is bounded away from 0 in L q (~), we have contradicted the continuity of the 
imbedding W m'p (~'2) ---+ L q (g2). II 

6.40 R E M A R K  It follows from the above corollary that if there exists an 
imbedding 

W m'p (~'2) ---> L q (~"2) (24)  

for some q > p then one of the following alternatives must hold: 

(a) There exists e > 0 and a tessellation T of R n consisting of cubes of fixed 
size such tha t / z (H N f2) >_ E for infinitely many cubes H 6 T. 

(b) For every )~ > 0, every tessellation T of I~ n consisting of cubes of fixed 
size contains only finitely many )~-fat cubes. 

We will show in Theorem 6.42 that (b) implies that f2 has finite volume. By 
Theorem 4.46, (b) is therefore inconsistent with the existence of (24) for q > p. 
On the other hand, (a) implies that /z({x 6 f2 �9 N _< Ixl _< N + 1}) does not 
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approach zero as N tends to infinity. We have therefore proved the following 
strengthening of Theorem 4.46. 

6.41 T H E O R E M  Let f2 be an unbounded domain in I~ n satisfying 

l imsupvol({x 6 f2 �9 N < Ixl ~ N + 1}) - - 0 .  
N--+ cx~ 

Then there can be no imbedding of the form (24) for any q > p. 

6.42 T H E O R E M  Suppose that imbedding (24) is compact for some q > p. 
Then S2 has finite volume. 

Proof.  Let T be a tessellation of I~ n by cubes of unit edge length, and let 
)~ - 1/[2(3 n - 1)]. Let P be the union of the finitely many )~-fat cubes in T. 

Clearly # ( P  n ~2) < # ( P )  < cx~. 

Let H be a )~-thin cube in T. Let H1 be one of the 3 n - -  1 cubes in T constituting 
the fringe of H selected so that #(H1 n ~)  is maximal. Thus 

1 
#(H n f2) <_ Z #(F(H) n f2) _< )~(3 n -- 1)#(H1 n ~)  -- ~#(H1 N ~2). 

If H I  is also )~-thin, then we may select a cube H2 ~ T with H2 C F(H1) such 
l # ( H 2  n ~) .  that #(H1 N S2) < 

Suppose an infinite chain {Ha, H2 . . . .  } of )~-thin cubes can be constructed in the 
above manner. Then 

1 1 1 
# ( H  n f2) < ~ # ( n l  n ~ )  _ . . -  < 2J #(Hj  N ~) < 2J 

for each j since #(Hj n ~2) <_ #(Hj) -- 1. Hence /~ (H  n f2) -- 0. Denoting 
by P~  the union of )~-thin cubes H 6 T for which such an infinite chain can be 
constructed, we have # ( P ~  n ~)  = 0. 

Let Pj denote the union of )~-thin cubes H 6 T for which some such chain ends 
on the j th step; that is, Hj is )~-fat. Any particular )~-fat cube H '  can occur as the 
end Hj of a chain beginning at H only if H is contained in the cube of edge 2j  + 1 
centred on H' .  Hence there are at most (2j  + 1) n such cubes H C Pj having H '  
as chain endpoint. Thus 

n ~ ) - -  Z /.z(Hn~) #(Pj 
HCPj 

1 
<- 2J ~ #(Hj n f2) 

HCPj 
< (2j  + 1)n (2j  + 1)n 

# ( H '  n S2) -- 2J # ( P  n f2), 2J H'CP 
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oo so that/z(f2) - / z ( P  n f2) + / z ( P ~  n ~)  + ~j--1 ]~(PJ n ~2) < (x). B 

Suppose 1 < q < p. If vol(f2) < c~, then the imbedding 

W m'p (~'2) .--.+ L q (~2) 

exists because W m'p (~"2) ~ L p (~) trivially and L p (f2) ~ L q (~) by Theorem 
2.14. 

We are now in a position to prove the converse. 

6.43 T H E O R E M  If the imbedding W m'p (~'2) ~ L q (~)  exists for some p 
and q satisfying 1 < q < p, then g2 has finite volume. 

Proof.  Let T, )V, and again let P denote the union of the )v-fat cubes in T. If we 
can show tha t /z (P  n fa) is finite, it will follow by the same argument used in that 
theorem that #(fa)  is finite. 

Accordingly, suppose tha t / z (P  N f2) is not finite. Then there exists a sequence 
(x) 

{Hi} of )v-fat cubes in T such that Y-~-j=I lz(Hj N f2) = ec. If L is the lattice of 
centres of cubes in T, we may break up L into 3 n mutually disjoint sublattices 
{Li }3" each having period 3 in each coordinate direction. For each i let T/ be i=1 
the set of all cubes in T that have centres in Li. For some i we must have 
~Z-fa tUer , /z (H N ~2) = oo. Thus we may assume that the cubes of the sequence 
{ Hi } all belong to T/for  some i, so that N (Hj) N N (Hk) is empty if j -J= k. 

Choose integer j l  so that 

jl 
2 <__  .(Hj n a )  < 4. 

j--1 

Let 4)1 be as in the proof of Theorem 6.38, and let 

jl 
~1 (X) = 2 -1/p ~ ~ j ( X ) .  

j=l 

Since the supports of the functions 4)j are mutually disjoint and since the cubes 
Hj are )v-fat, for Ic~l _< m we have 

l ~ ffa lD~ dx I I O ~ l l l ~ ' P ' a -  2 j--1 

1 ~ (N(Hj)n ~) < - M  p l z 
- 2  j=l ( 1),1 (1) 
< -~I Mp 1 + ~ Zj=I tx(Hj n g2) < 2M p 1 + -s . 
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On the other hand, 

jl  

117rl II q 0,q,f2 - -  > 2 -q/p ~ #(nj  N f2) _ > 21-(q/p) 
j = l  

Having so defined j l  and ~1, we can now define j2, j3 . . . .  and ~2, ~3 . . . .  induc- 
tively so that 

and 

jk 

2 k < ~ # ( H j N f 2 )  < 2k+l 

j = j k - l + l  

jk 

~k(X) -- 2 -k/p k -2/p ~ dpj(x). 
j = j k - l + l  

As above, we have for I~1 _< m, 

and 

I I D ' ~ : I I  p < MP 1+ 0,p ,  f2 m 

q >2k(1-q/p)Mp ( ~ )  2q/p 
II~Pk II0,q,~ _ 

Thus lp = ~ = 1  ~Pk belongs to wm'p(~"2) but not to Lq(~) contradicting the 
imbedding W m'p (~'2) --'+ L q (~) .  Hence # ( P  A f2) < ~ as required. | 

6.44 If there exists a compact imbedding of the form W m,p (~'2) ~ L q (~)  for 
some q > p ,  then, as we have shown, S2 has finite volume. In fact, considerably 
more is true; #({x E f2 : Ixl > R}) must approach zero very rapidly as R ~ ~ ,  
as we show in Theorem 6.45 below. 

If Q is a union of cubes H in some tessellation T of R n by cubes of fixed edge 
length, we extend the notions of neighbourhood and fringe to Q in an obvious 
manner: 

N(Q)  = U N(H) ,  F(Q) - N(Q)  - Q. 
HET 
HCQ 

Given 6 > 0, let )~ = 6/[3n(1 + 3)]. If all the cubes H E T satisfying H C Q are 
)~-thin, then Q is itself 6-thin in the sense that 

# (Q  n f2) < 6tz(F(Q) n ~).  

To see this note that as H runs through the cubes comprising Q, F(H)  covers 
N(Q) at most 3 n times. Hence 

#(Q N ~) - ~ #(H N s < ~. Z #(F(H) N 
HCQ HCQ 

< 3n)~lz(U(Q) A f2) = 3n~,[/z(O N f2) + lz(F(O) A f2)] 
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and the fact that Q is 8-thin follows by transposition (permissible since/z (~2) < oo) 
and since 3n~,/(1 - 3n~,) = 8. 

For any measurable set S C I~ n let Q be the union of all cubes in T whose interiors 
intersect S, and define F (S) = f (Q). If S is at a positive distance from the finitely 
many )~-fat cubes in T, then Q consists of k-thin cubes and we obtain 

lz (S I"1 fa) < lz(Q 71 fa) < 81z(F(S)  I'-1 f2). (25) 

6.45 THEOREM 
ding of the form 

(Rapid  Decay) Suppose there exists a compact imbed- 

W m'p ( ~ )  ---+ L q ( ~ )  (26) 

for some q > p. For each r > 0 let far ~- {X E K2 �9 Ixl > r}, let Sr = {X E fa" 
Ix l - r i ,  and let Ar  denote the surface area (Lebesgue (n - 1)-measure) of Sr. 
Then 

(a) For given E, 6 > 0 there exists R such that if r > R, then 

/s _~< 8/.L({X E ~ " r - e < Ixl < r}).  

(b) If Ar  is positive and ultimately nonincreasing as r --+ oo, then for each 

E > 0  
Ar+E 

lim = 0. 
r-+~ Ar  

Proof. Given E > 0 and 8 > 0, let X = 8/[3"(1 + 6)] and let T be a tessellation 
of 11R n by cubes of edge length E/(2v/-ff). Let R be large enough that the finitely 
many )v-fat cubes in T lie in the ball of radius R - E/2 about the origin. If r > R 
and S -- far, then any H E T whose interior intersects S is )v-thin. Moreover, any 
cube in the fringe of S can only intersect fa at points x satisfying r - E l 2  < Ixl _ r. 

By (25), 

I.L(,~'2r) - -  I d ( S  ("1 ~'~) < 8 # ( F ( S )  A ~2) = 8 # ( { x  E fa " r -- e < Ix] < r}),  

which proves (a). 

For (b) choose Ro so that Ar is nonincreasing for r >_ Ro. Fix E', 8 > 0 and let 
E = E'/2. Let R be as in (a). If r >_ max{R, Ro + E'}, then 

1 f r+2~ 1 
Ar+~, < - As ds <_ --lZ(f2r+~) 

E ,Yr+E E 

8 8 [r+~ 
< - /z  ({x E f 2 " r  < Ixl < r + E}) = - a s d s  <_ 6ar.  

E (?,jr 
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Since e' and ~ are arbitrary, (b) follows. I 

6.46 C O R O L L A R Y  If there exists a compact imbedding of the form (26) for 
some q >_ p, then for every k > 0 we have 

l i m e  kr #(~"2r) -- O. (27) 
r----> o o  

Proofi Fix k and let 6 - -  e - ( k + l )  . From conclusion (a) of Theorem 6.45 there 
exists R such that r > R implies #(f2r+l) < 6#(f2r). Thus if j is a positive 
integer and 0 < t < 1, we have 

ek(R+j+t) #(~"2R+j+t) <_ ek(R+j+l) #(~'2R+j) 

< e k(R+l) ekJ r #(~"2R) -- ek(R+ 1) #(~'2R ) e - j .  

The last term approaches zero as j tends to infinity. 1 

6.47 REMARKS 

1. We work with Sobolev spaces defined intrinsically in domains. If instead, 
we had defined W m'p (f2) to consist of all restrictions to f2 of functions in 
W m,p (Rn) ,  then the outcome for Corollary 6.46 would have been different. 
With that definition, it is shown in [BSc] that W 'n'p (f2) imbeds compactly 
in L p ( ~ )  if and only if the volume of the intersection of f2 with cubes of 
fixed edge-length tends to 0 as the centres of those cubes tend to ~ .  There 
are many domains f2 satisfying the latter condition but not satisfying (27). 
None of these domains can have any Sobolev extension property. 

2. The argument used in the proof of Theorem 6.45(a) works for any norm p 
on ]~n in place of the usual Euclidean norm p (x) -- Ix l. The same holds for 
Theorem 6.45(b) provided Ar is well defined (with respect to the norm p) 
and provided 

f 
r+e 

/z({x E f2 �9 r < p ( x )  < r + e}) = n s d s .  
d r  

This is true, for example, if p ( x )  --  maxl<i<n Ixil. 

3. For the proof of Theorem 6.45(b) it is sufficient that Ar have an equivalent 
nonincreasing majorant, that is, there should exist a positive, nonincreasing 
function f (r) and a constant M > 0 such that for sufficiently large r 

Ar < f ( r )  < M A r .  

4. Theorem 6.38 is sharper than Theorem 6.45, because the conclusions of 
the latter theorem are global whereas the compactness of (26) depends on 
local properties of f2. We illustrate this by means of two examples. 
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6.48 EXAMPLE Let f ~ C 1 ([0, CXD)) be positive and nonincreasing with 
bounded derivative f ' .  We consider the planar domain (Figure 5) 

f 2 = { ( x , y )  EII{ 2 �9 x > 0 ,  0 < y  < f ( x ) } .  

With respect to the supremum norm on R 2, that is p(x,  y) -- max{lx[, [y[}, we 
have As = f ( s )  for sufficiently large s. Hence f2 satisfies conclusion (b) of 
Theorem 6.45 (and, since f is monotonic, conclusion (a) as well) if and only if 

f ( s  +E) 
lim = 0 (28) 

s ~  f ( s )  

holds for every e > 0. For example, f (x) = exp( -x  2) satisfies this condition but 
f (x) = exp( -x)  does not. We shall show in Example 6.53 that the imbedding 

W m'p ( ~ )  ~ L p (~) (29) 

is compact if (28) holds. Thus (28) is necessary and sufficient for compactness of 
the above imbedding for domains of this type. | 

y = f ( x )  

Fig. 5 

6.49 EXAMPLE Let f be as in the previous example, and assume also that 
f ' (0)  -- 0. Let g be a positive, nonincreasing function in C 1 ([0, ~ ) )  satisfying 

1 (i) g(O) -- ~ f (0), and g'(O) -- O, 

(ii) g(x) < f ( x )  for all x _ O, 

(iii) g (x) is constant on infinitely many disjoint intervals of unit length. 

Let h (x) -- f (x) - g (x) and consider the domain (Figure 6) 

- - { ( x , y ) ~ I ~  2 �9 O < y < g ( x )  ifx>_O, O < y < h ( - x )  i fx < 0 } .  
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Again we have As -- f ( s )  for sufficiently large s, so f2 satisfies the conclusions 
of Theorem 6.45 if (28) holds. 

1 having edges If, however, T is a tessellation of R 2 by squares of edge length 
parallel to the coordinate axes, and if one of the squares in T has centre at the 
origin, then T has infinitely many 1-fat squares with centres on the positive x-axis. 

By Theorem 6.38 the imbedding (29) cannot be compact for the domain (2. | 
Y 
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S 
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# 
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�9 , y = f ( x )  
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y = g ( x i " ,  

1 
k 

5r 

Fig. 6 

Unbounded Domains--Compact Imbeddings of Wm,P(~) 
6.50 (Flows) The above examples suggest that any sufficient condition for the 
compactness of the imbedding 

W m'p ( ~ )  -+ L p ( ~ )  

for unbounded domains S2 must involve the rapid decay of volume locally in each 
branch of S2r as r tends to infinity. A convenient way to express such local decay 
is in terms of flows on f2. 

By a f low on f2 we mean a continuously differentiable map �9 : U --+ f2 where 
U is an open set in f2 x I~ containing ~ x {0}, and where ~ ( x ,  0) = x for every 
x E f 2 .  

For fixed x E f2 the curve t --+ �9 (x, t) is called a streamline of the flow. For fixed 
t the map ~t  : x --+ ~ ( x ,  t) sends a subset of f2 into f2. We shall be concerned 
with the Jacobian of this map: 

det ~t  (x) -- 
0 (xl . . . . .  Xn) (x,t) 
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It is sometimes required of a flow �9 that ~s+t = r 0 r but we do not need this 
property and so do not assume it. 

6.51 E X A M P L E  Let g2 be the domain of Example 6.48. Define the flow 

r y, t) = (x  _ t, f (x - t) ) 
f ( x )  Y ' 

0 < t < x .  

The direction of the flow is towards the line x = 0 and the streamlines (some 
of which are shown in Figure 7) diverge as the domain widens. ~t  is a local 
magnification for t > 0: 

f ( x  -- t )  
det ~t  (X, y) = 

f ( x )  

Note that l i m x ~  det ~'t (x, y) = cx~ if f satisfies (28). 

For N -- 1 2, let f2* . . . .  s = {(x, y) ~ f2 �9 0 < x < N}. Since f2~v is bounded and 
satisfies the cone condition, the imbedding 

W I ' p  (~'~*N) ~ LP(~"~*N) 

is compact. This compactness, together with properties of the flow r are sufficient 
to force the compactness of W m'p (~'2) ~ L p ( ~ )  as w e  n o w  show. 

y 

i 

x - t  x x 

Fig. 7 
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6.52 T H E O R E M  Let f2 be an open set in R n having the following properties: 

(a) There exists an infinite sequence {fa~V}NC~=l of open subsets of f2 such that 
f2~v C f2~V+l and such that for each N the imbedding 

W l'p (a'N) ~ LP(a*N) 

is compact. 

(b) There exists a flow �9 �9 U --~ ~2 such that if ~ s  = ~2 - ~ v ,  then 

(i) ~2s x [0, 1] C U for each N, 

(ii) (I)t is one-to-one for all t, 

(iii) 1(8/8t)ap(x, t)l _< M (constant) for all (x, t) E U. 

(c) The functions aN(t) -- SUPxea N I det (I)' t (X)1-1 satisfy 

(i) limu--,oc dm(1) -" 0, 
(ii) limN--,o~ fd dN(t) dt  -- O. 

Then the imbedding W m'p (f2) --+ L p (~)  is compact. 

Proof. Since we have W m'p (f2) --~ W I'p (f2) --~ L p (f2) it is sufficient to prove 
that the latter imbedding is compact. Let u 6 C 1 (f2). For each x E QN we have 

Ji 0 dt /,/(X) -- /,/((I)l (X)) -- ~--~/,t (di)t(X)) . 

Now 

Also 

L lU(*l(X))ldx-%<dN(1)L lU(*l(X))lldet*'l(X)ldx 
N N 

= dN(1) ~ lu(y)l dy 
1 (~"2N) 

< du(1) f. lu(y)l dy. 

fO 0 u (| s fo 1 dx ~ dx Igradu(,t(x))l ~, , (x)  dt 
N 

fo I s <_ M dN(t) dt Igradu(,,(x))l Idet,:(x) I dx 
N 

(fo 1 ) ( L  ) < M dn(t)  dt  Igradu(y)] dy . 

Putting 8s -- max {ds(1),  M f l  d s ( t ) d t } ,  we have 

f. l u (x ) ldx  < 3N f (I.(y)l + [gradu(y)[)dy <_ ~N [lUI[1,1,f2 
N 

(30) 
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and limN__,~ ~N = 0. 

Now suppose u is real-valued and belongs to C 1 (~"2) O W I'p (~"~). By H61der's 
inequality, the distributional derivatives of lu[ p 

DjIul  p - p .  lulp- l  . sgnu  �9 Dju ,  

satisfy 

L l D j l u ( x ) l P [ d x  < p IIDj.llo.p.  II.llg.;l  < p Ilull p - -  , - -  1,p,f2 " 

Thus lul p E W 1'1 (~"2) and by Theorem 3.17 there is a sequence {r } of functions 
in C1(~) A W1'1(g2) such that l i m j ~  II J -lulell 1,1,  = 0. Thus, by (30) 

f l u ( x ) l P d x -  .lim f n  C j ( x ) d x  <_ l imsup3g Ilcjlll,l,~ 
N j ---+ oo N j--+OO 

_< Illu I II 1,1, f2 - < K ~ N  11 u II pl,p,f2 ' 

where K = K (n, p). This inequality holds for arbitrary complex-valued function 
u 6 C1(f2) N WI'p(f2) by virtue of its separate applications to the real and 
imaginary parts of u. 

If S is a bounded set in W I'p ( ~ )  and e > 0, we may, by the above inequality, 
select N so that for all u 6 S 

f a  lu(x)l  p dx  < e. 
N 

S i n c e  W I'p (~'2 - ~'2N) ~ L p ( ~  -- ~"2N) i s  compact, the precompactness o f  S i n  

L p (f2) follows by Theorem 2.33. Hence W I'p (f2) -+ L p (f2) is compact. | 

6.53 EXAMPLE Consider again the domain of Examples 6.48 and 6.51 and 
the flow r given in the latter example. We have 

f ( x )  
du ( t )  -- sup < 1 if 0 < t < 1 

x>_U f (x - t) - - - 

and by (28) 
lim dN(t)  = 0 

N--+e~ 

Thus by dominated convergence 

if t > O .  

lim ~o 1 
N--+ o<~ 

dm(t)  d t  = O. 
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The assumption that f '  is bounded guarantees that the speed I(O/Ot)~(x, y, t)l 
is bounded on U. Thus S2 satisfies the hypotheses of Theorem 6.52 and the 
imbedding W m'p (f2) --+ L p (~) is compact for this domain. I 

6.54 EXAMPLE Theorem 6.52 can also be used to show the compactness 
of W m'p ( ~ )  ~ L p (f2) for some bounded domains to which neither the Rellich- 
Kondrachov theorem nor the techniques used in its proof can be applied. For 
example, we consider 

a = { ( x , y )  E R  2 �9 0 < x  < 2 ,  0 < y  < f (x )} ,  

where f 6 C 1 ([0, 2]) is positive, nondecreasing, has bounded derivative f ' ,  and 
satisfies limx__,0+ f ( x )  = 0. Let 

U -- {(x, y, t) EI~ 3 " (x ,y)  e a ,  --x < t  < 2 - - x }  

and define the flow �9 �9 U --+ S2 by 

, ( x ,  y , t )  -- ( x  + t f (x + t) ) 
' f ( x )  Y " 

Then det ~'t(x, y) -- f ( x  + t ) / f ( x ) .  If f2~v = {(x, y) E ~2 �9 x > 1/N}, then 

f(x) 
du(t)  -- sup 

O<x<_l/U f (x + t) 

satisfies du(t)  < 1 for 0 _< t _< 1, and l i m u ~  dN(t) -- 0 if t > 0. Hence also 
limu~oc f2 d u ( t ) d t  -- 0 by dominated convergence. Since ~2~v is bounded and 
satisfies the cone condition, and since the boundedness of O~/Ot is assured by 
that of f ' ,  we have, by Theorem 6.52 the compactness of 

wm'P(~"2) ~ LP(~'~). (31) 

However, suppose that limx~0+ f ( x ) / x  ~ -- 0 for every k. (For example, this 
is true if f ( x )  = e-1/~.) Then ~2 has an exponential cusp at the origin and by 
Theorem 4.48 there exists no imbedding of the form W m,p (~"~) ~ L q (~) for any 
q > p so the method of proof of the Rellich-Kondrachov theorem cannot be used 
to show the compactness of (31). 

6.55 REMARKS 

1. It is easy to imagine domains more general than those in the above exam- 
ples to which Theorem 6.52 applies, although it may be difficult to specify 
an appropriate flow. A domain with many (perhaps infinitely many) un- 
bounded branches can, if connected, admit a suitable flow provided volume 
decays sufficiently rapidly in each branch, a condition not fulfilled by the 
domain S2 in Example 6.49. For unbounded domains in which volume 
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decays monotonically in each branch Theorem 6.45 is essentially a con- 
verse of Theorem 6.52 in that the proof of Theorem 6.45 can be applied 
separately to show that the volume decays in each branch in the required 
way. 

2. Since the only unbounded domains for which W m'p ([2) imbeds compactly 
into Lp (f2) have finite volume there can be no extensions of Theorem 6.52 
to give compact imbeddings into L q (~) (where q > p), or C8(~) etc.; 
there do not exist such imbeddings. 

Hilbert-Schmidt Imbeddings 

6.56 (Complete Orthonormal  Systems) A complete orthonormal system in 
a separable Hilbert space X is a sequence {ei}i~176 of elements of X satisfying 

1 i f i = j  
(ei ,  e j ) x  - -  0 i f /  ~- j ,  

(where (., ")x is the inner product on X), and such that for each x 6 X we have 

lim 
k--+ oo 

k 
x -- y ~ ( X ,  e i ) x e i ; X  

i=1 
= 0 .  (32) 

Thus x = y~i~176 (x, ei)ei, the series converging with respect to the norm in X. 
It is well known that every separable Hilbert space possesses such a complete 
orthonormal system. There follows from (32) the Parseval identity 

oo 

IIx; Xll 2 - ~ I(x, ei)x] 2. 
i = 1  

6.57 (Hilbert-Schmidt Operators) Let X and Y be two separable Hilbert 
spaces and let {ei}i~ and {J~}i~--1 be given complete orthomomal systems in X 
and Y respectively. Let A be a bounded linear operator with domain X taking 
values in Y, and let A* be the adjoint of A taking Y into X and defined by 

(x, A*y)x  -- (Ax,  Y)r, x 6 X ,  y 6 Y .  

Define 

(x) (x) 

]][ A 1]]2 _ ~ ii Aei; Y ]]2, 88] A* ill = II A* X II 
i - -1  i = l  
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If IIIAlll is finite, A is called a Hilbert-Schmidt operator and we call IIIAIll its 
Hilbert-Schmidt norm. Recall that the operator norm of A is given by 

IIAII -- sup{llAx; Eli " IIx;Xll ~ 1}. 

We must justify the definition of the Hilbert-Schmidt norm. 

6.58 L E M M A  The norms IlIA Ill and ILIA* Ill are independent of the particular 
orthonormal systems {ei } and {f/} used to define them. Moreover 

III A Ill = III A* III ~ II A II. 

Proof.  By Parseval's identity 

oo c~ o43 

- ; , I 2 IIIAIII 2 ~ IlAei YI[ 2 - Z Z  ](Aei f j )y  
i = 1  i = 1  j = l  

o~ o~ oo 

= ~ ~ ](ei, A * j ~ ) x [  2 - -  Z llA*  ; xll 2 - l i l  A-lit2. 
j = l  i = 1  j = l  

Hence each expression is independent of {ei } and {j~ }. For any x 6 X we have 

II Ax ; Y I12 t : Z ( X ,  e i)xAei;  Y < I(x, ei)xI IlAei; YII 
i = 1  i = 1  

<-(~](x'ei)xl2)(~llAej;y['2) j = l  

Hence I[ A I] < ]1] A ][] as required. I 

6.59 R E M A R K  Consider the scalars (Aei, f j )  for 1 < i, j < ~ ;  they are the 
entries in an infinite matrix representing the operator A. The lemma above shows 
that the Hilbert-Schmidt norm of A is the sum of the squares of the absolute values 
of the elements of this matrix. Similarly, the numbers (A*j~, ei) a r e  the entries 
in a matrix representing A*. Since these matrices are adjoints of each other, the 
equality of the corresponding Hilbert-Schmidt norms of the operators is assured. 

6.60 We leave to the reader the task of verifying the following assertions. 

(a) If X, Y, and Z are separable Hilbert spaces and A and B are bounded linear 
operators from X into Y and Y into Z, respectively, then B o A, which 
maps X into Z, is a Hilbert-Schmidt operator if either A or B is. If A is 
Hilbert-Schmidt, then Ill B o a 111 < l] B 11111 a 111. 
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(b) Every Hilbert-Schmidt operator is compact. 

The following Theorem, due to Maurin [Mr] has far-reaching implications for 
eigenfunction expansions corresponding to differential operators. 

6.61 T H E O R E M  (Maurin's Theorem) Let f2 be a bounded domain in I~ n 
satisfying the cone condition. Let m and k be nonnegative integers with k > n/2. 
Then the imbedding map 

W m+k'2 (~'2) ~ W m'2 (~2) (33) 

is a Hilbert-Schmidt operator. Similarly the imbedding map 

W g  +k,2 (~-'~) _.+ W g  ,2 (~"~) (34) 

is a Hilbert-Schmidt operator for any bounded domain ~2. 

Proof. Given y 6 f2 and c~ with I~1 _< m we define a linear functional Ty on 
W re+k,2 (f2) by 

Ty (u) = Oofu(y). 

Since 2k > m, the Sobolev Imbedding Theorem 4.12 implies that Ty is bounded 

on W m+k,e (f2) and has norm bounded by a constant K independent of y and or: 

ITy(u)l _< max sup IDofu(x)l < K IlUllm+k,2,a. 
0---Iofl- <m x~S2 

By the Riesz representation theorem for Hilbert spaces there exists Vy ~ W m+k'2 (~2) 
such that 

of Dofu(y) = Ty (u) = (u, Vy)m+k , 

where (., ")m+k is the inner product on W m+k'2 (~2). Moreover 

If {ei}i~ is a complete orthonormal system in W m+k'2 (~'2), then 

II yJl ~ 12 k m+k,2,f2 -- (ei, Uy)m+k -- IDof ei(y)l 2. 
i=1 i=1 

Consequently, 

z of 
Z Ilei 112 2,s2 < ~ 11Vy II 2 d y  < g v o l ( ~ )  < s , m m+k,2,f2 
i=1 Iofl_<m Iofl_<m 
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Hence imbedding (33) is Hilbert-Schmidt. The corresponding imbedding (34) is 
also Hilbert-Schmidt without the cone-condition requirement as it is not needed 
for the application of Theorem 4.12 in this case. | 

The following generalization of Maurin's theorem is due to Clark [Ck]. 

6.62 T H E O R E M  Let/z be a nonnegative, measurable function defined on the 
domain f2 in I~'. Let Wo '2;u (f2) be the Hilbert space obtained by completing 
C~  (f2) with respect to the weighted norm 

IlUllm,2;~ -- ID~ u(x)l 2 #(x)  dx 
I 

For y 6 f2 let r (y)  = dist(y, bdry f2). Suppose that 

f (r(y))  2~ #(y)  dy < oo (35) 

for some nonnegative integer v. If k > v + n/2, then the imbedding 

Wg +k,2 (~,'~) __.> Wo ,2;# (~'-~) (36) 

(exists and) is Hilbert-Schmidt. 

Proof. The argument is parallel to that given in the proof of Maurin's theorem 
Of above. Let {ei}, Ty, and Uy be defined as there. If y E f2 let Y0 be chosen in 

bdry f2 such that r(y)  = lY - Y01. If v is a positive integer and u 6 C~(~2), we 
have by Taylor's formula with remainder 

1D'~+~ )~ 
D'~ u(Y) - Z fl! u(y~)(y - y~ 

I/~l=v 

for some points y~ satisfying lY - Y~I < r(y) .  If I~l ~ m and k > v + n/2, we 
obtain from Theorem 4.12 

ID~ < K Ilullm+k,e,a (r(Y)) ~. 

By completion this inequality holds for any u e Wo +k'2 (~'2). As in the proof of 
Maurin's theorem, it follows that 

IlVyllm+, ,2,  = sup 
Ilullm+~,z,a-1 

ID'~.(y)I ~ K(r(y)) '~, 
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and hence also that 

Z Ilei 112m,2;u --< Z IlVYm+k,2,s2 lz(y) d y ~ l l  2 
i=1 Iotl<m 

--< K2 Z f. (z'(Y)) 2v/z(y) dy < cxz 
I~l_<m 

by (35). Hence imbedding (36) is Hilbert-Schmidt. | 

6.63 R E M A R K  Various choices of/z and v lead to generalizations of Maurin's 
theorem for imbeddings of the sort (34). I f /z (x)  = 1 and v = 0 we obtain the 
obvious generalization to unbounded domains of finite volume. If # (x )  -- 1 
and v > 0, f2 may be unbounded and even have infinite volume, but it must 
be quasibounded by (35). Of course quasiboundedness may not be sufficient to 
guarantee (35). If # is the characteristic function of a bounded subdomain S20 of 
f2, and v = 0, we obtain the Hilbert-Schmidt imbedding 

W~ +k'2 (~"~) ~ wm'2 (~"~0), k>n/2. 



7 
FRACTIONAL ORDER SPACES 

Introduction 

7.1 This chapter is concerned with extending the notion of the standard Sobolev 
space wm'P(~'2) to include spaces where m need not be an integer. There are 
various ways to define such f rac t iona l  order  spaces; many of them depend on 
using interpolation to construct scales of spaces suitably intermediate between 
two extreme spaces, say L p (f2) and W m'p (~'2). 

Interpolation methods themselves come in two flavours: real methods and com- 
plex methods. We have already seen an example of the real method in the 
Marcinkiewicz theorem of Paragraph 2.58. Although the details of the real 
method can be found in several sources, for example, [BB], [BL], and [BSh], 
we shall provide a treatment here in sufficient detail to make clear its application 
to the development of the Besov spaces, one of the scales of fractional order 
Sobolev spaces that particularly lends itself to characterizing the spaces of traces 
of functions in W m'p (~ )  on the boundaries of smoothly bounded domains f2; such 
characterizations are useful in the study of boundary-value problems. Several 
older interpolation methods are known [BL, pp. 70-75] to be equivalent to the 
now-standard real interpolation method that we use here. In the the corresponding 
chapter of the previous edition [A] of this book, the older method of traces was 
used rather than the method presented in this edition. Later in this Chapter, we 
prove a trace theorem (Theorem 7.39) giving an instance of that equivalence. 
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After that we shall describe more briefly other scales of fractional order Sobolev 
spaces, some obtained by complex methods and some by Fourier decompositions. 

The Bochner Integral 

7.2 In developing the real interpolation method below we will use the concept 
of the integral of a Banach-space-valued function defined on an interval on the 
real line 1t{. (For the complex method we will use the concept of analytic Banach- 
space-valued functions of a complex variable.) We present here a brief description 
of the Bochner integral, referring the reader to [Y] or [BB] for more details. 

Let X be a Banach space with norm I1" II x and let f be a function defined on an 
interval (a, b) in I~ (which may be infinite) and having values in X. In addition, 
let/z be a measure on (a, b) given by dlz(t)  = w(t)  dt  where w is continuous and 
positive on (a, b). Of special concern to us later will be the case where a = 0, 
b = oe, and w(t) = 1/t .  In this case/z is the Haar measure on (0, oe), which is 
invariant under scaling in the multiplicative group (0, co): if (c, d) C (0, cx~) and 
)~ > 0, then/z ()~c, ~.d) = # (c, d). 

We want to define the integral of f over (a, b). 

7.3 (Definition of the Bochner Integral) If {A1 . . . . .  Ak} is a finite collec- 
tion of mutually disjoint subsets of (a, b) each having finite #-measure, and if 
{Xl . . . . .  x~ } is a corresponding set of elements of X, we call the function f defined 
by 

k 

f (t) -- ~ XAi (t)Xi, a < t < b, 
i=1  

a simple function on (a, b) into X. For such simple functions we define, obviously, 

 (fa ) fa f(t)dlz(t)-- ~jl~(ai)xi-- i~ 1 w(t) dt xi. 
i=1  .=  i 

Of course, a different representation of the simple function f using a different 
collection of subsets of (a, b) will yield the same value for the integral; the subsets 
in the collections need not be mutually disjoint, and given two such collections we 
can always form an equivalent mutually disjoint collection consisting of pairwise 
intersections of the elements of the two collections. 

Now let f an arbitrary function defined on (a, b) into X. We say that f is 
(strongly) measurable on (a, b) if there exists a sequence {j~ } of simple functions 
with supports in (a, b) such that 

lim f<,)llx a.e. in (a,b) .  (1) 
j - -+ec 
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It can be shown that f is measurable if its range is separable and if, for each x'  in 
the dual of X, the scalar-valued function x ' ( f ( . ) )  is measurable on (a, b). 

Suppose that a sequence of simple functions {j~ } satisfying (1) can be chosen in 
such a way that 

fa lim [[ j~ ( t ) - / ( t ) l l  x d . ( t ) =  O. 
j-+oo 

Then we say that f is Bochner integrable on (a, b) and we define 

fa fa f (t) d#(t)  = .lim f j( t)  d#(t).  
j ----~ oc  

Again we observe that the limit does not depend on the choice of the approximating 
simple functions. 

A measurable function f is integrable on (a, b) if and only if the scalar-valued 
function II f ( ' ) I lx  is integrable on (a, b). In fact, there holds the "triangle 
inequality" 

fa fa f (t) d#(t)  < IIf (t)llx d#(t).  
X 

7.4 (The Spaces Lq(a, b; dbt, X)) If 1 < q < oo, we say that f e 
Lq(a, b; d#, X) provided [If ; Lq( a, b; d#, X)ll < ~ ,  where /(Sa )l q 

][ / ;  Lq(a, b; d#, X) u - []f(t)[] q d#(t)  

essSUPa<t<b {l[f (t)[[x} 

i f l < q < o c  

i fq  -- ec. 

In particular, if X -- IR or X -- C, we will denote Lq(a, b; dtz, X) simply by 
L q (a, b; d#). 

7.5 (The spaces L q) Of much importance below is the special case where 
X = IR or C, (a, b) = (0, ec), and d #  = dt/t', we will further abbreviate 
the notation for this , denoting Lq(a, b; d#, X) simply L q. Note that L q is 
equivalent to L q (It{) with Lebesgue measure via a change of variable: if t = e s 
and f ( t )  - f ( e  s) - F(s), then ]If; Lq][ -- ]lFllq,R. Most of the properties of 
L q (I~) transfer to properties of L q. In particular H61der's and Young's inequalities 
hold; we will need both of them below. It should be noted that the convolution of 
two functions f and g defined on (0, ec) and integrated with respect to the Haar 
measure dt  / t is given by 

fo (,) ,s f , g(t) = f - g(s) 
S S 
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and Young's inequality proclaims II f *  g; L~, II II f ;  L: I1 Ilg ; tq  II provided 
p, q, r > 1 and 1 + ( l / r )  - ( l / p )  + ( l /q ) .  

Intermediate Spaces and Interpolation --- The Real Method 

7.6 In this Section we will be discussing the construction of Banach spaces X 
that are suitably intermediate between two Banach spaces X0 and X1, each of 
which is (continuously) imbedded in a Hausdorff topological vector space X, and 
whose intersection is nontrivial. (Such a pair of spaces {X0, X1} is called an 
interpolation pair and X is called an intermediate space of the pair. In some of 
our later applications, we will have X1 ~ Xo (for example, Xo = LP(~) and 
X 1 = W m,p (~2)), in which case we can clearly take A" = Xo. We shall, in fact, be 
constructing families of such intermediate spaces Xo,q between X0 and X1, such 
that if Yo,q is the corresponding intermediate space for another such interpolation 
pair { Y0, Y1 } with Y0 and Y1 imbedded in y ,  and if T is a linear operator from ~' 
into 32 (for example an imbedding operator) such that T is bounded from Xi into 
Yi, i = 0, 1, then T will also be bounded from Xo,q into Yo,q. 

There are many different ways of constructing such intermediate spaces, mostly 
leading to the same spaces with equivalent norms. We examine here two such 
methods, the J-method and the K-method, (together called the real method) due 
to Lions and Peetre. The theory is developed in several texts, in particular [BB] 
and [BL]. Our approach follows [BB] and we will omit some aspects of the theory 
for which we have no future need. 

7.7 (Intermediate Spaces) Let I1" II X i denote the norm in X i ,  i = 0, 1. The 
intersection Xo M X1 and the algebraic sum Xo + X1 -- {u = u0 + Ul " uo 6 Xo, 
U l E X1} are themselves Banach spaces with respect to the norms 

II u II xonx, - max{ II u II x0 ,  II u II x, } 

Ilullxo+x, - i n f { l l u o l l x 0  + I lu l l lx ,  " u = u0 + Ul, /g0 E So,  Ul E Xl 1. 

and Xo A X1 ~ Xi ~ XO -'~ X1 for i - O, 1. 

In general, we say that a Banach space X is intermediate between Xo and X1 if 

there exist the imbeddings 

X o f'I X1 ---> X "---> X o + X1.  

7.8 (The J and K norms) For each fixed t > 0 the following functionals 
define norms on X0 A X1 and X0 + X1 respectively, equivalent to the norms 

defined above: 

J(t; u) = m a x { l l u l l x o ,  t llullx, } 

K(t; u) = inf{llu011Xo + t Ilulllx~ " u - u0 + Ul, U0 E X0, Ul E X1}. 
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Evident ly  J (1 ;  u) = Ilullxonx,, K(1;  u) -- Ilullxo+x,, and J(t; u) and K(t; u) are 
cont inuous  and monoton ica l ly  increasing funct ions of  t on (0, ~ ) .  Moreove r  

min{1, t} Ilullxonx, <- J(t; u) < max{l ,  t} Ilullxons, (2) 

, < K(t; u) < max{1 t} Ilullxo+x,. (3) min{1 t} Ilullxo+x, _ _ , 

J (t; u) is a convex funct ion of  t because,  if 0 < a < b and 0 < 0 < 1, 

J ( ( 1  - O ) a  +Ob; u) - max{llul lx0,  (1 - O ) a  Ilullx, +Ob Ilullx, } 

_ (1 - 0) max  {11 u II x0, a II u II x, } + 0 max  { II u II go,  b II u II x, } 

= (1 - O)J(a; u) 4- OJ(b; u). 

Also for such a,  b, 0 and any uo E Xo and U l 6 X1 for which  u = uo 4- U l we 

have 

Iluollxo + ((1 - O ) a  +Ob)Ilulllx, 

-- (1 - O)(lluollxo + a Ilulllx,) + O(lluollxo + b Ilu~llx,) 
> (1 - O)K(a; u) 4- OK(b; u), 

so that K( (1  - O)a 4- Ob); u) > (1 - O)K(a; u) 4- OK(b; u) and K(t; u) is a 

concave  funct ion of  t. 

Finally we observe  that if u E Xo A X1, then for any posit ive t and s we 

have K(t; u) < Ilullxo _< J(s; u) and K(t; u) < t Ilullx, = (t /s)s Ilullx, _< 
( t /s)J(s;  u). Accordingly ,  

/'1 g ( t ;  u) ___ min  1, - J ( s ;  u) .  (4) 
S 

7.9 (The K-method) If  0 < 0 < 1 and 1 < q < c~ we denote  by 
(Xo, X1)O,q;K the space of  all u 6 Xo + X1 such that the funct ion t --+ t -~  u) 
belongs  to L q -- L q (0, cx~" d t / t ) .  

Of course,  the zero e lement  u -- 0 of  Xo 4- X1 always be longs  to (Xo, X1)O,q;K. 
The fol lowing theorem shows that if 1 < q < c~ and either 0 - 0 or 0 - 1, 

then (X0, X1)O,q;K contains only this trivial e lement .  Otherwise  (Xo, X1)O,q;K is 
an in termedia te  space be tween  X0 and X1. 

7.10 T H E O R E M  If and only if e i t h e r l  < q  < o o a n d 0 < 0  < l o r q - c x )  

and 0 < 0 < 1, then the space (Xo, X1)O,q;K is a nontrivial  Banach  space with 

no rm 

i(fo )l/q ~ dt 
[lullo,q;g (t-~ u))q if  1 < -- t _ _ q < C ~  

eSS suP0<t<c~ { t-O K (t; u) } if q = cx~. 
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Furthermore, 

Ilullo,q;K 
IlUllXo+X, --< lit_ o min{1, zqll --- Ilullxonx, (5) 

so there hold the imbeddings 

X0 (-] X1 __> (X0, X1)O,q.K ___> Xo qt_ X1 

and (X0, X1)O,q;K is an intermediate space between X0 and Xl. 

Otherwise (X0, X1)O,q;K -- {0}. 

Proof. It is easily checked that the function t --+ t -~ min{ 1, t} belongs to L q if 
and only if 0 and q satisfy the conditions of the theorem. Since (3) shows that 

II t-~ min{1, t}; Lql[ Ilullxo+x, ~ Iit-~ u); Lqll -[[ullo,q;K, 

there can be no nonzero elements of (Xo, X1)O,q;K unless those conditions are 
satisfied. If so, then the left inequality in (5) holds and (Xo, XI)O,q;K ~ XO "Jr- X1. 
Also, by (4) we have K(t; u) < min{1, t}J(1; u) = min{1, t} Ilullxonx, so the 
right inequality in (5) holds and X0 n X1 --+ (X0, X1)O,q;K. 

Verification that Ilullo,q;K is a norm and that (X0, X1)O,q;K is complete under it are 
left as exercises for the reader. I 

Note that u e X0 and 0 = 0 implies that t -~  u) < Ilullxo. Also, u e X1 and 
0 = 1 implies that t -~  u) < Ilullx~. Thus we also have 

Xo ~ (So, X1)O,c~;K and X1 ~ (Xo, X1)I,~;K. (6) 

7.11 T H E O R E M  (A Discrete Version of the K-method) For each integer 
i let Ki(u) : K(2i; u) . Then u e (X0, X1)O,q.K if and only if the sequence 
{2 -iO Ki(u)}i~176 belongs to the space ~q (defined in Paragraph 2.27). Moreover, 

the s of that sequence is equivalent to Ilullo,q;K. 
Proof.  First write (for 1 _ q < c~) 

cX) ~ 2 i+! 

fo (,-oK(,; u))q -- Z (,-oK(,; ,))q 
i = - - ~  

Since K (t; u) increases and t -~ decreases as t increases, we have for 2 i _< t _< 2 TM , 

2-(i+l)~ <_ t -~  u) <_ 2-i~ 
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so that 

2i+1 
2_Oqln2[2_iOKi(u)] q < f (t_OK(t; u))q dt - -  < 20q In 2 1 2  - ( i+1)0  K i + l  (U)] q. 

J2 i t 

Summing on i and taking qth roots then gives 

2-~ l l { 2 - i ~  ; eqll ~ I l U l l o , q  . K  <~ 2~ l l { 2 - i ~  ; g~qll " 

The proof for q -- ~ is easier and left for the reader. | 

7.12 (The J -method)  If 0 ~ 0 ~ 1 and 1 < q < c~ we denote by 
(X0, Xl)o,q;j the space of all u 6 X0 + X1 such that 

foo ~ d t u - -  f (t) t 

(Bochner integral) for some f 6 L 1 (0, cx~; d t / t ,  X0+Xl )  having values in XoAX1 
and such that the real-valued function t --+ t -~ J (t; f )  belongs to L q. 

7.13 T H E O R E M  If either 1 < q < ~ and 0 < 0 < 1 or q = 1 and 
0 < 0 < 1, then (X0, X1)o,q;J is a nontrivial Banach space with norm 

- inf Ilt-~ IlUllo,q;j fES(u) 

- i n f  [ t - o j ( t ;  f ( t ) ) ] q  2 1/q 
feS(u) 

( i fq  < c~), 

where 

S(u) - f ~ LI(o, cx~; dt / t ,  Xo + X1) " U - -  f (t) t " 

Furthermore, 

< ([I t-~ t}; ~ q l l ) I l u l l ~  IlUllxoNx, Ilu IIx0§ _ , _ (7) 

so that 

So 1"-) X1 ~ (Xo, Xl)o,q;j ~ Xo + X1 

and (Xo, X1)o,q;J is an intermediate space between X0 and X 1. 

Proof. Again we leave verification of the norm and completeness properties to 
the reader and we concentrate on the imbeddings. 
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Let f E S(u). By (3) and (4) with t = ~1 and s = r we have 

IIf(r)llXo+X < K(1 f ( r ) ) <  min{1 1} J ( r ,  f ( r ) )  
1 - -  ' - -  ' ~ ,  

Accordingly, If ( l /q)  + (1/q') -- 1, then by H61der's inequality 

_ - -  < min 1 - J ( r , / ( r ) )  I lul lxo+x,  < I I f  ( r ) l l x o + x ,  r ' r r 

< r ~  1} ; L q ' - r  ]lt-~ 

The first factor in this product of norms is finite if 0 and q satisfy the conditions 
of the theorem, and if we replace r with 1/t in it, we can see that it is equal to 

II q]l t -~ min{ 1, t} ; L . .  Since the above inequality holds for all f E S(u), the left 

inequality in (7) is established and (Xo, X1)o,q;j ~ Xo + X1. 
To verify the right inequality in (7), let u E Xo n X:t. Let 4~(t) > 0 satisfy 

g q II = 1. H61der's inequality shows that 

f0 ~ dr  4~(r) m in{l, l / r}  I < ec. 
T 

If 

then f E S(u) and 

q~(t) min{1, 1/t} 
f (t) - [.~ dr u, 

Jo g~(r) ~n{1,  l / r}  I 
Z" 

J(t; f (t)) = r min{1, 1/t} 

fo ~ dr 4~(r) min{1, l / r } -  
T 

~(t) 
< 

- f o  ~ dr  4~(r) min{1, I / r}  I 
"C 

J (t; u) 

I lu l lxonx,  , 

the latter inequality following from (2) since max{ 1, t} - (min{1, 1/t}) -1 . There- 
fore, 

(/o 4~(r)min{1, l / r}  I Ilullo,q;j 

(/o (/o < q~(r)min{1, l / r } - -  (t_oj(t; f( t))q t 1/q 
T 

(fo ~ )q d__~_~) 1/q <- (t-~ [[Ullxonxl --IlUllxonxl. 
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By the converse to H61der's inequality, 

{fo ~ d r  -0 q __ } sup ~b(r)min{1, l / r }  " I1~ *<~;g ,  II 1 
Z" 

= lifo min{1, 1/~}; gql[-  , ~ go'l[ 

Thus the right inequality in (7) is established and Xo • X1 ~ (Xo, X1)o,q;j. 1 

7.14 Observe that if u - f o  f (t) d t / t  where f (t) E Xo A X1, then 

fo ~ dt fo ~ Ilullx0_ < IIf (t)llxo t - < J(t ,  f (t)) dtt 

fo .,/o , ,  
Ilullx, _ < IIf (t)llx, t - < t - l  j ( t '  f (t)) t " 

Each of these estimates holds for all such representations of u, so Ilu IIx0 - Ilu II0,a;j 
< Ilulll,1;j. Combining these with (6) we obtain and I l u l l x ,  _ 

(Xo, X1)o,1;J ~ X 0 ~ (X O, X1)o, cx:~;K 

(Xo, X1)I,1;j ~ X1 ~ (Xo, X1)l,cx~;K- 
(8) 

There is also a discrete version of the J-method leading to an equivalent norm for 

(Xo, X1)o,q;J. 

7.15 T H E O R E M  (A Discrete Version of the J -me thod)  An element u of 
OO 

X0 + X1 belongs to (X0, Xl)O,q;J if and only if u -- ~_,i=-o~ ui where the series 
converges in X0 + X1 and the sequence {2 -~ J(2 i, ui)} belongs to s In this case 

inf 1 1 { 2 - ~  Hi)I; eq l l  �9 u - ~_~ Ui 

is a norm on (X0, X1)o,q;j equivalent to Ilullo,q;j. 
Proof. Again we will show this for 1 < q < c~ and leave the easier case q - cx~ 

to the reader. 

First suppose that u ~ (Xo, X1)o,q;j and let e > 0. Then there exists a function 

f E LI(O, cx~; dr~t, Xo + X1) such that 

fo ~ dt u =  f (t) t 

and 

fo~[_o j(,; i~,))]q d, t -< (1 + e)Ilullo,q;j. 
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Let the sequence {/'/i }i~-cx~ be defined by 

f /+1 dt 
Ui  - -  f(t) - - .  

,]2 i t 
oo then Y~i=-~ ui converges to u in X0 + X1 because the integral representation 

converges to u there. Moreover, 

2i+1 

2-i~ i" bli) < f 2-i~ f ( t ) )  dt 
, m ,12 i t 

2i+1 

- -2  0 f 2-(i+l)~ J (t; f (t)) dt 
,12 i t 

2i+1 

< 2 0 f t -~ J(t; f ( t ) )  dt 
j 2  i t 

) 2"+ [t_ O J dt 1/q 
<- 2~ i (t; f ( t ) )]  q t ' 

where q' = q / (q  - 1) and H61der's inequality was used in the last line. Thus 

fo Z [ 2-iOJ(2i; lgi)]q ~ 2~ [t_oj(,; f ( t ) )]  q d, 
i =-~o t 

and, since ~ is arbitrary, 

]l{2-i~ ui)};  s < 2~ 1/q' I[ullo,q;a. 

oo Conversely, if u = ~--~i=-cx~/gi where the series converges in X0 + X1, we can 
define a function f 6 Ll(O, cxz; dt / t ,  Xo + X1) by 

1 
f ( t )  = i - ~  Ui, for 2 i < t < 2 i+1, --C~ < i < CX~, 

and we will have 

f 2/+1 dt f e~ dt 
f (t) m = lg i and u - f (t) t 

j 2  i t 

Moreover, 

f 2i+1 d, f 2 i + l [ 2 _ i O ( 2 i +  1 q d t  
[t -~ J(t; f (t))]q t < J ; f ( t ) ) ]  t 

J 2 i J 2 i 

( 2 )qf2i+l[2-ioJ(2i.l, li)]q d' 
< ~ jz i  ' t 

2q 
= [2 - i~  i" l, l i ) ]  q 

(ln 2)q-1 ' . 
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Summing on i then gives 

[]U]IO,q; J < (ln2)l/q , l l{2-i~ u i ) } ; e q l l . I I  

Next we prove that for 0 < 0 < 1 the J-  and K-methods generate the same 
intermediate spaces with equivalent norms. 

7.16 T H E O R E M  (Equivalence Theorem) If 0 < 0 < 1 and 1 < q < oo, 

then 

(a) (X0, X1)o,q;J --> (X0, X1)O,q;K, and 

(b) (X0, X1)o,q;K ---> (X0, X1)o,q.j. There fore  

(c) (X0, Xl)o,q.j -- (S0,  X1)O,q;K, the two spaces having equivalent norms.  

Proof. Conclusion (a) is a consequence of the somewhat stronger result 

(Xo, X1)o,p'J -+ (Xo, X1)O,q;K, if 1 _< p < q (9) 

which we now prove. Let u -- f o  f (s) d s / s  E (Xo, X1)o,p'J. Since K(t;  .) is a 
norm on Xo + Xa, we have by the triangle inequality and (4) 

fo t - ~  u) < t -~ K(t ;  f ( s ) )  ds 
S 

-o o (  
< - min 1, - s J s; f ( s )  

S S S 

= [,-0 min{1, ,}] �9 [t -~ J( t;  f ( , ) ) ] .  

By Young's inequality with 1 -+- ( l / q )  -- ( l / r )  -+- ( l / p )  (so r > 1) 

]]bll[O,q; K - - l i t -OK( t ;  U) ; tql[  

< Ht -~ min{1, ,};Lr[I  [I, - ~  f ( t ) ) ; L ; [ I  

<__ Co,p,q Ilullo,p;g, 

which confirms (9) and hence (a). 

Now we prove (b) by using the discrete versions of the J and K methods. Let 
u ~ (Xo, X1)O,p;K. By the definition of K(t;  u), for each integer i there exist 

vi ~ Xo and wi ~ X1 such that 

U -- Ui + //3i and Ilvillxo -+- 2i Ilwillx, <_ 2K(2i;  u). 

Then the sequences {2 -iO IIv~llx0} and {2 i(1-0) ]lwi[lx~} both belong to gq and 
each has s bounded by a constant times Ilu I]O,q;g. For each index i let 

ui - Vi+l - vi. Since 

0 = U -- U = (Vi+l + / /3 i+1) -  (Vi + Wi) -- ( V i + l -  Vi)+ (1/3i+1- We), 



216 Fractional Order Spaces 

we have, in fact, 

Ui "-- Vi+l -- Vi = 1/)i -- l/3i+1. 

The first of these representations of ui shows that {2 -iO Ilui IIx0} belongs to s the 
second representations shows that {2 i(1-0) Ilui IIx, } also belongs to s Therefore 
{2 -iO J (2i; ui) } E ~q and has s bounded by a constant times Ilu IIo,q;g. Since 
~q C ~cr the sequence {2 j(1-0) Ilwj IIx, } is bounded even though 2 j (1-0)  ~ OO 

--+ 0 as j --+ cr Since Y~J=0 ui - wo - Wj+l, the as j --> ~ .  Thus II ~J IIx, 
(x) 

half series Y~/=o converges to wo in X1 and hence in Xo + X1. Similarly, the 

half-series ~-~-~_~ ui converges to vo in Xo, and thus in Xo + XI. Thus the full 
series ~- , i=-~  ui converges to vo + wo -- u in Xo + X1 and we have 

Ilullo,q;j ~ const. Ilullo,q;g . 

This completes the proof of (b) and hence (c). I 

7.17 COROLLARY I f 0 < 0  < l a n d l  < p < q < c c ,  then 

(Xo, X1)o,p;K ~ (Xo, X1)o,q;K. (10) 

Proof. (Xo, X 1 ) O , p ; K  --> (Xo, X1)o,p;J --> (Xo, X 1 ) o , q . X  by part (b) and imbed- 
ding (9). 1 

7.18 (Classes of Intermediate Spaces) We define three classes of intermedi- 
ate spaces X between Xo and X1 as follows: 

(a) X belongs to class Jc~(0; Xo, X1) if for all u E X 

K( t ;  u) < C1 tO Ilullx, 

where C1 is a constant. 

(b) X belongs to class J (0; Xo, X1) if for all u 6 Xo A X1 

Ilu II x ~ C2 t -~  J (t; u), 

where C2 is a constant. 

(c) X belongs to class J~r Xo, X1) if X belongs to both ~"(0;  Xo, X1) and 
J (0; x0, Xl). 

The following lemma gives necessary and sufficient conditions for membership in 
these classes. 

7.19 L E M M A  
and X 1 . 

Let 0 < 0 < 1 and let X be an intermediate space between X0 
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(a) X E ~ ( 0 ;  Xo, X1) if and only if X --+ (Xo, X1)O,c~;K. 

(b) X 6 J r  (0; Xo, X1) if and only if (Xo, X1)o,1;j --+ X. 

(c) X 6 ~ ( 0 ;  Xo, X1) if and only if (Xo, Xl)o,1;j --+ X --+ (Xo, Xa)o,~;K. 

Proof. Conclusion (a) is immediate since [lull0,~.K = supo<t<~(t-~ u)). 
Since (c) follows from (a) and (b), only (b) requires proof. 

First suppose X 6 J r  (0; Xo, X1). Let u E (Xo, X1)o,a;j. If f ( t )  is any function 
on (0, cx~) with values in Xo 0 X1 such that u - f o  f ( t )  d t / t ,  then 

fo dt t -~ (t, dt 
_ - -  <~ C2 J " f ( t ) ) - 7 "  Ilullx < IIf  ( t) l lx t 

Since this holds for all such representations of u we have 

Ilullx ~ C2(X0, Xl)o ,1;s ,  (11) 

and so (X0, X1)O,I'J ~ X .  

Conversely, suppose that (Xo, Xl)o,1;J --+ X;  therefore (11) holds with some 
constant C2. Let u E Xo A X1, let )~ > 0 and t > O, and let 

{(1/)~)u i f te  -~ < s < t 
fz (s) -- 0 otherwise. 

Then 

fo e~ ds f z ( s )  
s = (f,e' 

Since J(s; (1/)v)u) - (1/)~)J(s; u) we have 

fo  ~ 
Ilullo,l.j ~ s -~ J(s; f~(s) 

ds 1 [" ds 
= -- S - O J ( s ; u )  m 

s )~ Jte-~ s 

Since s -~ J(s; u) is continuous in s and ftte_~ ds / s  - )~, we can let )~ ~ 0+ in the 

above inequality and obtain Ilull0,1;j _ t -~ J(t; u). Hence 

Ilullx _ C2(X0, X1)O,I'J <~ C2t-~ u) 

and the proof of (b) is complete. | 

The following corollary follows immediately, using the equivalence theorem, (10), 
and (8). 

7.20 COROLLARY I f 0 < 0  < l a n d l _ q < o o ,  then 

(X0, X1)o,q; J -- (S0, Xl)o,q.  K E ~ ( 0 ;  X0, Xl). 
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Moreover, Xo 6 ~ ( 0 ;  Xo, X1) and Xa 6 ~ ( 1 ;  Xo, X1). | 

Next we examine the result of constructing intermediate spaces between two 
intermediate spaces. 

7.21 T H E O R E M  (The Rei te ra t ion  Theorem)  Let 0 < 0o < 0x < 1 and 
let Xoo and Xo, be intermediate spaces between Xo and X1. For 0 < )~ < 1, let 

0 -- (1 - ~)00 + ~01. 
(a) I fX0i  E ~U(Oi;Xo, X1) f o r /  = 0 ,1 ,  and if either 0 < X < 1 and 

l_<q < o o o r O _ < X _ <  l a n d q - o o ,  then 

(Xoo, XOl)x,q; K ---+ (So, Xl)O,q;K . 

(b) If Xoi ~ J (Oi; XO, X1) for i = 0, 1, and if either 0 < X < 1 and 
1 < q < ~ o r 0 < X < l a n d q - l ,  then 

(Xo, Xl)o,q;j ~ (X0o, SOl)~,,q;j. 

(c) If Xoi ~ J~~ X0, X1) for i = 0, 1, and if 0 < X < 1 and 1 < q < oo, 
then 

(Xoo, So,)x,q; J -- (Xoo , Xo,)x,q; K -- (So, Xl)O,q.K -- (So, Xl)o ,q; j  . 

(d) Moreover, 

(go, Xl)oo, l . j  ~ (Xoo, Xo,)o, l ; j  ~ Xoo --+ (Xoo, Xo,)o, oo; K ~ (go, Xl)Oo,c~;K 

(Xo,  X l )o l , l . j  ~ (Xoo, XOl)l,1;j ~ SOl ~ (Xoo, XO,)l,cx~; K ~ (No, Xl)ol,oo;K. 

Proof.  The important conclusions here are (c) and (d) and these follow from (a) 
and (b) which we must prove. In both proofs we need to distinguish the function 
norms K (t; u) and J(t; u) used in the construction of the intermediate spaces 
between X0 and X1 from those used for the intermediate spaces between Xoo and 
XOl. We will use K* and J* for the latter. 

P r o o f  of (a) If u ~ (Xoo, XOl)x,q;K, then u = uo + Ul where Ui E Xoi. Since 

Xoi E JF(Oi; Xo, X1), we have 

K(t; u) < K(t; uo) 4- K(t; Ul) 

<- Co t~176 II .o; Xoo II + f i t  o. I1 u.; sol II 
( c1'~176176 I1"~ ; x0, II) <- Co, ~176 II.o ; Xoo II + Co 
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Since this estimate holds for all such representations of u, we have 

K (t" -< C~176176 K* ( Cl t~176176 u)  " - C o  ' 

If 0 = (1 - )00o + ~01 ,  then )~ = (0 - 0o)/(01 - -  00) ,  and (assuming q < co) 

[fo( ( ))qd~ttll/q ec C1 to 1_0o. U I1+~ K(t. u); L q II -< Co , (o Oo, K, Co 

Elo cl-*kC~ eCCs_)Vg,(s U)) q ___ o 
(01 - -  00) 1/q 

via the transformation s = (C1 / Co)t ~176176 Hence 

C~-xC) I lul lx K Ilullo q;K 5_ (01 - -  00) 1/q 'q; 

and so (Xoo, Xo,)z,q;i ~ --+ (Xo, Xl)o,q; K. 

P r o o f  of  (b) Let u E (Xo, X1)o,q;j. Then u -- f o  f (s) ds/s  for some f taking 

values in Xo A X1 satisfying s -~ J ( ( s ;  f (s)) ~ L q. Clearly f (s) e Xoo N Xo,. 
Since Xoi ~ J ;  (Oi; Xo, X1) we have 

J*(s; f(s)) - max {llf(s); Xool s IIf(s); Xo Ill 
< max {Cot-~176 f (s) ) ,  Clt-~ f ( s ) ) }  

- C~176176 max { 1 ' --coC1t-(~176176 J(t; f (s)). 

This estimate holds for all t > 0 so we can choose t so that t-(~176176 = Co~C1 
and obtain 

(C1sI-O~176176 ) 
J*(s ;  f ( s>)  < Co Coo J C00 ,] ; f ( s )  . 

If 0 = (1 - )000 + ~01 ,  then 

Ils ~J*(s; f (s~)  ; Lqll 

(z  EIc o + oo ((Cls l + + 
- c ~ c ~  Uoo / J b-g0 / 

< C O C~ (Or - 0o) [t-~ J g t 

= c ~ c ~ ( o ,  - Oo> ./q I , -~ J('; g('>); <11, 

)lq ds) 
; f ( s )  - -  

S 

1/q 
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where g(t) = f ((Co/C1)t ~176176 = f (s) e Xo N X1. Since 

fo ~ dt 1 fo ~ ds 1 
g(t) t 01 Oo f (s) - 

- -  S O 1  - -  O0 

we have 
c - ct 

Ilullz,q.j < ( 0 1 -  00) (q-1)/q Ilullo.q;j 

and so (X0, X1)o,q;j --+ (Xoo, Xo,)z,q;j. II 

7.22 (Interpolation Spaces) Let P -- {X0, X1} and Q = {Y0, Y1} be two 
interpolation pairs of Banach spaces, and let T be a bounded linear operator from 
X0 + X1 into Y0 + Y1 having the property that T is bounded from Xi into Yi, with 
norm at most Mi, i = 0, 1; that is, 

IITuillri ~ Mi Iluillxi , for all lg i e Xi), (i = 1, 2). 

If X and Y are intermediate spaces for { X0, X1 } and { Y0, Y1 }, respectively, we call 
X and Y interpolation spaces of  type 0 for P and Q, where 0 < 0 < 1, if every 
such linear operator T maps X into Y with norm M satisfying 

M < CMd -~ M ~ , (12) 

where constant C > 1 is independent of T. We say that the interpolation spaces X 
and Y are exact if inequality (12) holds with C -- 1. If Xo -- Y0, X1 = Y1, X = Y 
and T = I, the identity operator on X0 + X1, then C -- 1 for all 0 < 0 < 1, so no 
smaller C is possible in (12). 

7.23 THEOREM (An Exact Interpolation Theorem) Let P = {Xo, X1 } 
and Q = { Yo, Y1 } be two interpolation pairs. 

(a) If e i t h e r 0 < 0  < l a n d l _ _ q _ _ _ ~ o r 0 _ < 0  < l a n d q  = c x ~ , t h e n t h e  
intermediate spaces (Xo, X1)o,q;r and (Yo, Y1)O,q;K are exact interpolation 
spaces of type 0 for P and Q 

(b) If e i ther0 < 0  < l a n d l  < q_< ~ o r 0 < 0 _ <  l a n d q - -  1, thenthe  
intermediate spaces (Xo, X1)o,q.J and (Yo, Y1)o,q;J a r e  exact interpolation 
spaces of type 0 for P and Q. 

Proof. Let T �9 Xo + X1 -+ Yo + Y1 satisfy IITuillr~ <_ Mi Ilu~llxi, i - 0, 1. If 
u s Xo + X1, then 

K(t; Tu) = inf {llTuollYo + t I[Tul[IYl " u = uo § ul, ui ~ Xi}  

_< Mo .=.o+.inf 1 Iluollxo + ~ Ilu~llx, - MoK((M1/Mo)t' ,  u). 
uiEX i 
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If u 6 (Xo, X1)O,q;K, then 

IlTullo,q;K -Ilt-~ ru) ; ggll ~ Mo Ilt-~ u) ; z~,[I 
- o  , 

- II s - ~  g (s; bl)" t q II - M ~ ]l b/II O,q;K, 

which proves (a). 

If u 6 X0 A X1, then 

J(t; Tu) = max {llZullYo, t IlZully, } 
_< Momax  {llullxo, (M1/Mo)t [lulIx, } - MoJ((M1/Mo)t; bl). 

I f u  -- f~c f ( t ) d t / t ,  where f ( t )  ~ Xo A Xl and t - ~  f ( t ) )  ~ L q, then 

IITullo,q;j --IIt-~ z/( t>)  ; L~,II 

Mo I t-~ f ( t ) ;  tql[ - Mo (~--~1~176 II s-~ J (s; g ( s ) ) ;  L q II, 

where g(s) - f ( (Mo/M1)s)  -- f (t). Since this estimate holds for all representa- 

tions of u - f o  g(s) ds / s ,  we have 

IITullo,q.j ~ M ~ - ~  ~ Ilullo,q;j 

and the proof  of (b) is complete. | 

The Lorentz Spaces 

7.24 (Equimeasurable Decreasing Rearrangement)  Recall that, as defined 
in Paragraph 2.53, the distribution function 6, corresponding to a measurable 
function u finite a.e. in a domain f2 C R n is given by 

6 , ( t ) -  #{x E f2 �9 lu(x)l > t} 

and is nonincreasing on [0, ec). (It is also right continuous there, but that is of no 
relevance for integrals involving the distribution function since a nonincreasing 
function can have at most countably many points of discontinuity.) Moreover, if 
u E L p (f2) ,  then 

I( o Ilullp -- tP~u(Y) t 

inf{t �9 6.(t)  -- O} 

1/p 
i f l _ < p  < e c ,  

i f p  -- oc. 
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The equimeasurable decreasing rearrangement o f  u is the function u* defined by 

u*(s) = inf {t : 3 , ( t )  < s}. 

This definition and the fact that 3u is nonincreasing imply that u .  is nonincreasing 
too. Moreover,  u*(s) > t if and only if 3 . ( t )  > s, and this latter condition is 

trivially equivalent to s < 6.( t) .  Therefore, 

3. . ( t )  - # {s �9 u*(s) > t} - / z  {s �9 0 < s  < 3.(t)} - # {[0, 3 . ( t ) )}  - 3 . ( t ) .  

This justifies our calling u* and u equimeasurable;  the size of both functions 
exceeds any number  s on sets having the same measure. Also, 

3u,(t) = lz{s : u*(s) > t} = inf{s : u*(s) < t} 

so that 
3u(t) = inf{s : u*(s) < t}. 

This further illustrates the symmetry between 3, and u*. 

Note also that 
u*(gu(t)) - - i n f { s  �9 3.(s)  < 6.( t)} < t. 

If  u*(3 . ( t ) )  = s < t, then 3. is constant on the interval (s, t) in which case u* has 

a jump discontinuity of magnitude at least t - s at 3u(t). 

Similarly, 3.(u*(s))  < s, with equality if 6. is continuous at t = u*(s). The 
relationship between 6u and u* is illustrated in Figure 8. Except at points where 
either function is discontinuous (and the other is constant on an interval), each is 

the inverse of the other. 

s = s,(t) 

! 
S o 

i 

to t~ t I 

t = u* (s) 

S1 SO t 
S O 

Fig. 8 
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If St = {x ~ ~ lu(x)l > t}, then 

l u ( x ) l d x  - 
t 

and if u 6 LP (~ ) ,  then 

I l u l l p  - (u*(s)) p dx)1/p 

u*(s )  
0<s<oo 

u * ( s ) d s ,  (13) 

i f l < p < ~  

i f p  - e~. 

7.25 (The  Lorentz Spaces) For u measurable  on f2 let 

if0' u** (t) - t u* (s) ds ,  

that is, the average value of u* over [0, t]. Since u* is nonincreasing,  we have 

u* (t) < u** (t). 

For 1 < p _< ec we define the functional  

II ~; LP'q (~'~) II - s 
sup t l /Pu**( t )  
t>0 

1/q 
i f l  < q  <cx~ 

i f q  -- cx~. 

The L o r e n t z  space L p'q (~)  consists of  those measurable  functions u on f2 for 

which Ilu ; L p'q (f2)II < oo. Theorem 7.26 below shows that if 1 < p < co, then 
L p'q (~'2) is, in fact, identical to the intermediate space (La (f2), L ~ (f2))(p-1)/p,q;K 

and Ilu; L p'q (~)II : Ilull(p-1)/p,q;K �9 Thus L p'q (~)  is a Banach space under  the 
norm Ilu ; L p'q (~)II. It is also a Banach space if p = 1 or p = oc. 

The second corollary to Theorem 7.26 shows that if 1 < p < ec,  then L p'q (~2) 

coincides with the set of  measurable  u for which [u; L p'q (~ ) ]  < OO, where  

) ( t l /Pu  , ( t ) )  q d t  
[.; L~ q ( a ) ] -  7- 

s u p t l / P u * ( t )  
t>0 

1/q 
i f l < q < o o  

i f q  - ~ ,  

and that 
[/,t; L p'q (~'2)] < [I/,t ; L p'q (~'~)II <~ P [ .  L~,q~a)]. 

p - 1  ' 
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The index p in L p'q (~) is called the principal index; q is the secondary index. 
Unless q - p,  the functional [ . ;  L p'q (~ ) ]  is not a norm since it does not satisfy 
the triangle inequality; it, however, is a quasi-norm since 

[U -1- U; g p'q (~"2)] < 2([u;  eP'q(a)] -71- [u; LP'q(a)]). 

For 1 < p < oo it is evident that [. ; L P ' P ( ~ ) ]  - -  II'llp,a, and therefore 
L P ' P ( ~ )  - -  L P ( ~ ) .  Moreover,  if we recall the definition of the space weak- 
L p (~ )  given in Paragraph 2.55 and having quasi-norm given (for p < oo) by 

)l/p 
[U]p = [U]p,a -- suptP~u(t)  

t>O 

we can show that L P ' C ~ ( ~ )  - -  weak-LP(f2).  This is also clear for p = o0. If 
1 < p < o0 and K > O, then for all t > O we have, putting s - K P t  - p ,  

~u( t )  < K P t  - p  - -  s e, k u * ( s )  < t - -  K s  - 1 / p .  

Hence [U]p < K if and only if [u; LP'C~(~)] < K, and these two quasi-norms 

are, in fact, equal. 

For p -- 1 the situation is a little different. Observe that 

fo' fo [[u ; Ll'e~(f2)[I = s u p t u * * ( t )  = sup u * ( s ) d s  - u * ( s ) d s  = Ilulla 
t>O t>O 

so L 1 (~"2) -- L 1,c~ ( ~ )  ( n o t  L 1,1 ( ~ )  which contains only the zero function). 

For p = cx~ we have L ~ ' ~ ( f 2 )  = L~( f2 )  since 

II u L ~ , ~ ( ~ )  II sup u**(t) sup 1 r / t  ; - -  - -  u* (s)  d s  - u* (O) - Ilu II 
t>0 t>0 7 dO oo. 

7.26 T H E O R E M  If u 6 L 1 (~'-2) + L ~ (f2), then for t > 0 we have 

f0 t K ( t ;  u )  - -  u * ( s ) d s  = t u * * ( t ) .  (14) 

Therefore,  if 1 < p < e~, 1 < q < cx~, and 0 -  1 -  ( l / p ) ,  

L P , q ( ~ )  - -  (Ll(~2), LC~(~) )O,q .  K 

with equality of norms: I lu ;LP 'q(K2)I I  - Ilullo,q;g. 
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Proof .  The  second  conc lus ion  fol lows i m m e d i a t e l y  f rom the represen ta t ion  (14) 

which  we prove  as fol lows.  

Since K (t; u) = K (t; lul) we can a s sume  that u is rea l -va lued  and nonnegat ive .  

Le t  u = v + w where  v 6 L 1 (f2) and w E L ~ (f2). In order  to calcula te  

K( t ;  u) - inf  (llvlll + t Ilwll~) 
.=V+//) 

(15) 

we  can also a s sume  that  v and w are rea l -va lued  funct ions  since, in any event,  

u - R e v + R e w  and IIReVlll _< IlVlll and I IRewl l~  < Ilwll~.  We can also 

a s sume  that  v and w are nonnegat ive ,  for if 

min{v(x) ,  u(x)}  i f v ( x )  >_ 0 
v l ( x ) - -  0 i f v ( x )  < 0  

and Wl  (X)  - -  U ( X )  - -  U1 ( X ) ,  

t h e n 0  < Vl(X) ~ Iv(x)l a n d 0  </ / ) l (X)  ~ Iw(x)l. Thus  the i n f i m u m i n  (15) does  

not  change  if we restr ict  to nonnega t ive  funct ions  v and w. 

Thus  we cons ider  u - v + w, where  v > 0, v E L l(f2),  w > 0, and w E L ~ (f2). 

Le t  )~ -- Ilwll~ and define u z ( x )  - min{)~, u(x)}.  Ev iden t ly  w ( x )  < u z ( x )  and 

u ( x )  - u z ( x )  < u ( x )  - w ( x )  - v (x ) .  N o w  let 

g( t ,  X) -- Ilu - u~lll + tx  < Ilvll~ + t I lwl l~ .  

Then  K( t ;  u) = inf0<z<~ g( t ,  X). We want  to show that  this i n f imum is, in fact, 

a m i n i m u m  and is a s sumed  at X = Xt = inf{r  : 8 , ( r )  < t}. 

If  X > )~t, then uz (x) - uz, (x) < X - Xt if u (x )  > Xt, and uz (x) - uz, (x) = 0 if 

u (x )  < Xt. Since 8,(Xt) < t, we  have  

- - . [o(U~(X)  - u ~ , ( x ) ) d x  + t ( x  - x,)  g( t ,  X) g( t ,  Xt) 

>_ (~ - ~ , ) ( t  - ~.(~,~) >_ o. 

Thus  K( t ;  u) < g( t ,  )~t). 

On the other  hand,  if g( t ,  X*) < o0 for some  )~* < )~t, then g( t ,  X) is a con t inuous  

func t ion  of)~ for X >__ )~* and so for any e > 0 there exists X such that X* < X < ~.t 

and 

Ig(t,  ~) - g( t ,  Xt)l < E. 

N o w  u z ( x )  - u z , ( x )  - ~ - )~* if u (x )  > X, and since 8,(X) > t we  have  

g( t ,  X*) - g ( t ,  X) - . f o ( u x ( x )  - u x , ( x ) ) d x  - t(X - X*) 

>__ (z - ~*) (~u (z)  - t) >_ 0. 
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Thus 

g(t ,  X*) - g( t ,  At) > g(t ,  X*) - g(t ,  X) - Ig(t, ~) - g( t ,  Xt)l > -~ .  

Since E is arbitrary, g(t ,  ~*) > g( t ,  At) and K(t ;  u) > g( t ,  At). Thus 

K( t ;  u) = g( t ,  )~t) -- Ilu - ux, II1 + tat.  

N o w u ( x ) - u z , ( x ) -  0excep twhereu(x)>  Xt andXt = u * ( s ) f o r 6 , ( ~ t )  < s < t. 
Therefore, by (13), 

f0 ~"(x') f0 ~"(x') 
g ( t ;  u) -- (u*(s) -- A t ) d s  Jr- tat -- u*(s) ds  - ~tC~u(l~t) -Ji- tt~,, 

fo S/ fo - u* ( s )  d s  + u* ( s )  d s  - u* ( s )  ds 
(x,) 

which completes the proof. | 

7.27 COROLLARY If l  < pl < p < p2 _< cx~andl/p = ( 1 - O ) / p l + O / p 2 ,  
then by the Reiteration Theorem 7.21, up to equivalence of norms, 

tP,q (~2) = (Lpl (~2), tP2(~'2))O,q;K . 

7.28 
have 

COROLLARY F o r l  < p < ~ , 1  < q  < ~ , a n d 0 - -  1 - ( 1 / p ) , w e  

[u; LP'q(f2)] < Ilu; LP'q(f2) H < p [u" LP'q(f2)]. 
- - p - 1  ' 

Proof. Since u* is decreasing, (14) implies that tu*( t )  <_ K( t ;  u). Thus 

( f o  ~176 d__~~) 1/q [ u ; L P ' q ( ~ ) ]  - ( t l /Pu*(t ) )  q 

(fo <_< (t -0 g ( t ;  hi)) q __t 1/q -- [I/'/]10,q;K -- II u; LP,q ~ ) 1 1  

On the other hand, 

fo 
t 

t -~ K( t ;  u) -- t -~  ds  
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where 

f (t) -- t 1-~ u*( t )  = t l /Pu*( t ) ,  and t ~ i f t  > 1 
g( t )  - 0 i f O <  1, 

and the convolution is with respect to the measure d t / t .  Since we have 
I lf ;  Lqll - [u; LP,q(f2)] and Jig; LI, ll - 1/0 = p / ( p  - 1), Young's inequality 
(see Paragraph 7.5) gives 

Ilu: t p ' q (~ '2 )  I[ -- IIt/[10,q;K - -  [I f * g;  tq  II P [u. tP,q(~'2)]. II 
p - 1  ' 

7.29 R E M A R K  Working with Lorentz spaces and using the real interpolation 
method allows us to sharpen the cases of the Sobolev imbedding theorem where 
p > 1 and m p  < n. In those cases, the proof in Chapter IV used Lemma 4.18, 
where convolution with the kernel O) m was first shown to be of weak type (p, p*) 
(where p .  = n p / ( n  - m p ) )  for all such indices p. Then other such indices pl 
and pe were chosen with pl < p < pe, and Marcinkiewicz interpolation implied 
that this linear convolution operator must be of strong type (p, p*). 

We can instead apply the the Exact Interpolation Theorem 7.23 and Lorentz 
interpolation as in Corollary 7.27, to deduce, from the weak-type estimates above, 
that convolution with O) m maps L p (~ )  into L p*'p (~2); this target space is strictly 
smaller than L p* (f2), since p < p*. It follows that W m'p (f2) imbeds in the smaller 
spaces L p*' p (~2) when p > 1 and m p  < n. 

Recall too that convolution with tom is not  of strong type (1, 1") when m < n, 
but an averaging argument, in Lemma 4.24, showed that W m,1 (S2) C LI* (f2) in 
that case. That argument can be refined as in Fournier [F] to show that in fact 
W m,1 (f2) C LI*'I (f2) in these cases. This sharper endpoint imbedding had been 
proved earlier by Poornima [Po] using another method, and also in a dual form in 
Faris [Fa]. 

An ideal context for applying interpolation is one where there are apt endpoint 
estimates from which everything else follows. We illustrate that idea for convo- 
lution with COm. It is easy, via Fubini's theorem, to verify that if f E L I ( ~ )  then 

II f * go II ~ _< II f II1 IIg0 II ~ and l[ f * g1111 < II f Ill Ilgll[1 for all functions go in 
L ~ (f2) and gl in L1 (f2). Fixing f and interpolating between the endpoint con- 
ditions on the functions g gives that Ill * g;  LP'q(~2)II < Cp Ilflll IIg; LP'q(s2)[[ 

for all indices p and q in the intervals (1, cx~) and [1, cx~] respectively. Apply this 
with g = tom, which belongs to Ln/(n-m) 'c~(~)  = L l*'c~ (~)  -- weak-L1* (f2) to 
deduce that convolution with 0.) m m a p s  L 1  (~'2) into LI* '~(~) .  On the other hand, 



228 Fractional Order Spaces 

if f e L (1.)''1 (~)  -- L n/m'l (~) ,  then 

ICOm * f (x) l  ~ s  [09m(X -- Y ) f ( Y ) I  dy  

/o /o < (O)m)*(t)f*(t)  dt  - [tl/1, (O)m),(t)][tl /(1,) , f ,( t)] dt  
- t 

Io il ii < II~om LI*'oc(~'2)II [t'/('*)'f *(t)] dt _ ; <_ C m  f ; L (1.)''1 ( ~ )  . 
t 

That is, convolution with O) m maps L I ( ~ )  into LI*'e~(~) and L(l*)"l(ff2) into 
L~(f2).  Real interpolation then makes this convolution a bounded mapping of 
LP'q(~) into LP*'q(~2) for all indices p in the interval (1, (1")') = ( 1 , n / m )  and 
all indices q in [ 1, (x~]. 

These conclusions are sharper than those coming from Marcinkiewicz interpola- 
tion. On the other hand, the latter applies to mappings of weak-type (1, 1), a case 
not covered by the K and J methods for Banach spaces, since weak L 1 is not a 
Banach space. The statement of the Marcinkiewicz Theorem 2.58 also applies to 
sublinear operators of weak-type (p, q) rather than just linear operators. It is easy, 
however, to extend the J and K machinery to cover sublinear operators between 
L p spaces and Lorentz spaces. As above, this gives target spaces L q'p that are 
strictly smaller than L q when p < q. Marcinkiewicz does not apply when p > q, 
but the J and K methods still apply, with target spaces L q'p that are larger than 
L q in these cases. 

Besov Spaces 

7.30 The real interpolation method also applies to scales of spaces based on 
smoothness. For Sobolev spaces on sufficiently smooth domains the resulting 
intermediate spaces are called Besov spaces. Before defining them, we first 
establish the following theorem which shows that if 0 < k < m, then W k,p (f2) 
is suitably intermediate between L p (f2) and W m'p (~'2) provided f2 is sufficiently 
regular. Since the proof requires both Theorem 5.2, for which the cone condition 
suffices, and the approximation property of Paragraph 5.31 which we know holds 
for I1{" and by extension for any domain satisfying the strong local Lipschitz 
condition, which implies the cone condition, we state the theorem for domains 
satisfying the strong local Lipschitz condition even though it holds for some 
domains which do not satisfy this condition. (See Paragraph 5.31.) 

7.31 T H E O R E M  If ~2 C/t{ n satisfies the strong local Lipschitz condition and 
i f0  < k < m and 1 < p < cx~, then 

wk'P(f2) E ~ ( k / m ;  LP(f2), wm'p( f2)) .  
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Proof. In this context we deal with the function norms 

J(t; u )  = max{ Ilullp, t llullm,p} 

K( t ;  u) -- inf{llu0llp 4- t []Ull[m,p " U -- UO 4- U l ,  U E L P ( ~ ) ,  Ul E w m ' P ( ~ ) } .  

We must show that 

Ilu Ilk,p ~ C t -(k/m) J (t; u) 

K(t ;  u) < C t k/m Ilull~,p �9 

(16) 

(17) 

Now Theorem 5.2 asserts that for some constant C and all u E W m'p (~) 

k/m 
Ilullk,p ~ C Ilull 1-~k/m~ Ilullm,p. 

The expression on the right side is C times the minimum value of 

t -k/m J ( t ;  u) -- m a x { t  -k/m Ilullp, t 1-(k/m) IlUllm,p}, 

which occurs for t = [lullp/Ilullm,p, the value of t making both terms in the 
maximum equal. This proves (16). 

We show that (17) is equivalent to the approximation property. If u ~ W ~'p (f t) ,  
then 

K(t;  u) < Ilullp + t II0l[m,p - Ilullp _ Ilull~,p �9 

Thus t -k/m K( t ,  u) < Ilullp when t > 1, and inequality (17) holds in that case. If 
t -(k/m) K (t; u) < C Ilu IIk,p also holds for 0 < t < 1, then since we can choose 
Uo E LP(~2) and Ul 6 wm'p(~) with u - u0 + Ul and Ilu011p + t [lulllm,p < 
2K (t; u), we must have 

I l u -  ulllp = Ilu0llp ~ 2Ct  k/m Ilullk,p and IlUlllm,p <__ 2ct(k /m)-I  IlUllk,p, 

so that with t = f m ,  /,/e _ U l is a solution of the approximation problem of 
Paragraph 5.31. Conversely, if the approximation problem has a solution, that is, 
if for each E _< 1 there exists u, E wm'p(~'2)satisfying 

II u - u~ lip _< c e  k I[ u II k,p and Ilu~ Ilm,p <-- Ce ~-m Ilu II~,p, 

then, with e - -  t 1/m, we will have 

t-(k/m) g ( t ;  U) < t-(k/m)([[U -- uel[p 4- t lluellm,p) ~ C [[U[[k,p 

and (17) holds. This completes the proof. | 
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7.32 (The Besov Spaces) We begin with a definition of Besov spaces on 
general domains by interpolation. 

Let 0 < s < cxz, 1 < p < c~ ,  and 1 < q < e~. Also let m be the smallest integer 
larger than s. We define the Besov  space Bs;p'q(~) to be the intermediate space 
between L p (f2) and W m'p (~'2) corresponding to 0 = s / m ,  specifically: 

Bs;p,q(~,2)_ (LP(~'~), wm'p(~))s/m,q;j. 

ItisaBanachspacewithnorm [[u ; Bs;p,q(~)[[ - [lu; (LP(~),  wm'p(a))s/m,q;j[ ] 
and enjoys many other properties inherited from L p (f2) and W m'p (~"2), for example 
the density of the subspace {4) 6 C ~ ( ~ )  " [[ullm,p < c~}. Also, imposing the 
strong local Lipschitz property on g2 guarantees the existence of an extension 
operator from W m'p (~"2) to W m'p (~n ) and so from n s;p'q (~'2) to n s;p'q (]~a n ). On ~n, 
there are many equivalent definitions B s; P'q (see [J]), each leading to a definition 
of B s;'p'q (~) by restriction. For domains with good enough extension properties, 
these definitions by restriction are equivalent to the definition by real interpolation. 
Although somewhat indirect, that definition is intrinsic. As in Remark 6.47(1), the 
definitions by restriction can give smaller spaces for domains without extension 
properties. 

For domains for which the conclusion of Theorem 7.31 holds, that theorem and 
the Reiteration Theorem 7.21 show that, up to equivalence of norms, we get the 
same space B s;p'q (~) if we use any integer m > s in the definition above. In fact, 
if sl > s and 1 < ql < ec, then 

ns;p,q(~'~) = (LP(~'2), nsl;p'qJ (~2))S/Sl,q.j. 

More generally, if 0 < k < s < m and s = (1 - O)k + Om, then 

ns;p,q(~'2)- (wk,P(~'~), wm'P(~"2))O,q;j, 

and i f0  < Sl < s < s2, s = (1 -O)S l  + Os2, and 1 < ql, q2 < ec, then 

Bs;p,q(~) -- (Bsl;p,ql(~), Bs2;P'q2(~"2))O,q;j. 

7.33 Theorem 7.31 also implies that for integer m, 

B m;p'l (~'2) ~ W m'p(~) ~ Bm;p'~ 

In Paragraph 7.67 we will see that 

Bm;p'P(~) ~ wm'p(~)  ~ Bm;p'2(~) for 

Bm;p'2(~'2) ~ wm'P(~) ~ Bm;p'P(~"~) for 

l < p _ < 2 ,  

2 <  p < cxz. 



Generalized Spaces of H61der Continuous Functions 231 

The indices here are best possible; even in the case f2 = I~ n it is not true that 
B m;p,q (~ )  -- W m'p (~"2) for any q unless p = q = 2. 

The following imbedding theorem for Besov spaces requires only that g2 satisfy 
the cone condition (or even the weak cone condition) since it makes no use of 
Theorem 7.31. 

7.34 THEOREM (An Imbedding Theorem for Besov Spaces) Let g2 be a 
domain in R n satisfying the cone condition, and let 1 < p < c~ and 1 _< q _< oo. 

(a) I f  s p  < n, then BS'p 'q(~)  ~ Lr 'q(~)  f o r r  = n p / ( n  - sp ) .  

(b) If sp  - n, then B s p ' l  (f2) --~ C O (f2) --~ L ~ (f2). 

(c) If sp  > n, then BSp 'q ( f2 )  -+ C ~ (g2). 

Proof. Observe that part (a) follows from part (b) and the Exact Interpolation 
Theorem 7.23 since if 0 < s < Sl and s ip  -- n, then (b) implies 

ns;p,q(~'d) -- (LP(~),  ns';p'l(~'2))s/s,,q;j ----> (LP(~"2), t~ -- tr, q(~'~), 

where r -- [1 - ( s / s l ) ] / p  = n p / ( n  - sp ) .  

To prove (b) let m be the smallest integer greater than s = n / p .  Let u ~ 
Bn/p;p ' I (~)  = ( L P ( ~ ) ,  w m ' p ( ~ ) ) n / ( m p ) , l . j .  By the discrete version of the J- 

method, there exist functions ui in W m'p (~2) such that the series Y-~'~i=-oc ui con- 

verges to u in Bn/p;p ' I (~)  and such that the sequence {2-in/mpJ(2i;  Ui)}i=_ec 

belongs to e 1 and has s norm no larger than C II.; I1- Since m p >  n 
and S2 satisfies the cone condition, Theorem 5.8 shows that 

n/mp Ilvll~ <_ C~ [Ivll 1-(n/mp) Ilvllm,p 

for all v E W m' p ( ~ ) . Thus 

oo 
Ilull~ ~ ~ Ilu/ll~ 

i----OO 
oo 

C1 Z I]ll/]l 1-(n/mp) Illli ]]n(pp 
i---oo 

oo 
<_ C1 Z 2-in/mpj( 2i" lli) <_ C2 jill; 8n/P;~"(~ll  �9 

i=-c~ 

Thus Bn/p;p ' I ( f2)  --+ L ~ ( f 2 ) .  The continuity of u follows as in the proof of Part 

I, Case A of Theorem 4.12 given in Paragraph 4.16. 

Part (c) follows from part (b) since B s p ' q ( f 2 )  ~ BSl;p, l( f2)  if s > Sl. This 

imbedding holds because W m'p (~'2) ---> L p (f2). l 



232 Fractional Order Spaces 

Generalized Spaces of H61der Continuous Functions 

7.35 (The Spaces  CJ,X,q(-~)) If f2 satisfies the strong local Lipschitz con- 
dition and sp > n, the Besov space Bs;p'q(~)  also imbeds into an appropriate 
space of H61der continuous functions. To formulate that imbedding we begin by 
generalizing the H61der space cJ,Z(-~) to allow for a third parameter. For this 
purpose we consider the modulus of continuity of a function u defined on fit given 
by 

co(u; t) -- sup{lu(x) - u(y)[ �9 x, y 6 f2, Ix - yl < t}, (t > 0). 

Observe that co(u; t) = co~ (u; t) in the notation of Paragraph 7.46. Also observe 
that if 0 < )~ < 1 and t-zco(t, u) < k < oc for all t > 0, then u is uniformly 
continuous on f2. Since cJ (~ )  is a subspace of wJ '~ ( f2 )  with the same norm, 
cJ'Z(-~) consists of those u ~ wJ,~(f2) for which t-zco(t, D~u) is bounded for 
all 0 < t < ~ and all c~ with I~1 - j .  

We now define the generalized spaces C j,z,q (~ )  as follows. If j > 0, 0 < )~ < 1, 
and q = cx~, then C j'z'~ (~) - cJ,Z(-~) with norm 

II.; c ~  (m> II - II.; c ~  (m> II - II. ll~ ~ § max sup 
I~l-J t>0 

co(D~u; t) 
t x 

For j > 0, 0 < X < 1, and 1 < q < cx~, the space C j')~'q (~) consists of those 

functions u 6 W j '~( f2)  for which II u;  cJ~,q<~> II < ~ ,  where 

) II u ; CJ'z'q (~)II - II u ; C j (~)II + max (t -zoo (D ~ u' t ))q d t 1/q 
I~l=J ' t 

C j,~',q (~') is a Banach space under the norm I['; c J'~"q (~) II 
7.36 L E M M A  I f 0 < ~ . <  l a n d 0 < 0  < 1, then 

(L~(ff2), C~ K ~ C~176 

Proof .  Let/,/ E cO')~(-~)O,q;K. Then there exists v 6 L ~ ( f 2 ) a n d  w 6 C~ 
such that u = v + w and 

Ilvllo~ + t z [Iw ; C~ < 2K(tZ; u) f o r t  > O. 

If  [hi _< t, then 

Iw(x + h) - w(x)l 
lu(x + h) - u(x)l < Iv(x + h)l + Iv(x)l + 

Ihl z 

_< 2 Ilvll~ + IIw; c ~  t ~ <_ 4K(tX; u). 

Ihl ~ 
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Thus co(u; t) < 4K(tZ; u). 

Since I]ull~ < Ilu ; C~ we have Ilull~ < [lUllo,q;K. Thus, if 1 < q < co, 

(f0 ) I luf~176 Ilull + (t_~O~(u. t))q dt '/q 

( fo ~c d t )  1/q <_ Ilullo,q.g + 4 (t-Z~ u))q T 

(fo ) = [lullo,q;g + 4)~-l/q ( r _ 0 g ( r ;  /g))q __dr 1/q 

< (1 -t-4)~ -l /q) Ilullo,q;g. 

Similarly, for q - co, we obtain 

Ilu ; C~176 ~ Ilullo,~;K + 4 s u p t - k ~  k" u) < 5 Ilullo,~;K 
t 

This completes the proof. | 

7.37 T H E O R E M  Let S2 be a domain in N n satisfying the strong local Lipschitz 
condition. L e t m - l - j  < n / p < s < m - j a n d l  < q  < c x ~ . I f / z = s - n / p ,  
then 

Bs;p'q(~) ~ cJ,#,q(-~). 

Proof. It is sufficient to prove this for j - 0. By Theorem 7.34(b), 

Bn/p;p'I(~) ~ C 0 (~) --+ L~(f2). 

By Part II of Theorem 4.12, 

W m' P (s2) --+ C ~ (~ ) ,  where )~ -- m 

N O W  Os;p'q(~"2) = (Bn/p;p'I(~"2) ,  wm'P(~'2))O,q;K, where 

1I/ 
(1 - 0 ) - -  + Om -- s. 

P 

Since )~0 = /z, we have by the Exact Interpolation Theorem and the previous 
Lemma, 

Bsp,q(f2) ~ (LOC(~), cO,X(-~))O,q.K __+ cJ,u,q(~). II 
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Characterization of Traces 

7.38 As shown in the Sobolev imbedding theorem (Theorem 4.12) functions 
in wm'P(]~ n+l ) (where mp < n + 1)have traces on It~ n that belong to Lq(R n) for 
p < q < n p / ( n  + 1 - mp) .  The following theorem asserts that these traces are 
exactly the functions that belong t o  Bm-(1/p);P'P(I~n). This is an instance of the 
phenomenon that passing from functions in W m'p (~"~) to their traces on surfaces of 
codimension 1 results in a loss of smoothness corresponding to 1 /p  of a derivative. 

In the following we denote points in R n+l by (x, t) where x e R n and t e I~. 
The trace u(x)  of a smooth function U(x ,  t) defined on R n+l is therefore given by 
u (x) = U (x, 0). 

7.39 T H E O R E M  (The Trace Theorem)  If 1 < p < cx~, the following 
conditions on a measurable function u on ~n are equivalent. 

(a) There is a function U in W m,p (R n+l ) so that u is the trace of U. 

(b) u e Bm-(1/p);P'P(]~n). l 

AS the proof of this theorem is rather lengthy, we split it into two lemmas; (a) 
implies (b) and (b) implies (a). 

7.40 L E M M A  Let 1 < p < c~. If U e W m'p ( ]~n+l) ,  then its trace u belongs 
to the space B = Bm-(1/p);P'P(]~ n) and 

11/'/]l B ~ g 11 U 11 m,p,R n+l , (18) 

for some constant K independent of U. 

Proof.  We represent 

O ~ Bm-(1/p);P'P(]~ n) -- (wm-l 'p (] l~n) ,  wm'P(]~n))o ,p; j ,  

where 

0 = 1  
1 1 

p p '  

and use the discrete version of the J-method; we have u e Bm-(1/p);P'P(]~ n) if 
and only if there exist functions ui in W m- l 'p  (~x n ) ("1 W m'p (]~n ) __ wm,p  (]~n ) for 

-cx~ < i < cx~ such that the series Y~i=-~ ui converges to u in norm in the space 
W m-l,p (En) + W m,p (Rn) = W m-a,p (Rn), and such that the sequences 

{2 -i/p' Iluillm_l,p} and {2 i/p Iluillm,p} both belong to g.P. We verify (18) by 
splitting U into pieces Ui with traces u i that satisfy these conditions. 
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Let �9 be an even function on the real line satisfying the following conditions: 

(i) ~ ( t ) - -  l i f - 1  < t <  1, 

(ii) ~ ( t )  -- 0 if Itl _> 2, 

(iii) I~(t)l  < 1 for all t, 

(iv) [~(J)(t)l _< Cj < ec for all j > 1 and all t. 

For each integer i let ~ i ( t )  -- rb( t /2i ) ;  then (I0 i takes the value 1 on the inter- 
val [ - 2  i, 2/] and takes the value 0 on the intervals [2 i+1 , oo) and ( - c o ,  -2i+1]. 

Also, I~ (t) l _< 1 and I~Ii (t) l _< 2 -i C1 for all t. 

Let ~bi = ~i+1 - ~i .  Then 4~i (r)  vanishes outside the open intervals (2 i , 2 i+2) and 
(--2 i+2, --2i); in particular it vanishes at the endpoints of these intervals. Also 

I I ~ b i l l ~  - 1 and I1.;11  -< 2 - i C l "  

Now suppose that U 6 C ~  (R n+l ). Then for each t we have 

U ( x ,  t) -- - --~r (x,  r)  d r  - - D(~ r)  dr .  

Let 

f 
(N3 

Ui(x, t) -- - ~i( 'g)D(~ r)  dr .  

Let u(x )  -- U ( x ,  O) be the trace of U on R n, and let ui be the corresponding 
trace of Ui. Since U has compact support, the functions Ui and ui vanish when 
i is sufficiently large. Moreover, Ui(x ,  t) = 0 for all i when Ixl is sufficiently 
large. Therefore the trace u vanishes except on a compact set, on which the series 
~_,i~ Ui(X ) converges uniformly to u(x ) .  The terms in this series also vanish off 
that compact set and taking any partial derivative term-by-term gives a series that 
converges uniformly on that compact set to the corresponding partial derivative 
ofu .  

We use two representations of u i (x)  - Ui (x, 0), namely 

c.2i+ 2 ~2i+ 2 

Ui(X) --  -- ]2i dPi(r)D(~ dr -- ]2i ~ ( r ) U ( x ,  r)  d r ,  (19) 

where the second expression follows from the first by integration by parts. If 
Ic~l _< m - 1 we obtain from the first representation a corresponding representations 
of D ~ui ( x ) :  

c. 2 i+2 

D ~ u i ( x )  -- - [ qbi('g)D(~'l)U(x, z) dr ,  
J2 i 

so that, by H61der's inequality, 

i/ :i+2 ) IO~ui (x ) l  ~ (2i+2) 1 / p '  [D(~'I)U(x,  r)[ p d r  
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Each positive number r lies in exactly two of the intervals [2 i , 2 i+1) over which 
the integrals above run. Multiplying by 2 -i/p', taking p-th powers on both sides, 
summing with respect to i, and integrating x over ~n shows that the p-th power 
of the s norm of the sequence { 2 -i/p' II D Ò u i]l p } i = - ~  is no larger than 

21+2p/p' f [D('~'I)U(x, I")1 p dr dx. 
JR 

Thus that eP norm is bounded by a constant times IIUIIm,p,Rn+'. 

Using the second representation of ui in (19), our bound on 114}ff I1~, and H61der's 
inequality gives us a second estimate 

f2i2i+2 ) 1/p ID~ < 2-ic1(2i+2) 1/p' ID('~'~ r)l p d r  

this one valid for any ot with Ic~l ~ m. Multiplying by 2 i/p, taking p-th powers 
on both sides, and summing with respect to i shows that the p-th power of the ~P (x) 
norm of the sequence {2i/plID~ IIp}i__~ is no larger than 

21+2p/P'C~ f [D(~176 r)l p d r  dx.  
JR 

Thus that eP norm is also bounded by a constant times IlUllm,p,Rn+,. 

Together, these estimates show that the norm of u in B m-(1/p);p'p (~n) is bounded 
by a constant times the norm of U in W m'p (]~n+l) whenever U E C ~ ( ~  n+l). 
Since the latter space is dense in W m'p (]~n+l), the proof is complete. | 

7.41 L E M M A  Let 1 < p < c~ and B = Bm-(1/p);P'P(]~n). If u 6 B, then u 
is the trace of a function U E W m'p (]~n+a) satisfying 

IlUllm,p,IR,+l ~ K Ilul18 (20) 

for some constant K independent of u. 

Proof.  In this proof it is convenient to use a characterization of B different (if 
m > 1) from the one used in the previous lemma, namely 

O -- Bm-(1/p);P'P(]~ n) = (LP(]~n), wm'p(~n))o,p;j, 

where 0 = 1 - (1 /mp) .  Again we use the discrete version of the J-method. For 
u 6 B we can find ui E L p (~n) (q wm,P (]~r = wm,p  (]~n) (for --(x) < i < Cxz) 
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such that ~ i = - ~  ui converges to u in L p ( R  n ) -+- W m'p (I~ n ) = L p (I[{ n ), and such 

that 
ll{2 -~ Ilu~ lip}; g p l[ -< K, Ilulls, 

11{2 IlUi Ilm,p };  e p II <-- K, llu 
These estimates imply that e~ Y-~.i=-~ ui converges to u in B. We will construct an 
extension U(x ,  t) of u(x)  defined on I~ n+] such that (20) holds. 

It is sufficient to extend the partial sums s~ = }--~-~=-k Ui to & o n  I~ n+l with control 

of the norms: 

[ISkllm,p,Xn-t-1 ~ K1 IIs~; Bm-(l/~';~'~(R')ll  , 

since {&} will then be a Cauchy sequence in wm'P(l~x n-I-1 ) and so will converge 

there. Furthermore, we can assume that the functions u and u i are smooth since the 
mollifiers Jr �9 u and J~ �9 ui (as considered in Paragraphs 2.28 and 3.16) converge 
to u and u i in norm in W m'p (I~ n ) as e ~ 0-q t-. Accordingly, therefore, in the 

following construction we assume that the functions u and ui are smooth and that 
all but finitely many of the u i vanish identically on IR'. 

Let ~ ( t )  be as defined in the previous lemma. Here, however, we redefine ~i as 
follows" ( ') ~ i ( t ) = ~ 2 - ~  ' -- OO < i < OC . 

The derivatives of ~i  then satisfy I~l j~ (t)l < 2 - i j / m c j .  Also, note that for j > 1, 

~i  (j) is zero outside the two intervals ( - -2  (i+l)/m, - -2  i/m) and (2 i/m, 2 (i+l)/m), 

which have total length not exceeding 21+(i/m). 

We define the extension of u as follows: 
OO 

U ( x , t ) - -  Z U i ( x , t ) ,  
i=--oc 

where Ui(x,  t) - dPi(t)ui(x).  

Note that the sum is actually a finite one under the current assumptions. In order 
to verify (20) it is sufficient to bound by multiples of [[u[18 the LP-norms of U 
and all its mth order derivatives; the Ehrling-Nirenberg-Gagliardo interpolation 
theorem 5.2 then supplies similar bounds for intermediate derivatives. The mth 
order derivatives are of three types: D (O'm) U,  D (~'j) U for 1 _< j _< m - 1 and 

loci + j = m, and D (~'~ U for [ot[ - m. We examine each in turn. 

Since D(~  t) --  2 - - i dp (m) ( t / 2 i /m)u i ( x ) ,  w e  have 

fRn+l 
ID(~  t)l  p d x  d t  

< dt  + dt  ID(~ t)] p dx  
2(i+l)/m i/m n 

< 21+(i/m) - ip p p -Oip _ 2 C m ]]uili p - 2 C m 2  ]]ui[lp p. 
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Since the f u n c t i o n s  (I)l m) have non-overlapping supports, we can sum the above 
inequality on i to obtain 

oo 
]lO(~ p p,Rn-k-I ~ 2CPm ~_~ (2 -~ ]]g i ]]p)P 

i----o<~ 

= 2Cm p II { 2-~ Iluillp};gPll p <- 2CPm Ilull~ 

and the required estimate for D (O'm) U is proved. 

Now consider D(~'J)Ui(x, t) = 2-ij/mgp(J)(t/2i/m)D~ui(x) for which we obtain 
similarly 

p 
n+l [D(~'J)Ui(x' t)lp dx dt < C;2 -i(jp-1)/m I[D~uillp . 

Since lot[ = m - j ,  we can replace the LP-norm of Daui with the seminorm 

]ui [m-j,p, and again using the non-overlapping of the supports of the ~I j) (since 
j > 1) to get 

oo 

LID o,,,uII p,Rn+~ ~ C; ~_~ 2 -i(jp-1)/m lui p Im-jp " 
i----(x) 

As remarked in Paragraph 5.7, for 1 < j < m - 1 Theorem 5.2 assures us that 
there exists a constant K2 s u c h  that for any E > 0 and any i 

P lUilm_j,p ~ K2(E p lu~lPm,p + ~-(m-j)p/j Ilull~). 

Let E - -  2 ij/m. Then we have 

(x) 
IID< ,J'uII p,R n+l ~ C; K2 Z ( 2i/m ]uilP,p + 2-ip(1-(1/mp)) [[uilIP) 

i.--oo 
oo 

= C;K2 ~ (2 (1-O)ip [ui ]Pm,p "+" 2-~ Ilui [I p )  
i=-oo 

<__ C;K2 (11{2 (l-~ I[Uillm,p} ; ePll p -a t- ll{2 -~ Iluillp} ; e ll) 
< 2K~C;K2 [lUl]B 

and the bound for D (~ U is proved. 

Finally, we consider U and D (",~ U together. (We allow 0 _< [otl _< m.) Un- 
like their derivatives, the functions ~i have nested rather than non-overlapping 
supports. We must proceed differently than in the previous cases. Consider 
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D(~'~ t) on the strip 2 j/m < t < 2 (j+l)/m in ] ~ n + l .  Since I~ ( t ) l  _ 1 and 
since Ui (x, t) = 0 on this strip if i < j - 1, we have 

oo oo 

IO(~'~ t)l <__ ~ IO(~'~ t)] = ~ 2-i/mPai, 
i=j-1 i--j-1 

w h e r e  ai -- 2 i/mplD~ bli (X)l. Thus, 

bj =- ]D(~'~ t)[ p dt 
J 2J/m 

oo 

< ~ 2 j/mp 2 -i/mp ai 

i=j-1 
oo 

-- ~ 2 (j-i)/mpai = (C * a)j ,  

i=j-1 

where cj -- 2 j/mp when - o o  < j < 1 and cj - 0 otherwise. Observe that c e e 1 

(say, lie; e 111 - g~>, and so by Young's inequality for sequences 

lib; e P I[ <- K3 Ila; e P 11" 

Taking pth powers and summing on j now leads to 

fo~lZ~(~ o,v(x,,)l " d, < ~; l l {2~/mplD~ui (x ) l l ;ee l l  e . 

Integrating x over R n and taking pth roots then gives 

IID(~'~ +, ~ K~ ll{2 i/mp ][D~uillp} ; eP I 

_< K311{2 (1-~ l[ bli Ilm,p } ; e p II -< g l K3 11 u II n .  

A similar estimate holds for ]l D(~'~ Iio ~ ~,+', so the proof is complete. II 

7.42 We can now complete the imbedding picture for Besov spaces by proving 
an analog of the trace imbedding part of the Sobolev Imbedding Theorem 4.12 
for Besov spaces. We will show in Lemma 7.44 below that the trace operator T 
defined for smooth functions U on I~ n+a by 

(TU) (x )  -- U(x,  O) 

is linear and bounded from B1/p;p ' I (~  n+l) into L p ( R n ) .  Since Theorem 7.39 
assures us that T is also bounded from w m ' P ( ~  n+a) o n t o  Bm-1/p;P;P(~ n) for 
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every m > 1, by the exact interpolation theorem (Theorem 7.23), it is bounded  
f rom ns;p'q (~ n+l ) into ns-1/p;P;q (Rn ), that is, 

Bs;p,q(R n+l ) ~ BS-1/p;P;q(]~n), 

for every s > 1 / p  and 1 < q < cx~. (Although Theorem 7.39 does not apply if 
p = 1, we already know from the Sobolev Theorem 4.12 that traces of functions 
in W m,a (~n+l)  belong to W m-l ' l  ( ~  ).) 

We can now take traces of traces. If n - k < sp < n (so that s - (n - k ) / p  > 0), 
then 

Bs'p'q (R n) ~ ns-(n-k)/p;P;q (]~k ), 

We can combine  this imbedding with Theorem 7.34 to obtain for n - k < sp < n 
and r - k p / ( n  - sp),  

ns;p,p(~ n) .._+ ns-(n-k)/p;P;P(~ k) ~ Lr'P(]~ k) ~ Lr(~k). 

More generally: 

7.43 THEOREM (Trace Imbeddings for Besov Spaces on R n) If k is an 
integer satisfying 1 < k < n, n - k < sp < n, and r = k p / ( n  - sp) ,  then 

BS;p,q(~ n) ~ Bs-(n-k)/p;P;q(~ k) ~ Lr'q(~k), 

Bsp'q(~ n) ~ Lr(]~ k) for q < r. 

and 

To establish this theorem, we need only prove the following lemma. 

7.44 L E M M A  The trace operator T defined by (TU)  (x) = U (x, 0) imbeds 
B1/p;p'I(~ n+l ) into Lp(~n). 

Proof. Suppose that U belongs to B = B1/p;p'I(~ n+l) and, without loss of  

generality, that II U II B ----- 1. Then there exist functions Ui for -cx~ < i < cx~ such 

that U = ~-~i Ui and 

Z 2-i /p II Ui IIp,R n+l ~ C and y ~  2 i/p' II Ui II1,p,R,+, < C 
i i 

for some constant C. As in the proof  of L e m m a  7.40, we can assume that only 

finitely many of the functions Ui have nonzero values and that they are smooth 
functions. For any of these functions we have, for 2 i < h < 2 i+1, 

fo h IUi(x, 0 ) 1 E  [D(~ t)] dt  -Jr- [Ui(x, h)[ 

2i+1 

E fo ]D(~ t)[ d t  + ]Ui(x, h)]. 
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Averaging h o v e r  [2  i , 2 TM ] then gives the estimate 

f f22i+ I U i ( x , t ) l d t  
2i+1 1 1 

IUi(x, 0)1 _< ]o~~ t) I dt + ~ 
J0 i 

By H61der's inequality, 

lUg(x, 0)1 _< 2 (~+~/p' IO(~ t)l p dt 

_qL_ 7 IUi(x' t)lp dt  

-- ai (x) -t- bi (x), say. 

Then Ilai[lp,R, <_ 2(2 i/p') II Uj IIl,p,R,,+, and ]lbillp,R, < 2 -i /p II Uj IIp,R,+l" We now 
have 

g(.,  o)IIp,R, _< ~ II ui (., o)II I1 p,R n 
i 

<-2( ~-J 2i/p' '' Uj H I'p'Rn+I -+- ~-~ 2-i/p '' Uj ''p'R"+I i < 4 C .  

This completes the proof. | 

7.45 REMARKS 

1. Theorems 7.39 and 7.43 extend to traces on arbitrary planes of sufficiently 
high dimension, and, as a consequence of Theorem 3.41, to traces on 
sufficiently smooth surfaces of sufficiently high dimension. 

2. Both theorems also extend to traces of functions in B s; P'q (~'~) on the inter- 
section of the domain ~2 in R" with planes or smooth surfaces of dimension 
k satisfying k > n - sp,  provided there exists a suitable extension operator 
for g2. This will be the case if, for example, ~ satisfies a strong local 
Lipschitz condition. (See Theorem 5.21.) 

3. Before Besov spaces were fully developed, Gagliardo [Ga3] identified the 
trace space as a space defined by a version of the intrinsic condition (c) in 
the characterization of Besov spaces in Theorem 7.47 below, where q - p 
and s - m - ( l / p ) .  

Direct Characterizations of Besov Spaces 

7.46 The K functional for the pair (L p (~) ,  W m'p (~'~)) measures how closely a 
given function u can be approximated in LP norm by functions whose W m' P norm 
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are not too large. For instance, a splitting u - u0 + Ul with Ilu0llp + t Ilul Ilm,p 
2K(t ;  u) provides such an approximation Ul to u; then the error u - Ul - u0 has 
L p (~)  norm at most 2K (t; u) and the approximation u 1 has W m,p (~'2) norm at most 
( 2 / t ) K ( t ;  u). So, in principle, the definition of n s ; p ' q ( ~ )  by real interpolation 
characterizes functions in B s; P'q (~'2) by the way in which they can be approximated 
in L p (~)  norm by functions in W m'p (~2). 
Like many other descriptions of Besov spaces, the one above seems indirect, 
but it can yield useful upper bounds for Besov norms. On I~ n, more direct 
characterizations come from considering the LP-modulus  o f  continuity and higher- 
order versions of that modulus. Given a point h in I~" and a function u in 
L p (~n) ,  let Uh be the function mapping x to u(x  - h),  let A h u  - -  U --  Uh, let 
COp(U; h) - IlAhUllp, and for positive integers m, let o)(m)(u; h) = II(Ah)mullp. 

When 1 < p < cx~, mollification shows that COp(U; h) tends to 0 as h --+ 0, 
and the same is true for Co(pm)(u; h); as stated below, when m > s, the rate 

of the latter convergence to 0 determines whether u ~ B s;p'q ( R  n ). We also 
define functions on ~ by letting COp(U; t) = sup{wp(U; h); Ihl < t} and letting 

O)(pm)*(U; t) = sup{og(pm)(u; h); Ihl < t}. 

7.47 T H E O R E M  ( I n t r i n s i c  C h a r a c t e r i z a t i o n  o f  BS;P'q(I~ n))  Whenever 

m > s > 0, 1 < p < e~ ,  and 1 _< q < cx~, the following conditions on a function 
u in L p (I~") are equivalent. If q = cx~ condition (a) is equivalent to the versions of 
conditions (b) and (c) with the integrals replaced by the suprema of the quantities 
inside the square brackets. 

(a) u ~ B ~; p'q (]~n ). 

(b) [t_Sw(pm),( u t)]q d t  ; ~ < ~ .  
1 

(C) fRn [Ihl-S~ h)]q (-hi ndh < oo. 1 

Before proving this theorem, we observe a few things. First, the moduli of 
continuity in parts (b) and (c) are never larger than 2 m [[ullp; so we get conditions 
equivalent to (b) and (c) respectively if we use integrals with t _< 1 and ]hi < 1. 
Next, the equivalence of conditions (b) and (c) with condition (a), where m does 
not appear, means that if (b) or (c) holds for some m > s, then both conditions 
hold for all m > s. 

It follows from our later discussion of Fourier decompositions that if 1 < p < cx~, 
then these conditions are equivalent to requiring that the derivatives of u of order k, 
where k is the largest integer less than s, belong to LP (R") and satisfy the versions 
of condition (b) or (c) with m - 1 and s replaced with s - k. 

While we assumed 1 < p < cx~ in the statement of the theorem, the only part of 
the proof  that requires this is the part showing that (c) ==~ (a) when m > 1. The 
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rest of the proof is valid for 1 < p < e~. 

7.48 (The Proof of Theorem 7.47 for m = 1) We assume, for the moment, 
that m = 1 and s < 1; in the next Paragraph we will outline with rather less detail 
how to modify the argument for the case m > 1. We show that (a) =~ (b) =~ 
(c) =~ (a). 

The first part is similar to the proof of Lemma 7.36. Suppose first that condition (a) 
holds and consider condition (b) with m = 1. Fix a positive value of the parameter 
t and split a nontrivial function u as v + w with ]]vl]e + t]lw]]l,p <_ 2K(t ;  u). 
Then AhU = Ah v 4- Ah w, and it suffices to control the L p norms of the these two 
differences. For the first term, just use the fact that I]AhV[[p < 21[U]lp. 

For the second term, we use mollification to replace v and w with smooth functions 
satisfying the same estimate on their LP and WI'p norms respectively. We majorize 
[ w ( x - h ) - w ( x ) ]  by the integral of ]grad w[ along the line segmentjoining x - h  to 
x, and use H61der's inequality to majorize that by Ihl lip' times the one-dimensional 
L p norm of the restriction of ]grad wl to that segment. Finally, we take p-th powers, 
integrate with respect to x, and take a p-th root to get that IlAhWllp < [hl]Wll,p. 
When Ihl < t we then obtain 

IIAhUl[p ~ IIAhl)llp 4- [IAhWllp ~ 2llV[lp + tlw[1,p ~ 4K(t; u), 

so condition (a) implies condition (b). 

Since t -s decreases and LOp(//; t) increases as t increases, condition (b) holds 
with m 1 if and only if the sequence {2 -is "* ~" �9 ~ = ~p t - ,  2i)}i=_~ belongs to gq To 
deduce condition (c) with m - 1, we split the integral in (c) into dyadic pieces 
with 2 i < [hi < 2 i+1. The integral of the measure dh / Ih l  ~ over each such piece 
is the same. In the i-th piece, COp(U; h) < COp(U" 2 i+1) by the definition of the 

latter quantity. And in that piece, ]hi -s < 2s2 -s( i+l) .  So the integral in (c) 
is majorized by a constant time the q-th power of the gq norm of the sequence 

oo 
{2-(i+l)sCO*p(f �9 2(i+1))}i=_~, and (c) follows from (b). 

We now show that (c) =~ (a) when m - 1 > s > 0. Choose a nonnegative smooth 
function �9 vanishing outside the ball of radius 2 centred at 0 and inside the ball 
of radius 1, and satisfying 

f l  ~ ( x )  dx  = l. n 

For fixed t > 0 let ~ t  (x) = t -n �9 (x / t); this nonnegative function also integrates 

to 1, and it vanishes outside the ball of radius 2t centred at 0 and inside the ball of 
radius t. 

For u satisfying condition (c), split u = v + w where w = u �9 ~t  and v -- u - w. 
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The fact that the density ~t  has mass 1 ensures that 

v ( x ) = f ~ n ~ t ( h ) [ u ( x ) - u ( x - h ) ] d h = f R .  ~t(h)Ahu(x)dh 

= ft< ~t(h)Ahu(x) dh. 
Ihl<2t 

The function v belongs to L P (IR n), being the difference of two functions in that 
space. To estimate its norm, we use the converse of H61der's inequality to linearize 
that norm as the supremum of finn Iv(x)lg(x) dx over all nonnegative functions g 

in the unit ball of L p' (R n ). For each such function g, we find that 

fm Iv(x) lg(x)dx<ft< ~t(h) I f  R g(x)lAhu(x)ldx I dh 
n Ihl<2t n 

< ft< rbt(h)llgllp'llAhUllpdh 
Ihl<2t 

-- it< ~t(h)llAhUllpdh" 
Ihl<2t 

Since II~t I1~ ~ f i t  n, the last integral above is in turn bounded above by 

tn Ihl<2t 
ft< dh IlmhUllpdh ~ C IlmhUllp 

Ihl<2t Ihl n 

<Cq(f< [llAhUllp]qdh) 1/q 
Ihl<2t I - ~  

where the last step uses H61der's inequality and the fact that the coronas {h 6 R n : 
t < Ihl < 2t} all have the same measure. Thus we have shown that 

liUiip < Cq (ft < []lAhlliip]q dh ) 1/q 
- -  Ihl<2t I - ~  " ( 2 1 )  

To bound K (t; u) for the interpolation pair (L p (•n), wl,p (~n)), we also require 

a bound for II w II 1,p -- Ilu �9 ~t  IIl,p. Note that II w lip _< Ilu lip II ~t  II1 - Ilu lip. 
Moreover, 

/ ,  
grad w(x) - [u �9 grad (~ t ) l (x)  = ] u(x - h) grad (~t ) (h)  dh 

3t< Ihl<2t 

-- ft< [u(x - h) - u(x)] grad (~t ) (h)  dh 
Ihl<2t 

= I Ahu(x) grad (~t)(h) dh, 
.It< Ihl<2t 
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where we used the fact that the average value of V (~t)(h)  is 0 to pass f rom the 
first line above to the second line. Linearizing as we did for v leads to an upper  
bound like (21) for [I grad W[lp, except  that II~,ll~ is replaced by II grad ~ t [ l~ ,  

which is bounded  by (7/ t  n+l rather than by C~ t n. This division by an extra factor 

of t leads to the estimate 

*(L Cq 
IWll,p ~ t Ih[<2t 

dh ) 1/q 
[[l(]]AhUl]p]q ] ~  

Therefore 

K(t; u) < IIvllp -+- tllwlll,p 

coast .  
dh ) 1/q 

[[IAhU]lp] q ~ + t[[u[lp. (22) 

We also have the cheap estimate K(t; u) < liu[lp from the splitting u -- u + 0. 

We use the discrete version of the K method to describe B s P'q (]~x n ). The cheap es- 
t imate suffices to make ~i~=1 [2 -is K(2i;  u)]q finite. When  i _< Owe use inequality 

(22) with t - 2 i ,  and we find that distinct indices i lead to disjoint coronas for 
the integral appearing in (22). It follows that the part of  the ~q norm with i < 0 is 
bounded  above by a constant times [[u lip plus a constant times the quantity 

dh ) 1/q 
[]hl-SO)p(bl; h)]q T ~  

This completes  the proof  when m = 1 and 1 < q < cx~. The proof  when m = 1 
and q = ~ is similar. 1 

7.49 (The Proof of Theorem 7.47 for m > 1) We can easily modify  some 
parts of  the above proof  for the case where m = 1 to work when m > 1. In 
particular, to prove that condit ion (b) implies condition (c) when m > 1, simply 
take the argument  for m - 1 and replace Wp by O) (m)* and COp by O) (m) . 

To get f rom (a) to (b) when m > 1, consider B s; P'q (]~n) as a real interpolation space 
between X0 = L p (]~n) and X1 = W m'p (]~n) with 0 = s/m; since m > s, we have 

0 < 1. Given a value of t, split u as v + w with ]]vllp + tmllWlll,p 5 2K(tm; u). 
Then ]]An~V][p < 2m]]V]]p ~ 2m+l]]V]]p. 

Again we can mollify w and then write differences of  w as integrals of  derivatives 

of w. When  m -- 1 we found that Ah w was an integral of  a first directional 
derivative of w with respect  to path length along the line segment  f rom x - h to x. 
Denote  that directional derivative by Dh w. Then A 2 is equal to the integral along 

the same line segment  of Ah (Dh w). That integrand is itself equal to an integral 
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along a line segment of length Ihl with integrand 2 D h to. This represents A~w(x) as 
an iterated double integral of 2 O h w ,  with both integrations running over intervals 
of length Ihl. Iteration then represents A~' w as an m-fold iterated integral of D~' w 
over intervals of length Ih I. Applying Hrlder 's  inequality to that integral and then 
integrating p-th powers over I~" yields the estimate IIA~nwllp _< Clhlmlwlm,p. It 

follows that Co~pm~*(u; t) < CK( tm;  u). Thus 

F [t_SO)(m),(b ! t ) ]q  d t  _ ~ q  [ ( / , / )]q d t  _ _  < L t - S K , t m ;  - -  
c~ t oo t 

_ [(tm _s/mK(tm; d t  
oc t 

-- C [r -~  K(r;  u ) ~ ,  
oo T" 

after the change of variable r = t m. So condition (a) still implies condition (b) 
when m > 1. 

We now give an outline of the proof that (c) implies (a). See [BB, pp. 192-194] 
for more details on some of what we do. Since condition (c) for any value of m 
implies the corresponding condition for larger values of m, we free to assume that 
m is even, and we do so. 

Given a function u satisfying condition (c) for an even index m > max{ 1, s}, and 
given an integer i < 0, we can split u = vi + wi, where vi is an averaged m-fold 
integral of A~'u; each single integral in this nest runs over an interval of length 
comparable to t = 2 i , and the averaging involves dividing by a multiple of t m . The 

outcome is that we can estimate Ilvi lip by the average of IIA~'ullp over a suitable 
h-corona. As in the case where m = 1, this leads to an estimate for the ~q norm 
of the sequence { 2 -is II Ui lip }~_~ in terms of the integral in condition (c). 

There is still a cheap estimate to guarantee for the pair X0 = L P(R n) and 
OO 

X 1 - -  w m ' p ( ] ~  n )  that the half-sequence {2- isK(2im; u)}i= 1 belongs to gq. This 

leaves the problem of sui[ably controlling the ~q norm of the half-sequence 
0 

{2 i(m-s) Ilwi [[1,p }i----c~" We can represent W i as a sum of m terms, each involving 
an average, with an m-fold iterated integral, of translates of u in a fixed direction. 
We can use this representation to estimate the norms in L p (Nn) of m-fold direc- 
tional derivatives of wi in any fixed direction. In particular, we can do this for the 
unmixed partial derivatives D ~ w i ,  in each case getting an L p norm that we can 
control with the part of (c) corresponding to a suitable corona. It is known that LP 
estimates for all unmixed derivatives of even order m imply similar estimate for 
all mixed mth-order derivatives derivatives, and thus for [wilm,p. (See [St, p. 77]; 
this is the place where we need m to be even and 1 < p < cxz.) 

Finally, for K ( 2 i m ;  u) we also need estimates for [[will p. Since wi comes from 
averages of translates of u, these estimates take the form Ilwillp < Cllullp. For 
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the half sequence { 2 -is K (2 TM; U) }iO=_oo we then need to multiply by 2 TM and 2 -is 

again the outcome is a finite ~q norm, since i < 0 and m > s. I 

Other Scales of Intermediate Spaces 

7.50 The Besov spaces are not the only scale of intermediate spaces that can 
fill the gap between Sobolev spaces of integer order. Several other such scales 
have been constructed, each slightly different from the others and each having 
properties making it useful in certain contexts. As we have seen, the Besov spaces 
are particularly useful for characterizing traces of functions in Sobolev spaces. 
However, except when p = 2, the Sobolev spaces do not actually belong to the 
scale of Besov spaces. 

Two other scales we will introduce below are: 

(a) the scale of fractional order Sobolev spaces (also called spaces of Bessel 
potentials), denoted W s'p (f2), which we will define for positive, real s by 
a complex interpolation method introduced below. It will turn out that if 
s -- m, a positive integer and f2 is reasonable, then the space obtained 
coincides with the usual Sobolev space W m'p (~"~). 

(b) the scale of Triebel-Lizorkin spaces, F s;p'q ( R  n ), which we will define 
only on I~ ~ but which will provide a link between the Sobolev, Bessel 
potential, and Besov spaces, containing members of each of those scales 
for appropriate choices of the parameters s, p, and q. 

We will use Fourier transforms to characterize both of the scales listed above, and 
will therefore normally work on the whole of ~n. Some results can be extended 
to more general domains for which suitable extension operators exist. 

For the rest of this chapter we will present only descriptive introductions to the 
topics considered and will eschew formal proofs, choosing to refer the reader 
to the available literature, e.g., [Trl, Tr2, Tr3, Tr4], for more information. We 
particularly recommend the first chapter of [Tr4]. 

We begin by describing another interpolation method for Banach spaces; this one 
is based on properties of analytic functions in the complex plane. 

7.51 (The Complex Interpolation Method) Let {X0, X1} be an interpolation 
pair of complex Banach spaces defined as in Paragraph 7.7 so that X0 + X I is a 
Banach space with norm 

[[Ul[xo+x, : inf{ [[uo[[xo + [[Ul [IX, " U -- go UC Ul, UO E Xo, Ul E X 1 }. 

Let ~ - ~ ( X o ,  X l )  be the space of all functions f of the complex variable 
~" -- 0 -+- iT with values in Xo + X1 that satisfy the following conditions: 

(a) f is continuous and bounded on the strip 0 _< 0 <_ 1 into Xo + X1. 
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(b) f is analytic from 0 < 0 < 1 into X0 + X1 (i.e., the derivative f ' ( ( )  exists 
i n X 0 + X l i f 0 < 0 = R e ( <  1). 

(c) f is continuous on the line 0 = 0 into X0 and 

IIf( ir)l lxo ~ 0 as Irl ~ ~ .  

(d) f is continuous on the line 0 = 1 into X1 and 

IIf(1 + iv ) l lx l  ~ 0 as Ivl ~ ~ .  

7.52 3 is a Banach space with norm 

IIf ; 511 - max{sup IIf(i 'r)llxo, sup IIf(1 + iv)llXl }. 
T T 

Given a real number 0 in the interval (0, 1), we define 

Xo = [Xo, X1]o = {u 6 Xo + X1 �9 u = f (O) for some f 6 ~ } .  

Xo is called a complex interpolation space between Xo and X1; it is a Banach 
space with norm 

Ilullx0 = Ilulltxo,xl]O = inf{l l f  ; ~11 �9 f (O)  -- u}. 

It follows from the above definitions that an analog of the Exact Interpolation 
Theorem (Theorem 7.23) holds for the complex interpolation method too. (See 
Calder6n {Ca2, p. 115] and [BL, chapter 4].) If {X0, X1} and {Y0, Y1} are two 
interpolation pairs and T is a bounded linear operator from X0 + X1 into Yo + Y1 
such that T is bounded from X0 into Y0 with norm M0 and from X1 into Y1 with 
norm M1, then T is also bounded from Xo into Yo with norm M < M 1-~ M ~ for 
each 0 in the interval [0, 1 ]. 

There is also a version of the Reiteration Theorem 7.21 for complex interpolation; 
if 0 < Oo </91 < 1, 0 < k < 1, and 0 = (1 - k)Oo + kOa, then 

[[X0, Xl]0 0, [X0, X1]01 ]). -- [X0, Xl]o 

with equivalent norms. This was originally proved under the assumption that 
X0 N XI is dense in [X0, X1]00 n [X0, X1]Ol, but this restriction was removed by 
Cwikel [Cw]. 

7.53 (Banach Lattices on g2) Most of the Banach spaces considered in this 
book are spaces of (equivalence classes of almost everywhere equal) real-valued 
or complex-valued functions defined in a domain f2 in I~ n . Such a Banach space 
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B is called a B a n a c h  la t t ice  on S2 if, whenever u 6 B and v is a measurable, real- 
or complex-valued function on f2 satisfying Iv(x)l < lu(x)l a.e. on f2, then v 6 B 
and II vii 8 -< Ilu II B- Evidently only function spaces whose norms depend only on 
the size of the function involved can be Banach lattices. The Lebesgue spaces 
L p (~) and Lorentz spaces L p'q (f2) are Banach lattices on ~ ,  but Sobolev spaces 
W m,p (~'2) (where m >_ 1) are not, since their norms also depend on the size of 
derivatives of their member functions. 

We say that a Banach lattice B on f2 has the d o m i n a t e d  c o n v e r g e n c e  p r o p e r t y  if, 
whenever u ~ B ,  uj  E B for 1 < j < ec, and l u j ( x ) l  < lu(x)l a.e. in f2, then 

lim Ilujll  - 0 lim U j ( X )  - -  0 a.e. ~, J ~  j--+oc 

The Lebesgue spaces L p (f2) and Lorentz spaces L p'q (~) have this property pro- 
vided both p and q are finite, but L ~ (S2), L p,ec (f2), and L ec'q (~) do not. (As a 
counterexample for L ~ ,  consider a sequence of translates with non-overlapping 
supports of dilates of a nontrivial bounded function with bounded support.) 

7.54 (The spaces y l - O y o ~  Now suppose that X0 and X1 are two Banach 

lattices on f2 and let 0 < 0 < 1. We denote by X~ -~  X~ the collection of 
measurable functions u on f2 for each of which there exists a positive number )~ and 
non-negative real-valued functions u0 ~ Xo and u 1 ~ X1 such that II uo [IXo = 1, 

Ilulllx, = 1 and 
lu(x)l __ Zuo(x)l-~ O. (23) 

Then X 1-~ X ~ is a Banach lattice on f2 with respect to the norm 

1-0 Ilu ;x0 II - inf{)~ �9 inequality (23)holds}. 

The key result concerning the complex interpolation of Banach lattices is the 
following theorem of Calder6n [Ca2, p. 125] which characterizes the intermediate 
spaces. 

7.55 T H E O R E M  Let X0 and X 1 be Banach lattices at least one of which has 
the dominated convergence property. If 0 < 0 < 1, then 

IX0, x ]o = -~ x~ 

with equality of norms. | 

7.56 E X A M P L E  It follows by factorization and H61der's inequality that if 

1 < pi  <_ ~ for i - 0, 1, pl ~ p2, and 0 < 0 < 1, then 

, --  L p ( f 2 ) ,  L l(a)] ~ 
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with equality of norms, where 

1 1 - 0  0 

P Po pl 

Moreover, if also 1 < qi < ~ and at least one of the pairs (p0, q0) and (Pl,  ql)  
has finite components, then 

[ Lp~176  LP"q' (~)]o -- LP'q ( ~ ) '  

with equivalence of norms, where 

1 1 - 0  0 1 1 - 0  0 
. . . .  k_ m and - = t 
P P0 Pl q q0 ql 

7.57 (Fractional Order Sobolev Spaces) We can define a scale of fractional 
order spaces by complex interpolation between L p and Sobolev spaces. Specifi- 
cally, if s > 0 and m is the smallest integer greater than s and f2 is a domain in 
]~n, w e  define the space W s'p (g2) as 

W s'p (~"~) -- [L p (~2), W m'p (~2)]s/m . 

Again, as for Besov spaces, we can use the Reiteration Theorem to replace m 
with a larger integer and also observe that W s'p (S2) is an appropriate complex 
interpolation space between W s~ (f2) and W s',p (f2) if 0 < so < s < Sl. We will 
see later that if s is a positive integer and S2 has a suitable extension property, then 
W s,p (f2) coincides with the usual Sobolev space with the same name. 

Because W m,p (~'2) is not a Banach lattice on ~ we cannot use Theorem 7.55 to 
characterize W s'p (f2). Instead we will use properties of the Fourier transform on 
II~ n for this purpose. Therefore, as we did for Besov spaces, we will normally 
work only with W s'p (I~n), and rely on extension theorems to supply results for 
domains S2 c ~n. 

We begin by reviewing some basic aspects of the Fourier transform. 

7.58 (The Fourier Transform) The Fourier  t ransform of a function u be- 
longing to L 1 (Rn) is the function t~ defined on It~ n by 

~ ( y )  -- 
, f (27/') n/2 n e -lx'y u ( x )  d x .  

By dominated convergence the function ~ is continuous; moreover, we have 
I1 11 < (2re) -n/2 ilulll, if  u ~ c1(/t~ n) and both u and D j u  belong to LI (~" ) ,  

then D j u ( y )  -- i y j f i ( y )  by integration by parts. Similarly, if both u and the 
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function mapping x to Ixlu(x) belong to Ll(•n), then fi 6 cl(]t~n); in this case 
Dj gt(y) is the value at y of the Fourier transform of the function mapping x to 
- ixju(x) .  

7.59 (The Space of Rapidly Decreasing Funct ions)  Let J -- J ( I ~ " )  denote 
the space of all functions u in C ~ (It~ n) such that for all multi-indices ot _> 0 and 
/3 >_ 0 the function mapping x to x ~ D~u (x) is bounded on I~". Unlike functions 
in ~ (I~ n ), functions in J need not have compact support; nevertheless, they must 
approach 0 at infinity faster than any rational function of x. For this reason the 
elements of J are usually called rapidly decreasing functions. 
The properties of the Fourier transform mentioned above extend to verify the 
assertion that the Fourier transform of an element of J also belongs to J .  

The inverse Fourier transform {t of an element u of L 1 (Rn) is defined for x ~ R" 
by 

1 fR eix'y 
fi(x) -- (27r)n/2 , u(y) dy. 

The Fourier inversion theorem [RS, chapter 9] asserts that if u 6 J ,  then the in- 

verse Fourier transform of fi is u (u -- u), and, moreover, that the same conclusion 
holds under the weaker assumptions that u 6 L 1 (I~") A C (R n ) and fi 6 L 1 (I~"). 
One advantage of considering the Fourier transform on J is that u 6 J guaran- 
tees that fi 6 L I(R "), and the same is true for the function mapping y to y~ fi(y) 
for any multi-index ot >__ 0. In fact, the inverse Fourier transforms of functions in 
J also belong to J and the transform of the inverse transform also returns the 
original function. Thus the Fourier transform is a one-to-one mapping of J onto 
itself. 

7.60 (The Space of Tempered Distributions) Given a linear functional F on 
the space J ,  we can define another such functional/~ by requiring/~(u) - F(fi) 
for all u E J .  Fubini 's theorem shows that if F operates by integrating functions 
in J against a fixed integrable function f ,  then F operates by integrating against 
the transform f :  

F(u) -- fR" f (x)u(x) dx, 

~, F(v) -- fR" f (y)v(y) dy. (24) 

f ~ LI(Rn),  

There exists a locally convex topology on J such that the mapping F --+ /~ maps 
the dual space J '  -- J ' ( R  n) in a one-to-one way onto itself. The elements of 
this dual space J '  are called tempered distributions. As was the case for ~ '  (S2), 
not all tempered distributions can be represented by integration against functions. 
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7.61 (The Plancherel Theorem) An easy calculation shows that if u and 
v belong to L 1 (]1~n), then u-'~v = (2:r)~/2fi~; Fourier transformation converts 
convolution_products i_, nto pointwise products. If u E L I ( ~  n ), let fi (x) = u ( - x ) .  
Then fi -- fi, and u �9 fi - (2zr)n/21fil 2. If u E J ,  then both u �9 fi and Ifil 2 also 
belong to S ~. Applying the Fourier inversion theorem to u �9 fi at x -- 0 then gives 
the following result, known as P l a n c h e r e l ' s  Theorem.  

2 2 
u 11 112 = II.tl2. 

That is, the Fourier transform maps the space Y equipped with the L2-norm 
isometrically onto itself. Since J is dense in L2(~ "), the isometry extends to one 
mapping L 2 (~n) onto itself. Also, L2(~ ") C J '  and the distributional Fourier 
transforms of an L 2 function is the same L 2 function as defined by the above 
isometry. (That is, the Fourier transform of an element of J '  that operates by 
integration against L 2 functions as in (24) does itself operate in that way.) 

7.62 (Characterization of WS'2(]~n)) Given u E L2(]~ n) and any positive 
integer m, let 

Um(y) -- (1 + lYl2)m/2f i (y) .  (25) 

It is easy to verify that u E_ wm'2(~x n ) if and only if b/m belongs to L2(~"),  
and the L2-norm of Um is equivalent to the wm'2-norm of u. So the Fourier 
transform identifies W 'n'2 (I~ " ) with the Banach lattice of functions w for which 
(1 + I" 12)m/2w(") belongs to L2(~n). For each positive integer m that lattice has 
the dominated convergence property. It follows that u ~ W s'2 (I~ n ) if and only if 
(1 + l "  12)s/2fi(") belongs to L2(Rn). 

7.63 (Characterization of W S ' P ( I ~ n ) )  The description of W s'p (R") when 
1 < p < 2 or 2 < p < c~ is more complicated. If u E L p (]~n) with 1 < p < 2, 
then u E L 1 (it~n) + L2 (1~"); this guarantees that fi E L ~ (I~ " ) + L2 (Rn), and in 

particular that the distribution fi is a function. Moreover, it follows by complex 
interpolation that ~ ~ L p' (]~n) and by real interpolation that fi E L p''p (]~n). But 
the set of such transforms of L p functions is not a lattice when 1 < p < 2. This 
follows from the fact (see [FG]) that every set of positive measure contains a subset 
E of positive measure so that if the Fourier transform of an L p function, where 
1 < p < 2, vanishes off E, then the function must be 0. If u E L p (]~n) and E is 
such a subset on which fi (y) ~: 0, then the function that equals fi on E and 0 off 
E is not trivial but would have to be trivial if the set of Fourier transforms of L p 
functions were a lattice. 

A duality argument shows that the set of (distributional) Fourier transforms of 
functions in L p (]~n) for p > 2 cannot be a Banach lattice either. Moreover (see 
[Sz]), there are functions in L p (•n) whose transforms are not even functions. 
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Nevertheless, the product of any tempered distribution and any sufficiently smooth 
function that has at most polynomial growth is always defined. For any distribution 
u 6 J '  we can then define the distribution Um by analogy with formula (25); we 
multiply the tempered distribution fi by the smooth function (1 + l" 12)m/2. When 
1 < p < 2 or 2 < p < cx~, the theory of singular integrals [St, p. 138] then shows 
that u ~ W m'p (~n) if and only if the function Um is the Fourier transform of some 
function in LP (I~ n ). Again the space W s'p ( R  n ) is characterized by the version of 
this condition with m replaced by s. In particular, if s = m we obtain the usual 
Sobolev space W m'p (]~n) up  to equivalence of norms, when 1 < p < c~. The 
fractional order Sobolev spaces spaces are natural generalizations of the Sobolev 
spaces that allow for fractional orders of smoothness. 

One can pass between spaces W s,p (I~ n) having the same index p but different 
orders of smoothness s by multiplying or dividing Fourier transforms by factors of 
the form (1 § l" 12)-r/2. When r > 0 these radial factors are constant multiples of 
Fourier transforms of certain Bessel functions; for this reason the spaces W s'p (R  ~ ) 

are often called spaces  o f  Besse l  potent ials .  (See [AMS].) 

In order to show the relationship between the fractional order Sobolev spaces and 
the Besov spaces, it is, however, more useful to refine the scale of spaces W s'p ( R  n ) 

using a dyadic splitting of the Fourier transform. 

7.64 (An Alternate Characterization of W ~ , P ( R  n) )  In proving the Trace 
Theorem 7.39 we used a splitting of a function in W m'p (R n+l ) into dyadic pieces 
supported in slabs parallel to the subspace R ~ of the traces. Here we are going 
to use a similar splitting of the Fourier transform of an L p function into dyadic 
pieces supported between concentric spheres. 

Recall the C a function t~i defined in the proof of Lemma 7.40 and having support 
in the interval (2 i, 2i+2). For each integer i and y in/t~ n, let 7ti(y)  = 4~i(lyl). 
Each of these radially symmetric functions belongs to J and so has an inverse 
t r a n s f o r m ,  kI/i say, that also belongs to J .  

Fix an index p in the interval (1, cx~) and let u E L p (]~n). For each integer i let 
T/u be the convolution of u with (2~)-n/Zklli; thus T~(y)  -- ~ i ( Y ) "  fi(Y). One 
can regard the functions T/u as dyadic parts of u with nearly disjoint frequencies. 
Littlewood-Paley theory [FJW] shows that the L P-norm of u is equivalent to the 

[ ~x~ 2]1/2 LP-norm of the function mapping x to Y~i=-~ [T/u(x)l . That is 

[lu lip ~ I T/u(x) 12 d x  . 
n i__ ~:~ 

To estimate the norm of u in Ws'p(]R ")  we should replace each term T/u by 
the function obtained by not only multiplying fi by ~Pi, but also multiplying the 
transform by the function mapping y to (1 + lyl2y/2. 
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On the support of 1//i the values of that second Fourier multiplier are all roughly 
equal to 1 + 2 si . It turns out that u e W s'p (I~ n ) if and only if ]p 2 
[lUlls,p = IIU ; Ws'P(I~n)[ I ~,~ (1 n t- 2si)2lTiu(x)l 2 dx < 0o. 

n i"---(X) 

This is a complicated but intrinsic characterization of the space W s,p (I~"). That 
is, the following steps provide a recipe for determining whether an L p function u 
belongs to W *,p (IR n ): 

(a) Split u into the the pieces T/u by convolving with the functions qJi or by 
multiplying the distribution fi by gri and then taking the inverse transform. 
For each point x in It{ n this gives a sequence { T/u (x)}. 

(b) Multiply the i-th term in that sequence by (1 + 2 si) and compute the s 
of the result. This gives a function of x. 

(c) Compute the LP-norm of that function. 

The steps in this recipe can be modified to produce other scales of spaces. 

7.65 (The Triebel-Lizorkin Spaces) Define F s; P'q (]~r to be the space ob- 
tained by using steps (a) to (c) above but taking an s rather than an s 
in step (b). This gives the family of Triebel-Lizorkin spaces; if 1 < q < oo, 

(f ,e [__~_~ lp/q ) l /p  I[u ; FS;P'q(l~")ll ~, (1 + 2 s i ) q l T i u ( x ) l q  d x  < oo.  

" i 

Note that Fm;p '2 (~  n ) coincides with W m'p (I[~ n ) when m is a positive integer, and 
Fs;p'2(I~ n ) coincides with W s'p (It~") when s is positive. 

7.66 REMARKS 

1. The space F ~ p,2 (IR,) coincides with LP (I~ n ) when 1 < p < oo. 

2. The definitions of W s' p (I~") and F s P'q (I[~ n ) also make sense if s < 0, and 
even if 0 < p, q < 1. However they may contain distributions that are not 
functions if s < 0, and they will not be Banach spaces unless p > 1 and 
l < q  < o o .  

3. If s > 0, the recipes for characterizing Ws,p(IR " )  and Fs;p'q(I~ n) given 
above can be modified to replace the multiplier (1 + 2 si) by 2 si and restrict- 
ing the summations in the s or s norm expressions to i > 0, provided we 
also explicitly require u e L p (I[~ n ). Thus, for example, u e F s; P'q (I[~ n ) if 
and only if 

( f R I  ~ l P / q )  lip 
IlU[lp -+- 2siqlTiu(x)l q d x  < oo. 

" i=o 
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4. If s > 0 and we modify the recipe for F s; P'q (~n) by replacing the multiplier 
(1 + 2 si) by 2 si but continuing to take the summation over all integers i, then 
we obtain the so-called h o m o g e n e o u s  Tr iebel -Lizork in  space  F s;p'q (R n ) 
which contain equivalence classes of distributions modulo polynomials of 
low enough degree. Only smoothness and not size determines whether a 
function belongs to this homogeneous space. 

7.67 (An Alternate Definition of the Besov Spaces) It turns out that the 
Besov spaces B s; P'q (R" )  arises from the variant of the recipe given in Paragraph 
7.64 where the last two steps are modified as follows. 

(b') Multiply the i-th term in the sequence { T/u (x)} by (1 + 2 si) and compute 
the LP-norm of the result. This gives a sequence of nonnegative numbers. 

(c') Compute the ~q-norm of that sequence. 

[ ~ ( f R  )q/p]l /q  Ilu; ns;p'q(I~n)l] ~ (l + 2s i )PlT iu(x ) lP  dx 
i=_-oo n 

This amounts to reversing the order in which the two norms are computed�9 That 
order does not matter when q = p; thus B s; P'P (I~ n ) = F s; P'P (I~ n ) with equivalent 
norms. When q r p, Minkowski's inequality for sums and integrals reveals that 
in comparing the outcomes of steps (b) and (c), the larger norm and the smaller 
space of functions arises when the larger of the indices p and q is used first. That 
is, 

F s; p'q (It{ n) C B s p'q (I~ n) if q < p 
B s;p'q (I[{ n) C F s;p'q (~n) if q > p. 

For fixed s and p the inclusions between the Besov spaces B s; P'q (I[{ n ) are the same 
as those between ~q spaces, and the same is true for the Triebel-Lizorkin spaces 
FS; p,q (I[{n ). 

Finally, the only link with the scale of fractional order Sobolev spaces and in 
particular with the Sobolev spaces occurs through the Triebel-Lizorkin scale with 
q -- 2. We have 

Ws'p(R n) = Fs;p'2(R n) C FS;p'q(I~ n) 
FS;p'q (I[{ n) C Fs;p'2(I[{ n) -- WS'p (I[{ n) 

i fq  > 2  
i fq  < 2 .  

As another example, the trace of wm'p(I[{ n+l) on R n is exactly the space 
Bm-1/p;P'P(I[{ n) = Fm-1/p;P'P(I[{n). When p <_ 2, this trace space is included 
in the space Fm-1/p;p'2(~ n) and thus in the space wm-a/p'P(I[{n). When p > 2, 

this inclusion is reversed�9 
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7.68 REMARKS 

1. Appropriate versions of Remarks 7.66 for the Triebel-Lizorkin spaces ap- 
ply to the above characterization of the Besov spaces too. In particular, 
modifying recipe item (b') to use the multiplier 2 si instead of 1 + 2 si re- 
sults in a h o m o g e n e o u s  Besov  space BS;p,q (~n)  of equivalence classes of 
distributions modulo certain polynomials. Again membership in this space 
depends only on smoothness and not on size. 

2. The K-version of the definition of B s;p'q (]~n) as an intermediate space 
obtained by the real method is a condition on how well u ~ L p (R  n) can 
be approximated by functions in W m,p (~n)  for some integer m > s. But 
the J-form of the definition requires a splitting of u into pieces ui with 
suitable control on the norms of the functions ui in the spaces L p (R  n ) and 
W m,p (~'~). The Fourier splitting also gives us pieces T/u for which we can 
control those two norms, and these can serve as the pieces ui. Conversely, 
if we have pieces ui with suitable control on appropriate norms, and it we 
apply Fourier decomposition to each piece, we would find that the norms 
II Tjui lip are negligible when I j - i  I is large, leading to appropriate estimates 
for the norms II Tj u lip. 

7.69 (Extensions for General Domains) Many of the properties of the scales 
of Besov spaces, spaces of Bessel potentials, and Triebel-Lizorkin spaces on 
~n can be extended to more general domains f2 via the use of an extension 
operator. Rychkov [Ry] has constructed a linear total extension operator 8 that 
simultaneously and boundedly extends functions in F s;p'q (~) to F s;p'q (]~n) and 
functions in B s; P'q (~"2) to B s; P'q (]~n) provided f2 satisfies a strong local Lipschitz 
condition. The same operator 8 works for both scales, all real s, and all p > 0, 
q > 0; it is an extension operator in the sense that 8ul~ = u in ~ ' ( f t )  for every u 
in any of the Besov or Triebel-Lizorkin spaces defined on f2 as restrictions in the 
sense of ~ ' ( ~ )  of functions in the corresponding spaces on Ii~ n . 

The existence of this operator provides, for example, an intrinsic characterization 
of B s; P'q (~'2) in terms of that for B s; P'q ( ~ " )  obtained in Theorem 7.47. 

Wavelet Characterizations 

7.70 We have seen above how membership of a function u in a space B s; P'q ( R  n ) 

can be determined by the size of the sequence of norms II T/u I[p, while its mem- 
bership in the space F s; P'q (]~n) requires pointwise information about the sizes of 
the functions T/u on It~ n . Both characterizations use the functions T/u of a dyadic 
decomposition of u defined as inverse Fourier transforms of products of fi with 
dilates of a suitable smooth function ~b. We conclude this chapter by describing 
how further refining these decompositions to the level of wavelets reduces ques- 
tions about membership of u in these smoothness classes to questions about the 
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sizes of the (scalar) coefficients of u in such decompositions. These coefficients 
do form a Banach lattice. 

This contrasts dramatically with the situation for Fourier transforms of LP func- 
tions with 1 < p < 2, where these transforms fail to form a lattice. 

7.71 (Wavelet Analysis) An analyzing wavelet  is a nontrivial function on 
IR n satisfying some decay conditions, some cancellation conditions, and some 
smoothness conditions. Different versions of these conditions are appropriate in 
different contexts. Two classical examples of wavelets on R are the following: 

(a) The basic Haar function h given by 

1 i f < x  < 1/2 
h ( x ) -  - 1  if 1 / 2 _ < x <  1 

0 otherwise. 

(b) A basic Shannon wavelet S defined as the inverse Fourier transform of the 
function S satisfying 

1 if Jr ~ l Yl < 2re 
S(Y)--  0 otherwise. 

The Haar wavelet has compact support, and afor t ior i  decays extremely rapidly. 
The only cancellation condition it satisfies is that fR ch (x )  dx  - 0 for all constants 
c. It fails to be smooth, but compensates for that by taking only two nonzero values 
and thus being simple to use numerically. 

The Shannon wavelet does not have compact support; instead it decays like 1 /Ix I, 
that is, at a fairly slow rate. However, it has very good cancellation properties, 
since 

R x m S ( x )  dx  -- 0 for all nonnegative integers m. 

(These integrals are equal to constants times the values at y -- 0 of derivatives of 
S(y ) .  Since S vanishes in a neighbourhood of 0, those derivatives all vanish at 0.) 
Also, S 6 C ~ (IR) and even extends to an entire function on the complex plane. 

To get a better balance between these conditions, we will invert the roles of 
function and Fourier transform from the previous section, and use below a wavelet 
4~ defined on I~" as the inverse Fourier transform of a nontrivial smooth function 
that vanishes outside the annulus where 1/2 < lyl < 2. Then 4~ has all the 
cancellation properties of the Shannon wavelet, for the same reasons. Also 4~ 
decays very rapidly because ~ is smooth, and 4~ is smooth because ~ decays 

A 

rapidly. Again the compact support of 4~ makes 4~ the restriction of an entire 
function. 

Given an analyzing wavelet, w say, we consider some or all of its translates 
mapping x to w ( x  - h) and some or all of its (translated) dilates, mapping x to 
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w ( 2 r x  - -  h). These too are often called wavelets. Translation preserves L p norms; 
dilation does not do so, except when p -- ~ ;  however, we will use the multiple 
2rn/2w(2rx -- h) to preserve L 2 norms. 

If we apply the same operations to the complex exponential that maps x to e ixy o n  

IL we find that dilation produces other such exponentials, but that translation just 
multiplies the exponential by a complex constant and so does not produce anything 
really new. In contrast, the translates of the basic Haar wavelet by integer amounts 
have disjoint supports and so are orthogonal in L 2 (~). A less obvious fact is that 
translating the Shannon wavelet by integers yields orthogonal functions, this time 
without disjoint supports. 

In both cases, dilating by factors 2 i, where i is an integer, yields other wavelets 
that are orthogonal to their translates by 2 i times integers, and these wavelets are 
orthogonal to those in the same family at other dyadic scales. Moreover, in both 
examples, this gives an orthogonal basis for L 2 (It~). 

Less of this orthogonality persists for wavelets like the one we called ~p above. 
But it can still pay to consider the wavelet  transform of a given function u which 
maps positive numbers a and vectors h in Rn to 

1 fRu(x)ep(x-h)dx. 
, a 

For our purposes it will suffice to consider only those dilations and translates map- 
ping x to dpi,~(x) = 2in/2dp(2ix - k),  where i runs through the set of integers, and 
k runs through the integer lattice in ~n. Integrating u against such wavelets yields 
wavele t  coefficients that we can index by the pairs (i, k) and use to characterize 
membership of u in various spaces. 

For much more on wavelets, see [Db]. 

7.72 (Wavelet Characterization of Besov Spaces) Let cp be a function in J 
whose Fourier transform q~ satisfies the following two conditions" 

(i) ~(y) - 0 if lYl < 1/2 or lYl > 2. 

(ii) I~(Y)I > c > 0 i f 3 / 5  < lYl < 5/3. 

Note that the conditions on ~ imply that 

frt P (x)dp (x)  d x  -- 0 
n 

for any polynomial P. 

Also, it can be shown (see [FJW, p. 54]) that there exists a dual function ~ ~ J 
satisfying the same conditions (i) and (ii) and such that 

(x) 

~(2 -/y) ~ (2 - /y)  dy  - 1 for all y :~ 0. 
i - - - - ~  



Wavelet Characterizations 259 

Let Z denote the set of all integers. For each i E Z and each n-tuple 
k -- (kl . . . . .  kn) E Z n we define two wavelet families by using dyadic dilates and 

translates of 4~ and ~p: 

~i,k(X) = 2 - in /2~(  2 - i x  -- k) and l[ri,k(X ) -- 2 in /Z~(2 ix  -- k). 

Note that the dilations in these two families are in opposite directions and that 4~i,~ 
and ~Pi,~ have the s a m e  L 2 norms as do 4~ and 7/respectively. Moreover, for any 

polynomial P, 

fR P(x)dPi,k(X) dx = O. 
n 

Let I denote the set of all indices (i, k) such that i E Z and k 6 Z n, and let 
denote the wavelet family {(pi,~ �9 (i, k) E I }. Given a locally integrable function 
u, we define its wavelet coefficients ci,~: (u) with respect to the family ~ by 

Ci'k(U) : f~n U(X)~i 'k(X) d x ,  

and consider the wavelet series representation 

U -  ~ Ci,k(U)l[ri,k �9 
(i,k)El 

(26) 

The series represents u modulo polynomials as all its terms vanish if u is a 

polynomial. 

It turns out that u belongs to the homogeneous Besov space BS. p,q (~n)  if and only 
if its coefficients {Ci,k(U) " (i, k) E I} belong to the Banach lattice on I having 

norm 1/q 

i - = - -  o c  n 

The condition for membership in the ordinary Besov space B s;p'q (I~ n ) is a bit 
more complicated. We use only the part of the wavelet series (26) with i > 0 and 

replace the rest with a new series 

c k ( u ) % ,  
k E Z  n 

where qJk(X) -- qJ(x -- k) and �9 is a function in J satisfying the conditions 
+ ( y )  - 0 if [y] > 1 and I+(y)l  > c > 0 if lYl -< 5/6. Again there is a dual such 
function �9 with the same properties such that the coefficients c/,(u) are given by 

c~(u) -- fRn u(x )C~(x)  dx.  
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We have u ~ B s; P'q (]~n) if and only if the expression 

(E I IcklP + ~ 2i(s+n[1/2-1/P]) Z Ici'klP 
i--'O kEZ n 

1/q 

(28) 

is finite, and this expression provides an equivalent norm for B s; P'q (]~n). 
Note that, in expressions (27) and (28) the part of the recipe in item 7.66 involving 
the computation of an LP-norm seems to have disappeared. In fact, however, for 
any fixed value of the index i, the wavelet "coefficients" ci,k are actually values of 
the convolution u �9 4~i,0 taken at points in the discrete lattice {2 i k}, where the index 
i is fixed but k varies. This lattice turns out to be fine enough that the LP-norm of 
u �9 4~i,0 is equivalent to the s over this lattice of the values of u �9 4~i,0. 

7.73 (Wavelet Characterization of Triebel-Lizorkin Spaces) Membership 
in the homogeneous Triebel-Lizorkin space ~-s; p,q (~, , )  is also characterized by a 
condition where only the sizes of the coefficients ci,k matter, namely the finiteness 
of 

II( I 111/q 
q " 

p,R n 

where Xi,k is the characteristic function of the cube 2ikj  < xj  < 2 i (kj-t-), 
(1 _< j _< n). At any point x in It{ n the inner sum above collapses as fol- 
lows. For each value of the index i the point x belongs to the cube corresponding 
to i and k for only one value of k, say ki (x). This reduces matters to the finiteness 
of 

. 

p,R n 
We refer to section 12 in [FJ] for information on how to deal in a similar way with 
the inhomogeneous space F s;p,q (If{ n ). 
Recall that in the discrete version of the J-method, the pieces u i in suitable 
splittings of u are not unique. This flexibility sometimes simplified our analysis, 
for instance in the proofs of (trace) imbeddings for Besov spaces. The same is 
true for the related idea of a tomic  decompos i t i on ,  for which we refer to [FJW] and 
[FJ] for sharper results and much more information. 



8 
ORLICZ SPACES AND 

ORLICZ-SOBOLEV SPACES 

Introduction 

8.1 In this final chapter we present results on generalizations of Lebesgue and 
Sobolev spaces in which the role usually played by the convex function t p is 
assumed by a more general convex function A (t). The spaces LA (~), called Orl i c z  

s p a c e s ,  are studied in depth in the monograph by Krasnosel'skii and Rutickii [KR] 
and also in the doctoral thesis by Luxemburg [Lu], to either of which the reader 
is referred for a more complete development of the material outlined below. The 
former also contains examples of applications of Orlicz spaces to certain problems 

in nonlinear analysis. 

It is of some interest to note that a gap in the Sobolev imbedding theorem (Theorem 
4.12) can be filled by an Orlicz space. Specifically, if m p  = n and p > 1, then for 

suitably regular f2 we have 

W m,p (~'~) -----> L q (~), p < q < oc, but W m'p (f2) -/+ L ~ (f2); 

there is no best ,  (i.e., smallest) target L P-space for the imbedding. In Theorem 
8.27 below we will provide an optimal imbedding of W m'p (~'~) into a certain Orlicz 
space. This result is due to Trudinger [Td], with precedents in [Ju] and [Pz]. There 
has been much further work, for instance [Ms] and [Adl ]. 

Following [KR], we use the class of "N-functions" as defining functions A for 
Orlicz spaces. This class is not as wide as the class of Young's functions used in 
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[Lu]; for instance, it excludes L 1 (~'2) and L ~ (f2) from the class of Orlicz spaces. 
However, N-functions are simpler to deal with, and are adequate for our purposes. 
Only once, in Theorem 8.39 below, do we need to refer to a more general Young's 
function. 

If the role played by LP(f2)  in the definition of the Sobolev space W m,p (~'2) is 
assigned instead to the Orlicz space La( f2 ) ,  the resulting space is denoted by 
W m L a ( f 2 )  and is called an Orlicz-Sobolev  space. Many properties of Sobolev 
spaces have been extended to Orlicz-Sobolev spaces by Donaldson and Trudinger 
[DT]. We present some of these results in this chapter. 

N-Functions 

8.2 (Definition of an N-Funct ion)  Let a be a real-valued function defined 
on [0, oo) and having the following properties: 

(a) a(0) = O, a ( t )  > 0 if t > 0, l i m t ~  a ( t )  = oo; 

(b) a is nondecreasing, that is, s > t implies a(s )  >_ a(t);  

(c) a is right continuous, that is, if t _> 0, then lims~t+ a(s )  - a ( t ) .  

Then the real-valued function A defined on [0, oo) by 

f0 A ( t )  -- a ( r )  d r  (1) 

is called an N-funct ion.  

It is not difficult to verify that any such N-function A has the following properties: 

(i) A is continuous on [0, e~); 

(ii) A is strictly increasing that is, s > t > 0 implies A ( s )  > A(t); 

(iii) A is convex, that is, if s, t > 0 and o < ~. < 1, then 

A()~s + (1 - )~)t) < )~A(s) + (1 - )~)A(t); 

(iv) limt~0 A ( t ) / t  - O, and limt__>~ A ( t ) / t  - c~o; 

(v) if s > t > 0, then A ( s ) / s  > A ( t ) / t .  

Properties (i), (iii), and (iv) could have been used to define an N-function since 
they imply the existence of a representation of A in the form (1) with a having the 
properties (a)-(c). 

The following are examples of N-functions: 

A ( t )  = t p, 1 < p < cx~, 

A ( t )  - -  e t - t - 1, 

A ( t ) -  e ( t p ) -  1, 1 < p < oo, 

A (t) = (1 + t) log(1 + t) - t. 
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Evidently, A ( t )  is represented by the area under the graph cr -- a ( r )  from r -- 0 to 
r = t as shown in Figure 9. Rectilinear segments in the graph of A correspond to 
intervals on which a is constant, and angular points on the graph of A correspond 

to discontinuities (i.e., vertical jumps) in the graph of a. 

Fig. 9 

8.3 (Complementary N-Functions)  Given a function a satisfying conditions 

(a)-(c) of the previous Paragraph, we define 

fi(s) = sup t. 
a(t)<s 

It is readily checked that the function fi so defined also satisfies (a)-(c) and that a 

can be recovered from fi via 
a ( t ) -  sup s. 

gt(s)<t 

If a is strictly increasing then fi - a -1 . The N-functions A and A given by 

f0 f0 s A ( t )  - -  a ( r )  d r ,  A(s) - fi(~r) dcr 

are said to be c o m p l e m e n t a r y ;  each is the c o m p l e m e n t  of the other. Examples of 

such complementary pairs are: 

t p s p' 1 1 
A ( t ) - -  --p , ~4 ( s ) - -  p , , 1 < p < o c  , -p + - ~  - -  l , 
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and 
A( t )  = e t - t - 1, ,4 (s) = (1 4- s) log(1 4- s) - s. 

A (s) is represented by the area to the left ofthe graph a = a ( r )  (or, more correctly, 
r = h (a))  from a - 0 to a = s as shown in Figure 10. Evidently, we have 

st  < A (t) 4- A (s), (2) 

which is known as Young's inequality (though it should not be confused with 
Young's inequality for convolution). Equality holds in (2) if and only if either 
t - h(s) or s - a( t ) .  Writing (2) in the form 

(s) >_ st  - A (t) 

and noting that equality occurs when t -- h(s), we have 

,4(s) -- m a x ( s t -  A ( t ) ) .  
t>0 

This relationship could have been used as the definition of the N-function ,4 
complementary to A. 

Fig. 10 

Since A and ,4 are strictly increasing, they have inverses and (2) implies that for 
every t > 0 

z - l ( t ) ~ 4 - l ( t )  < A ( A - I ( t ) )  4- ,4 (A- l ( t ) )  -- 2t. 

On the other hand, A ( t )  < ta( t ) ,  so that, considering Figure 10 again, we have 
for every t > 0, 

~ ( A ( t ) )  A ( t )  
A - - ~  < t - - A ( t ) .  (3) 

t 
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Replacing A(t)  by t in inequality (3), we obtain 

( t ) 
< t .  A A -1 (t) 

Therefore, for any t > 0, 

t < A -1 (t)A -1 (t) < 2t. (4) 

8.4 (Dominance and Equivalence of N-Functions) We shall require certain 
partial ordering relationships among N-functions. If A and B are two N-functions, 
we say that B dominates A globally if there exists a positive constant k such that 

A(t)  < B(k t )  (5) 

holds for all t > 0. Similarly, B dominates A near infinity if there exist positive 
constants to and k such that (5) holds for all t >__ to. The two N-functions A and 
B are equivalent globally (or near infinity) if each dominates the other globally 
(or near infinity). Thus A and B are equivalent near infinity if there exist positive 
constants to, kl, and k2, such that if t > to, then B(k l t )  < A( t )  < B(k2t). Such 
will certainly be the case if 

B(t) 
0 < lim 

t ~  A (t) 
< O O .  

If A and B have respective complementary N-functions A and B, then B dominates 
A globally (or near infinity) if and only if A dominates B globally (or near infinity). 
Similarly, A and B are equivalent if and only if A and B are. 

8.5 If B dominates A near infinity and A and B are not equivalent near infinity, 
then we say that A increases essentially more slowly than B near infinity. This is 
the case if and only if for every positive constant k 

A(k t )  
lim 
t ~  B(t)  

= 0 .  

The reader may verify that this limit is equivalent to 

B - l ( t )  
lim 

t ~ c ~  A -1  (t) 
= 0 .  

Let 1 < p < oo and let Ap denote the N-function 

t p 
Ap(t)  -- - - ,  0 < t < c~. 

P 
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If 1 < p < q < o0, then Ap increases essentially more slowly than Aq near 
infinity. However, Aq does not dominate Ap globally. 

8.6 (The A 2 Condition) An N-function is said to satisfy a global A 2- 
condition if there exists a positive constant k such that for every t >_ 0, 

A (2t) _< kA (t). (6) 

This is the case if and only if for every r > 1 there exists a positive constant 
k = k(r) such that for all t > 0, 

A(rt) < kA(t).  (7) 

Similarly, A satisfies a A2 condition near infinity if there exists to > 0 such that 
(6) (or equivalently (7) with r > 1) holds for all t > to. Evidently, to may be 
replaced with any smaller positive number t~, for if tl < t < to, then 

A(rto) 
a (rt) <_ ~ a (t). 

a ( t l )  

If A satisfies a Ae-condition globally (or near infinity) and if B is equivalent to A 
globally (or near infinity), then B also satisfies such a Az-condition. Clearly the 
N-function Ap(t) : tP/p, (1 < p < oo), satisfies a global Ae-condition. It can 
be verified that A satisfies a Ae-condition globally (or near infinity) if and only if 
there exists a positive, finite constant c such that 

1 
- t  a( t )  < A( t )  < t a( t )  
C 

holds for all t >_ 0 (or for all t >_ to > 0), where A is given by (1). 

Orlicz Spaces 

8.7 (The Orlicz Class KA($'~)) Let f2 be a domain in E" and let A be an 
N-function. The Orlicz class KA (~)  is the set of all (equivalence classes modulo 
equality a.e. in f2 of) measurable functions u defined on f2 that satisfy 

f A( lu(x) l )dx  < ~ .  

Since A is convex KA (if2) is always a convex set of functions but it may not be 
a vector space; for instance, there may exist u ~ KA ( ~ )  and )~ > 0 such that 

)~u ~ KA (~2). 
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We say that the pair (A, f2) is A-regular if either 
(a) A satisfies a global A2-condition, or 
(b) A satisfies a A2-condition near infinity and f2 has finite volume. 

8.8 L E M M A  KA (~'2) is a vector space (under pointwise addition and scalar 
multiplication) if and only if (A, f2) is A-regular. 

Proof. Since A is convex we have: 

(i))~u ~ KA (f2) provided u E KA (f2) and Ikl _ 1, and 

(ii) if u E KA(f2) implies that )~u E KA(~) for every complex )~, then 
u, v E KA(~) implies u + v E ga(~).  

It follows that KA(f2) is a vector space if and only if )~u E KA(~) whenever 

u E ga(~)  and IXl > 1. 

If A satisfies a global A2-condition and IXl > 1, then we have by (7) for u E KA (~) 

f A(I)~u(x)l) dx <_ k(I)~l) f~ A(lu(x)l)dx < ~ .  

Similarly, if A satisfies a A2-condition near infinity and vol(f2) < co, we have for 

u E KA(~), I~,l > 1, and some to > 0, 

f f2A(I)~u(x) l )dx--( fx  +f{x )A(l)~u(x)l)dx 
eS2:lu(x)l>_to} ~S2:lu(x)l<to} 

k(I)~l) ] A(I)~u(x)l)dx + A(IXIt0)vol(f2) < oo. < 
d~ 

In either case KA (~'2) is seen to be a vector space. 

Now suppose that (A, f2) is not A-regular and, if vol(fl) < oo, that to > 0 is 
given. There exists a sequence {tj } of positive numbers such that 

(i) a (2tj) > 2 j a (tj), and 

(ii) tj >_ to > 0 if vol(f2) < co. 

Let { f2j } be a sequence of mutually disjoint, measurable subsets of f2 such that 

1/[2JA(tj)] 
vol(f2)j - A(to)vol(~2)/[2JA(tj)] 

if vol(f2) = oo 
if vol(f2) < cx~. 

Let 

u(x)--  0 if x E Q - -  U~=I~2j . 
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Then 

But 

O~ 

L A(lu(x)l) dx = ~ A(tj)vol(f2)j 
j=l 

-- { 1 if v o l ( ~ ) - - c ~  
A(t0)vol(~2) if vol(~2) < oo. 

A(12u(x)l)dx >__ 2JA( t j ) vo l (~ ) j  - cx~. 
j=l 

Thus KA (~)  is not a vector space. II 

8.9 (The Odicz Space LA(g2)) The Orlicz space LA (~) is the linear hull of 
the Orlicz class KA (~'2), that is, the smallest vector space (under pointwise addition 
and scalar multiplication) that contains KA(~2). Evidently, L A ( ~ )  contains all 
scalar multiples )~u of elements u e KA (~). Thus KA (~2) C LA (~),  these sets 
being equal if and only if (A, S2) is A-regular. 

The reader may verify that the functional 

IlUllA = llUllA'a -- inf [k > O " f~A  (lU(x)l) dx < 

is a norm on LA (~'~). It is called the Luxemburg norm. The infimum is attained. 
In fact, if k decreases towards Ilu II a in the inequality 

f A ( lu ( x ) l )  d x < l  
k - ' 

(8) 

we obtain by monotone convergence 

f aA  ( lu(x)l)llullA dx < l. (9) 

Equality may fail to hold in (9) but if equality holds in (8), then k = [lUlIA. 

8.10 T H E O R E M  LA(~2) is a Banach space with respect to the Luxemburg 
norlI1. 

The completeness proof is similar to that for the L p spaces given in Theorem 2.16. 
The details are left to the reader. We remark that if 1 < p < ~ and Ap(t) -- t p/p, 
then 

L p (~) -- Lap (~'2) = Kap (~"~). 

Moreover, IlUllAp,a - p-1/p IlUllp,a. 
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8.11 (A Gene ra l i zed  Hi i lder  Inequa l i ty )  If A and A are complementary  
N-functions,  a generalized version of H61der's inequality 

f u(x)v(x) dx < 2 IlUlIA,~ Ilvll~,~ (10) 

can be obtained by applying Young' s inequality (2) to l u (x) l/Ilu II A and Iv (x)l /II  v II 
and integrating over f2. 

The following elementary imbedding theorem is an analog for Orlicz spaces of 
Theorem 2.14 for L p spaces. 

8.12 T H E O R E M  (An Imbedd ing  T h e o r e m  for Orlicz Spaces)  The imbedding 

Ls(~) --+ LA(~) 

holds if and only if either 
(a) B dominates A globally, or 
(b) B dominates A near infinity and vol(f2) < c~. 

Proof .  If A(t) <_ B(kt) for all t > 0, and if u E L s ( ~ ) ,  then 

f A (  lu(x)l ) dx< f B(lu(x)l) dx<l .  
k II u II 8 - II u II 8 - 

Thus u E LA (~) and II u II A ~ k II u II 8- 

If vol(f2) < cx~, let tl -- A - l ( ( 2 v o l ( f 2 ) ) - l ) .  If B dominates A near infinity, 

then there exists positive numbers to and k such that A(t) < B(kt) for t > to. 
Evidently, for t > tl we have 

A(to) } B(kt) = klB(kt). A(t) <_ max 1, B(ktl) 

If u E L s ( f 2 ) i s  given, let f2'(u) -- {x ~ K2"lu(x)l/[2klkllulls] < tl} and 
f2"(u) - f2 - f2'(u). Then 

f~ ( lu(x)l ) d x - ( f s a  +f~ ) A (  lu(x)l ) dx A 2klkllull8 ,<u~ "(,) 2klkllull8 
1 < dx + kl B dx 

- 2vol(f2) '(u) "(u) 2kl Ilul18 
1 (lu(x l) < -+  B dx < 1. 

- 2 2 Ilul18 - 

Thus u ~ LA(~) and IlullA ~ 2klk Ilulls. 
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Conversely, suppose that neither of the hypotheses (a) and (b) holds. Then there 

exist numbers tj > 0 such that 

A(tj) >_ B(jtj), j = l , 2  . . . . .  

If vo1(92) < ~ ,  we may assume, in addition, that 

, ( ' )  tj > - B  -1 
- j vo1(92) 

Let 92j be a subdomain of f2 having volume 1 / B ( j  tj), and let 

jtj if x �9 92j 
U j ( X )  "-" 0 if X �9 9 2 -  92j. 

Then 

f nA  (lUj(x)l) dx > fn B(.uj(x)l)dx= - 

so that Ilujll  - but Ilujlla >__ j .  Thus  t ( )is not imbedded in LA(92). | 

8.13 (Convergence  in Mean)  A sequence {uj} of functions in LA(Q) is said 

to converge in mean to u �9 LA (92) if 

lim f~ A(luj(x) - u(x ) [ )dx  -- O. j---~ c~ 

The convexity of A implies that for 0 < e < 1 we have 

ff2 A(luj(x)-u(x) l )dx < e f ~ A (  [uj(x)-u(x)l)e dx 

from which it follows that norm convergence in LA (92) implies mean convergence. 
The converse holds, that is, mean convergence implies norm convergence, if and 
only if (A, 92) is A-regular. The proof is similar to that of Lemma 8.8 and is left 

to the reader. 

8.14 (The Space EA(J'~)) Let EA(92) denote the closure in LA(92) of_the 
space of functions u which are bounded on 92 and have bounded support in 92. If 

u �9 KA(92), the sequence {uj} defined by 

u(x) if lu(x)l ~ j and Ixl ~ j ,  x �9 92 (11) 
uj(x) -- 0 otherwise 

converges a.e. on 92 to u. Since A(lu(x) - uj(x)[) ~ A(lu(x)l), we have by 
dominated convergence that uj converges to u in mean in LA (92). Therefore, if 
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(A, f2) is A-regular, then EA (~ '2)  - -  KA (~ '2)  = L A (~ '2 ) -  If (A, f2) is not A-regular, 
then we have 

EA(~2) C KA(f2) C LA(~) 

so that EA(~) is a proper closed subspace of LA (~) in this case. To verify the 
first inclusion above let u ~ E A (~) be given. Let v be a bounded function with 
bounded support such that 0 < Ilu - vlla < 1/2. Using the convexity of A and 
(9), we obtain 

l fA(12u(x)-2v(x)[)dx<ff2A(12u(x)-2v(x)[)dx<l,  
II 2u - 2v II a - -  II 2u - 2v II a - -  

whence 2u - 2v 6 KA(~). Since 2v clearly belongs to KA(~) and KA(~) is 
convex, we have u - (1/2)(2u - 2v) § (1/2)(2v) 6 KA(~). 

8.15 L E M M A  EA (f2) is the maximal linear subspace of KA (if2). 

Proof.  Let S be a linear subspace of KA (~) and let u E S. Then )~u ~ KA (~) 
for every scalar )~. If e > 0 and uj is given by (11), then uj/e converges to u/~ 
in mean in LA (~)  as noted in Paragraph 8.14. Hence, for sufficiently large values 
of j we have 

f ~ A (  luj(x)-u(x)l)e dx<l  

and therefore uj converges to u in norm in LA (~). Thus S C EA (~). II 

8.16 T H E O R E M  Let f2 have finite volume, and suppose that the N-function 
A increases essentially more slowly than the N-function B near infinity. Then 

LB(~2) --+ EA(~). 

Proof.  Since LB(f2) --+ LA (~) is already established we need only show that 
LB(~) C EA(~2). Since LB(S2) is the linear hull of KB(f2) and EA(~2) is the 
maximal linear subspace of KA(~), it is sufficient to show that ~,u ~ KA(~) 
whenever u ~ Ks(f2) and )~ is a scalar. But there exists a positive number to such 

that A(I)~lt) _< B(t)for all t >_ to. Thus 

f~A(l)~u(x)l)dx= ( fx  +fix )A(l~,u(x)l)dx 
Ef2:lu(x)<to} ~S2:lu(x)>to} 

< A(l)~lt0)vol(f2) + f. B(lu(x)l)dx < c~ 

whence the theorem follows. | 



272 Orlicz Spaces and Orlicz-Sobolev Spaces 

Duality in Orlicz Spaces 

8.17 L E M M A  Given v 6 La  (f2), the linear functional Fo defined by 

Fo(u) = f~ u(x)v(x) dx 

belongs to the dual space [LA (f2)]' and its norm II F~ II in that space satisfies 

(12) 

II o II ~ ~ II F~ II ~ 2 II o II ~ .  (13) 

Proof.  It follows by H61der's inequality (10) that 

IF~(u)l ~ 2 [lulIA Ilvll~ 

holds for all u E LA(~), confirming the second inequality in (13). 

To establish the other half of (13) we may assume that v 7(= 0 in La(f2)  so that 

II F~ I I -  K > 0. Let 

{; 
0 

if v(x) :fi 0 

if v(x) -- O. 

If II u II A > 1, then for 0 < E < II u II A - -  1 we have 

1 f A ( l u ( x ) l ) d x > f A (  'u(x)[ ) d x > l "  
Ilulla --E -- IlUlIA --E 

Letting E --+ 0 +  we obtain, using (3), 

"U['A<fs2A(lu(x)l)dx-f~A(A('V(X)')/'v(x)')- K K dx 

lf. < ~ Iv )1 dx= [[F~[[ u(x)v(x)dx< [[Ulla. 

This contradiction shows that Ilu IIA -< 1. Now 

IlFvl[ = sup [Fv(u)[ > IIF~ll 
Ilulla_<l 

f~ ~4 ( ]v(x)[ dx 

so that 

f ~ ( Iv(x)l ) IIF~ II dx < l. _ (14) 
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Thus,  II v II ~ _< II F~ II- I 

8.18 R E M A R K  The above lemma also holds when Fv is restricted to act on 
EA(~). To obtain the first inequality of (13) in this case take IIF+ll to be the 
norm of Fv in [EA(f2)]' and replace u in the above proof by X,,U where Xn is the 
characteristic function of f2n = {x ~ f2 : Ixl _< n and luCx)l _< n}. Evidently, 
XnU belongs to EA(fl),  IIx~ullA _< 1, and (14) becomes 

f~ Xn(X)(4 ( Iv(X)' 'l dx < 

Since Xn(X) increases to unity a.e. on g2 as n --~ oo, we obtain (14) again, and 
II v II A _< II F~ II as before. 

8.19 T H E O R E M  (The Dual  of EA($2)) The dual space of EA (~)  is iso- 
morphic and homeomorphic  to LA (f2). 

Proof.  We have already shown that any element v 6 LA(fl) determines a 
bounded linear functional Fv via (12) on LA(~) and also on EA(~) ,  and that 
in either case the norm of this functional differs from [[ v II A by at most a factor of 
2. It remains to be shown that every bounded linear functional on EA (~)  is of the 
form Fv for some such v. 

Let F ~ [EA (~)]t  be given. We define a complex measure k on the measurable 
subsets S of f2 having finite volume by setting 

,k(S) = F(xs), 

gs being the characteristic function of S. Since 

we have 

f A( Ixs(x) IA-1I  1 ] ) d X - f s  1 vol(S) vol(S) dx - 1 (15) 

IIFII 
IX(S)I ~ IIFII IIXsIIA : A_l(1/vol(S) ) �9 

Since the right side tends to zero with vol(S), the measure )~ is absolutely contin- 
uous with respect to Lebesgue measure, and so by the Radon-Nikodym Theorem 
1.52, )~ can be expressed in the form 

f 
X(S) -- Js v(x) dx, 

for some v that is integrable on f2. Thus 

F(u) - fa u(x)v(x) dx 
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holds for measurable, simple functions u. 

If u ~ EA(~), a sequence of measurable, simple functions uj can be found 
that converges a.e. to u and satisfies luj(x)l <_ lu(x) l  on s2. Since luj(x)v(x)l 
converges a.e. to lu(x)v(x)l, Fatou's Lemma 1.49 yields 

f u(x)v(x) dx < sup f~ luj(x)v(x)l dx = sup IF(luj[sgn v)l 
j J 

_ II F tt sup IL II a -< II r II II. II a .  
J 

It follows that the linear functional 

Fv(u) = fa u(x)v(x) dx 

is bounded on EA(f2) whence v 6 L;t(f2) by Remark 8.18. Since Fv and F 
assume the same values on the measurable, simple functions, a set that is dense 
in EA(~) (see Theorem 8.21 below), they agree on EA(~) and the theorem is 
proved. 1 

A simple application of the Hahn-Banach Theorem shows that if EA (~) is a proper 
subspace of LA (~) (that is, if (A, f2) is not A-regular), then there exists a bounded 
linear functional F o n  LA(~) that is not given by (12) for any v 6 LA(f2). As an 
immediate consequence of this fact we have the following theorem. 

8.20 T H E O R E M  (Reflexivity of Orlicz Spaces) LA (f2) is reflexive if and 
only if both (A, f2) and (A, f2) are A-regular. 

We omit any discussion of uniform convexity of Orlicz spaces. This subject is 
treated in Luxemburg's thesis [Lu]. 

Separability and Compactness Theorems 
We next generalize to Orlicz spaces the L p approximation Theorems 2.19, 2.21, 

and 2.30. 

8.21 THEOREM (Approximation of Functions in EA(~)) 

(a) C0(~) is dense in EA (f~). 

(b) EA (f2) is separable. 

(c) If J~ is the mollifier of Paragraph 2.28, then for each u E EA(~) we have 
l im~0+  J~ �9 u = u in norm in EA (f~). 

(d) C ~  (f2) is dense in EA (f~). 

Proof. Part (a) is proved by the same method used in Theorem 2.19. In approx- 
imating u ~ EA(f~) first by simple functions we can assume that u is bounded on 
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~2 and has bounded support. Then a dominated convergence argument shows that 
the simple functions converge in norm to u in EA(~2). (The details are left to the 
reader.) 

Part (b) follows from part (a) by the same proof given for Theorem 2.21. 

Consider part (c). If u E EA (~) ,  let u be extended to R" so as to vanish identically 
outside f2. Let v E La(f2). Then 

f (J, �9 u(x) - u(x) )v(x)  dx <-% fR,, J (y)  dy f lu(x - Ey) - u(x)llv(x)l  dx 

< 2 l[ v 11 a,a fyl <1 J (Y) II UeY --  U II A,a  dy 

by H61der's inequality (10), where Uey(X ) : U(X - e y ) .  Thus by (13) and Theorem 
8.19, 

-- sup I (J~ * u(x) - u(x) )v(x)  dx 
I " 8  

IIJ~ U[[ A,f2 U 
II v II ~, ~ _< 1 df~ 

_ 2 [ J(y)[I U,y - u II a , .  d y. 
Jly I_<1 

Given 8 > 0 we can find fi E C0(f2) such that Ilu- Ulla,~ < 6/6. Clearly, 
IJU,y - ~r I[a,~ < ~/6 and for sufficiently small , ,  I[~,y - ~ Ila,~ < ~/6 for every 
y with lYl _< 1. Thus IIJr * u - Ulla,~ < 8 and (c) is established. 

Part (d) is an immediate consequence of parts (a) and (c). | 

8.22 R E M A R K  LA (f2) is not separable unless LA (~) : EA (~), that is, 
unless (A, S2) is A-regular. A proof of this fact may be found in [KR] (Chapter 
II, Theorem 10.2). 

8.23 (Convergence in Measure) A sequence {uj} of measurable functions is 
said to converge in measure on f2 to the function u provided that for each E > 0 
and 8 > 0 there exists an integer M such that if j > M, then 

vol({x E K2 : l u j ( x ) - u ( x ) l  >E})  ~ 6 .  

Clearly, in this case there also exists an integer N such that if j ,  k >__ N, then 

vol({x E K2 : l u j ( x ) -  uk(x)l >__ e}) ~ 5. 

8.24 T H E O R E M  Let f2 have finite volume and suppose that the N-function 
B increases essentially more slowly than A near infinity. If the sequence {uj } is 
bounded in LA (~2) and convergent in measure on f2, then it is convergent in norm 

in LB (f2). 
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Proof.  Fix e > 0 and let vj,k (x)  - (uj (x)  - uk ( x ) ) / e .  Clearly { vj,k } is bounded 
in LA (f2); say [I vj,k 1[ A,a < K. Now there exists a positive number to such that if 
t > to, then 

B( t )  < -~ a . 

Let 3 = 1/[4B(to)] and set 

Since {uj } converges in measure, there exists an integer N such that if j ,  k > N, 
then vol(~)j,k < 8. Set 

! 

~'2j, k : {X E ~'2j, k " Ivj,~(x)l ~ to}, It  I 

~2j, k -- ~2 j , k -  ~j,k.  

For j ,  k > N we have 

VOI(Q) i f . ;  (Ivj,k(x)l) 
- < 2vo1(~2) + -4 k A K d x  + 6B(to)  _ < 1. 

Hence Iluj - u IIB and so {uj} converges in LB(f2) .  I 

The following theorem will be useful when we wish to extend the Rellich- 
Kondrachov Theorem 6.3 to imbeddings of Orlicz-Sobolev spaces. 

8.25 T H E O R E M  (Precompact Sets in Orlicz Spaces) Let f2 have finite 
volume and suppose that the N-function B increases essentially more slowly than 
A near infinity. Then any bounded subset S of LA (~)  which is precompact in 
L 1 ( ~ )  is also precompact in L B (~2). 

Proof.  Evidently L A ( ~ )  ----> L I (~)  since ~2 has finite volume. If {u~} is a 

sequence in S, then it has a subsequence {uj} that converges in L 1 (~) ;  say uj --+ u 
in L 1 (~2). Let e, 6 > 0. Then there exists an integer N such that if j > N, then 

I l u j -  u II 1,f2 If follows that 

vol({x E ~ �9 l u j ( x ) - u ( x ) l  ~E})  ~ 8 .  

Thus {uj} converges to u in measure on ~2 and hence also in LB(f2). I 
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A Limiting Case of the Sobolev Imbedding Theorem 

8.26 If m p  --  n and p > 1, the Sobolev Imbedding Theorem 4.12 provides no 
best (i.e., smallest) target space into which W m'p (~"2) can be imbedded. In this 

case, for suitably regular f2, 

W m'p (~"2) ~ L q (f2), p < q < oc ,  

but (see Example 4.43) 
W m'p (~"~) ~_ L r (~'2). 

If the class of target spaces for the imbedding is enlarged to contain Orlicz spaces, 

then a best such target space can be found. 

We first consider the case of bounded S2 and later extend our consideration to 
unbounded domains. The following theorem was established by Trudinger [Td]. 
For other proofs see [B+] and [Ta]; for refinements going beyond Orlicz spaces 

see [BW] and [MP]. 

8.27 THEOREM (Trudinger's Theorem) Let S2 be a bounded domain in 

IR ~ satisfying the cone condition. Let m p  = n and p > 1. Set 

A ( t )  = e x p ( t  n/r - - 1 =  e x p ( t  p/~p-1))  - - 1 .  (16) 

Then there exists the imbedding 

W m'p (~"2) ---+ LA  ( ~ ) .  

Proof.  If m > 1 and m p  = n,  then wm'P(~"2) -'--> w l ' n ( ~ ) .  Therefore it is 

sufficient to prove the theorem for m -- 1, p = n > 1. Let u 6 C 1 (f2) fq W l'n (~2) 
(a set that is dense in Wl'n(f2)) and let x 6 f2. By the special case m -- 1 of 
Lemma 4.15 we have, denoting by C a cone contained in f2, having vertex at x, 

and congruent to the cone specifying the cone condition for f2, 

( ) [u(x)] ~ K1 [lulll,c + IOju(x)llx -- y l  1-n d y  
. _ _  

y 

We want to estimate the LS-norm [[U[]s for arbitrary s > 1. If v 6 L s' (f2) (where 
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( l / s )  + (1/s ' )  = 1), then 

fs2lu(x)v(x)ldx <_ K1 (llUlllfs2lv(x)ldx+~fs2fs2 IDju(y)llv(x)l j=l Ix - yl n-1 

1/s 
_< g l  Ilulll Ilvlls, (vol(S2)) 

ix --Iv(x)lyl''" )(n-1)/n n t- K1 .,~n-(1/s~ dy dx 
j=l 

( ~ ~  ix_yl(  s )l/n IDju(y)lnlv(x)l dy dx 
X -- --"n--- 1)/~ 

dydx) 

By Lemma 4.64, if 0 < v < n, 

f~  ga  (vol(ff2))1--(v/n) 1 dy  < 
I x - y l  ~ - n - v  

Hence 

f~ f~ Iv(x)l dy dx < K2s(vol(f2))l/(sn) ff 2 Ix - yl n-(1/s) - Iv(x)l dx 

< g3s(vol(~)) l / (sn)+l /s  Ilvlls' �9 

Also, 

f ~ f ~  [ D j u ( y ) l n l v ( x ) l d y d x < f l D j u ( y ) l n d y  Ilolls, (f~ 1 IX -- yl (n-1)/s -- IX -- yl n-1 

P ]lVlls, (g2(vol(~))l/n) 1Is _< Ilojull  
: K4 [1 Oju II2 ,lO,,s, (vo~(a))l/(ns). 

d x )  1Is 

It follows from these estimates that 

~ lu(x)v(x)l dx <_ K1 Ilulll Ilvlls, (vol(f2)) 1/s 

n 

+ K4 Z s(n-1)/n [1Dju Iln II vlls, (vol(S2))1/s 
j=l 

Since S (n-1)/n > 1 and since W l'n (~'2) --"+ L 1 (~-~), we now have 

Ilulls - sup lu (x)v(x) ldx  < K5s(n-1)/n(vol(f2)) 1/s Ilulll,n. 
~L~'(a) II v IIs, 
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The constant K5 depends only on n and the cone determining the cone condition 

for S2. Setting s = nk/(n - 1), we obtain 

fa lu(x)l,,k/(,,_l) dx < vol(g2) ( nk )1, (Ksllulll ,~j 
]nk/(n-1) 

- n - 1  

= vol(f2) eK5 en/(n-l) n -  1 
ilUlll,n) nk/(n-l~ 

Since e "/(n-') > e, the series Z L ,  (1/k!)(k/en/(n-1)) k 
K6. Let K7 -- max{l ,  K6vol(f'2)} and put 

converges to a finite sum 

)(n-1)/n tl 
Ks -- e K7 K5 n - 1  

Ilu II 1,n = K9 Ilulll,n- 

Then 

K8 - K7 k/(n-1) e n/(n-1) K7 e n/(n-1) 

since K7 > 1 and nk/(n - 1) > 1. Expanding A(t) in a power series, we now 

obtain 

f. ( ) ~-,~ l f. ( lu(x)l ) K8 . dx a lu(x)l dx - 
K8 k=l 

v ~ 1 6 3  1 ( k ) k 

"" K7 k-1 ~" en/(n-1) < 1. 

Hence u E L A (~'2) and 

II u II A ~ K8 - -  K9 II u IIm,p, 

where K9 depends on n, vol(f2), and the cone C determining the cone condition 

for f2. | 

8.28 R E M A R K  The imbedding established in Theorem 8.27 is "best possible" 

in the sense that if there exist an imbedding of the form 

Wo 'p(~) --+ Ls(~),  

then A dominates B near infinity. A proof of this fact for the case m -- 1, 
p = n > 1 can be found in [HMT]. The general case is left to the reader as an 

exercise. 
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Trudinger's theorem can be generalized to fractional-order spaces. For results in 
this direction the reader is referred to [Gr] and [P]. 

Recent efforts have identified non-Orlicz function spaces that are smaller than 
Trudinger's space into which wm'P(~'2) c a n  be imbedded in the limiting case 
m p  = n.  See [MP] in this regard. 

8.29 (Extension to Unbounded Domains) If f2 is unbounded and so (sat- 
isfying the cone condition) has infinite volume, then the N-function A given by 
(16) may not decrease rapidly enough at zero to to allow membership in LA(~2) 
of every u ~ W m'p (~'2) (where m p  - -  n ) .  Let k0 be the smallest integer such that 
k0 > p - 1 and define a modified N-function A0 by 

k ~  _ t j p  , (p-l) A o ( t )  - -  e x p ( t  p / ( p - 1 ) )  - 1 . / 

j=0 J! 

Evidently A0 is equivalent to A near infinity so for any domain f2 having finite 
volume, LA (~) and Lao (~) coincide and have equivalent norms. However, A0 
enjoys the further property that for 0 < r < 1, 

A o ( r t )  <_ r k ~  ) < r P A o ( t ) .  (17) 

We show that if m p  = n, p > l, and f2 satisfies the cone condition (but may be 
unbounded), then 

W m'p (~2) --~ LAo (~) .  

Lemma 4.22 implies that even an unbounded domain f2 satisfying the cone condi- 
tion can be written as a union of countably many subdomains f2j each satisfying 
the cone condition specified by a cone independent of j ,  each having volume 
satisfying 

0 < K1 < vol(~j) < K2 

with K1 and K2 independent of j ,  and such that any M + 1 of the subdomains 
have empty intersection. It follows from Trudinger's theorem that 

Ilulla0,aj _< K3 Ilullm,p,aj 

with K3 independent of j .  Using (17) with r - M 1/p Ilu Ilmlp,aj, Ilu Ilm,p,a and the 
finite intersection property of the domains f2j, we have 

[u(x)[ d x  < A o  M 1 /pK3  [[Ullm,p,f2 A o  M 1/pK3 Ilu [[m,p,~2 -- .= j 

Ilull p < ~-~ m,p,S2j < 1 

- ~ 1  M l l u l l  p - " "= m,p,f2 
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Hence IlullA0,~ ~ M1/PK3 Ilullm,p,a as required. 

We remark that if k0 > p - 1, the above result can be improved slightly by using 
in place of A0 the N-function max{t p, Ao(t)}. 

Orlicz-Sobolev Spaces 

8.30 (Definitions) For a given domain S2 in IR n and a given N-function A 
the Orlicz-Sobolev space W m L a ( ~ )  consists of those (equivalence classes of ) 
functions u in LA (~) whose distributional derivatives D~u also belong to LA (~2) 
for all ot with Ic~l _< m. The space W m EA (~) is defined in an analogous fashion. It 
may be checked by the same method used for ordinary Sobolev spaces in Chapter 
3 that W m LA (f2) is a Banach space with respect to the norm 

IlUl[m, A --][Ullm,A,~2 = max []O~Ul[A,~2, 
O<_l~l___m 

and that W m EA (~) is a closed subspace of W m LA (~) and hence also a Banach 
space with the same norm. It should be kept in mind that W m EA (~) coincides with 
W m LA (~) if and only if (A, ~2) is A-regular. If 1 < p < c~ and Ap(t)  -- t p, then 
W m Lap (~ )  -- W m Eap (~ )  -- W m'p (~'~), the latter space having norm equivalent 

to those of the former two spaces. 

As in the case of ordinary Sobolev spaces, W~' L A ( ~ )  is taken to be the closure 
of C ~  (~) in W m LA (~). (An analogous definition for W~ EA (~) clearly leads to 

the same spaces in all cases.) 

Many properties of Orlicz-Sobolev spaces are obtained by very straightforward 
generalization of the proofs of the same properties for ordinary Sobolev spaces. We 
summarize these in the following theorem and refer the reader to the corresponding 
results in Chapter 3 for the method of proof. The details can also be found in the 
article by Donaldson and Trudinger [DT]. 

8.31 T H E O R E M  (Basic Properties of Orliez-Sobolev Spaces) 

(a) W m EA (~) is separable (Theorem 3.6). 

(b) If (A, ~)  and (,4, ~2) are A-regular, then W m E A ( ~ )  = W m L A ( ~ )  is 
reflexive (Theorem 3.6). 

(c) Each element F of the dual space [W m EA (~)]'  is given by 

F(u)  -- fa D~u(x )  v~(x) ds 
O_<l~l_<m 

for some functions v~ e L~ (~2), 0 _< lot[ < m (Theorem 3.9). 

(d) C c ~ ( ~ ) n  W m E A ( ~ )  is dense in W m E A ( ~ )  (Theorem 3.17). 
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(e) If f2 satisfies the segment condition, then C~(f2) is dense in WmEA(~) 
(Theorem 3.22). 

(f) C~ (R") is dense in W m EA ( ~ n ) .  Thus W~ L a (]~n) = W m EA ( ~ n )  (Theo- 
rem 3.22). 

Imbedding Theorems for Orlicz-Sobolev Spaces 
8.32 Imbedding results analogous to those obtained for the spaces W m'p (~"2) in 
Chapters 4 and 6 can be formulated for the Orlicz-Sobolev spaces W m LA (~) and 
W m EA (~). The first results in this direction were obtained by Dankert [Da]. A 
fairly general imbedding theorem along the lines of Theorems 4.12 and 6.3 was 
presented by Donaldson and Trudinger [DT] and we develop it below. 

As was the case with ordinary Sobolev spaces, most of these imbedding results 
are obtained for domains satisfying the cone condition. Exceptions are those 
yielding (generalized) H61der continuity estimates; these require the strong local 
Lipschitz condition. Some results below are proved only for bounded domains. 
The method used in extending the analogous results for ordinary Sobolev spaces 
to unbounded domains does not seem to extend in a straightforward manner when 
general Orlicz spaces are involved. In this sense the imbedding picture we present 
here is incomplete. Best possible Orlicz-Sobolev imbeddings, involving a careful 
study of rearrangements, have been found recently by Cianchi [Ci]. We settle here 
for results that follow by methods we used earlier for imbeddings of W m'p (~'~) and 
for weighted spaces; that is also how we proved Trudinger's theorem. 

8.33 (A Sobolev Conjugate) We concern ourselves for the time being with 
imbeddings of W 1LA (~); the imbeddings of W m LA (~) are summarized in The- 
orem 8.43. As usual, f2 is assumed to be a domain in En. 

Let A be an N-function. We shall always suppose that 

f0 
1 A -1 (t) 

t(n+l)/--------- ~ d t  < oo, (18) 

replacing, if necessary, A by another N-function equivalent to A near infinity. (If 
has finite volume, (18) places no restrictions on A from the point of view of 

imbedding theory since N-functions equivalent near infinity determine identical 
Orlicz spaces in that case.) 

Suppose also that 

f l  c~ a -1 (t) t(n+l)/---------- ~ d t  -- c~. (19) 

For instance, if A ( t )  -- Ap ( t )  -- t p, p > 1, then (19) holds precisely when p _< n. 
With (19) satisfied, we define the Sobolev  conjugate  N- func t ion  A ,  of A by setting 

f0 t a -1 (z') A ,  1 (t) - -  (n+l)/n dr ,  t >_ O. (20) 
T 
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It may readily be checked that A, is an N-function. If 1 < p < n, we have, 
setting q = np/(n  - p) (the normal Sobolev conjugate exponent for p), 

Ap,(t)  = ql-q p-q/PAq(t).  

It is also readily seen for the case p = n that An, U) is equivalent near infinity 
to the N-function e t - t - 1. In [Ci] a different Sobolev conjugate is used; it is 
equivalent when p = n to the N-function in Trudinger's theorem. 

8.34 L E M M A  Let u 6 Wllo'J (f2) and let f satisfy a Lipschitz condition on R. 

If g(x) -- f ( lu (x) l ) ,  then g ~ Wllo~ 1 (~'2) and 

Djg(x)  = f ' ( l u ( x ) l ) sgnu (x ) .  Dju(x).  

Proof.  Since lul ~ Wl~o'c~ (~ )and  Ojlu(x)l- s g n u ( x ) .  Dju(x ) i t  is sufficient to 
establish the lemma for positive, real-valued functions u so that g (x) = f (u (x))). 
Let ~ ~ ~( f2)  and let {ej }j=l be the standard basis in IR n . Then 

- if2 f ( u ( x ) ) D j + ( x ) d x  - - h+olim if2 f ( u ( x ) )  +(x) -- +(Xh - hej) dx 

f f ( u ( x  + hej)) -- f ( u ( x ) )  
h-olim a f2 h qb (x) dx 

ff2 u(x + hej) - u(x) = lim Q(x, h) r  dx 
h--+O h ' 

where, since f satisfies a Lipschitz condition, for each h the function Q(., h) is 
defined a.e. on f2 by 

{ :(.(x + hej))- :(.<x)) 
Q(x, h) - u(x + hej) - u(x) 

:,(.(x)) 
if u(x -1-hej) ~ u(x) 

otherwise. 

Moreover, II Q(',  h)IIo~,~ ~ K for some constant K independent of h. A well- 
known theorem in functional analysis tells us that for some sequence of values 
of h tending to zero, Q(., h) converges to f ' (u ( . ) )  in the weak-star topology of 
L ~ (f2). On the other hand, since u c W 1'1 (supp (4})) we have 

u(x + hej) - u(x) 
lim 
h~0 h 

r = D j u ( x )  . r  

in L 1 (supp (~b)). It follows that 
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which implies the lemma. | 

8.35 T H E O R E M  (Imbedding Into an Orlicz Space) Let f2 be bounded 
and satisfying the cone condition in I~ n . If (18) and (19) hold, then 

W 1LA (~) -+ LA, (~2), 

where A, is given by (20). Moreover, if B is any N-function increasing essentially 
more slowly than A, near infinity, then the imbedding 

W1LA(~)  --+ LB(~)  

(exists and) is compact. 

Proof. The function s = A,(t) satisfies the differential equation 

ds A-I(s)  ~ -- s (n+l)/n, (21) 

and hence, since s < a-l (s) 74-1(s) (see (4)), 

ds < S 1In ~z~ -1 (S). 
d t -  

Therefore cr (t) = (A, (t)) (n-1)/n satisfies the differential inequality 

d~r n - 1 ~ _ 1 (  ( n/(n-l)) 
< a( t ) )  . (22) d t -  n 

Let u 6 W 1L a (~'2) and suppose, for the moment, that u is bounded on f2 and is not 
zero in LA (Q). Then fa  A,(lu(x)l/~.) dx decreases continuously from infinity to 
zero as ,k increases from zero to infinity, and, accordingly, assumes the value unity 
for some positive value K of ~.. Thus 

fa A* ( lu(x)' dx -1, K--"UIIA,. (23) 

Let f(x) -- cr(lu(x)l/K). Evidently, u 6 W1,1(S2) andcr is Lipschitz on therange 
of lul/g so that, by the previous lemma, f belongs to W 1'1 (~2). By Theorem 4.12 
we have W 1,1 (f2) --+ t n/(n-1) (~) and so 

Ilflln/(n-1) < Kl ( ~ llDjglll + llflll 

[ 1  (,u~),) (u(x))  1 : K1 ~ - - ~ L C r  ! I h j u ( x ) l d x - + - L o  I I dx . 
j=l K 

(24) 
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By (23) and H61der's inequality (10), we obtain 

1 -- A ,  dx = [[f l ln / (n-1)  
K 

2K1 a~ + K1 a ~ dx 
I I D j u l A  �9 

- K j = l  ,], 

(25) 

Making use of (22), we have 

< 
n - - 1  f ~ _ l ( ( o . ( ~ ) ) n / ( n - 1 ) ) ] ] A  

n - - l i n f { ) ~ > O  " f A ( A - I ( A * ( I u ( x ) I / K ) ) )  dx < 1} 

Suppose )~ > 1. Then 

f~ ( ) 1 ]~  (lu(x)l t 1 ~4 ~4-1(a*( lu(x) l /K))  dx < - A ,  d x - -  < 1. 
Jk - k K k 

Thus 
n - 1  

< . (26) 
n 

Let g(t) -- A , ( t ) / t  and h(t) - a ( t ) / t .  It is readily checked that h is bounded on 
finite intervals and limt__,~ g ( t ) / h ( t )  - oo. Thus there exists a constant to such 
that h(t) < g ( t ) / ( 2 K )  if t > to. Putting K2 -- K2 suPo<t<to h(t),  we have, for all 
t > 0 ,  

1 K2 
a(t )  < A , ( t )  + ~ t. 

- 2K1 K1 

Hence 

K1 o" dx < - A ,  dx + lu(x)l dx 
- 2  K -~1 

1 K3 
__ ~ +-~-I lu l la ,  (27) 

where K3 -- 2K2 II 1 II ~ < ~ since f2 has finite volume. 

Combining (25)-(27), we obtain 

2K1 
1 <  

- K 

1 K3 
( n -  1)Ilulll,a + ~ + -~-IlUlIA, 
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so that 
[ lul la , -  K < K4 Ilulll,a, (28) 

where K4 depends only on n, A, vol(f2), and the cone determining the cone 
condition for S2. 

To extend (28) to arbitrary u ~ W 1LA (~) let 

lu(x)l if lu(x)l ~ k (29) 
uk(x) - ksgnu(x) if lu(x)l > k. 

Clearly u~ is bounded and it belongs to W1LA(~) by the previous lemma. 
Moreover, Ilu~ IIa, increases with k but is bounded by K4 Ilu IIa. Therefore, 
l i m k ~  IlukllA, -- K exists and K < K4 Ilulll,a. By Fatou's lemma 1.49 

f~ A* ( lu(x)l ) dx - k~lim f~ A* ( lUk(X)l ) dx < - 

whence u ~ LA, (f2) and (28) holds. 

Since f2 has finite volume we have 

W 1LA (~2) ~ W 1'1 (~"~) ~ L 1 (~-2), 

the latter imbedding being compact by Theorem 6.3. A bounded subset of 
W 1LA (~2) is bounded in LA, (~) and precompact in L 1 (f2), and hence precompact 
in L B (f2) by Theorem 8.25 whenever B increases essentially more slowly than 
A, near infinity. | 

Theorem 8.35 extends to arbitrary (even unbounded)domains f2 provided W is 
replaced by W0. 

8.36 THEOREM Let S2 be an arbitrary domain in I~ n . If the N function A 
satisfies (18) and (19), then 

W~ LA (~) '-+ LA, (~). 

Moreover, if f20 is a bounded subdomain of f2, then the imbedding 

W~LA(~) ~ LB(~O) 

exists and is compact for any N-function B increasing essentially more slowly 
that A, near infinity. 

Proof. If u E W~ L A (~), then the function f in the proof of Theorem 8.35 can 
be approximated in wl'l(f2) by elements of C~(f2). By Sobolev's inequality 
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(Theorem 4.31), (24) holds with the term II f Ill absent from the right side. There- 
fore (27) is not needed and the proof does not require that f2 have finite volume. 
The cone condition is not required either, since Sobolev's inequality holds for all 
u 6 C ~  (R n ). The compactness arguments are similar to those above. | 

8.37 R E M A R K  Theorem 8.35 is not optimal in the sense that for some A, LA, 
is not necessarily the smallest Orlicz space in which W 1LA (~)  can be imbedded. 
For instance, if A ( t )  = An( t )  = t h i n ,  then, as noted earlier, A , ( t )  is equivalent 
near infinity to e t - -  t - 1, an N-function that increases essentially more slowly 
near infinity than does exp(t n/(n-1)) - 1. Thus Theorem 8.27 gives a sharper 
result than Theorem 8.35 in this case. In [DT] Donaldson and Trudinger state 
that Theorem 8.35 can be improved by the methods of Theorem 8.27 provided A 
dominates near infinity every t p with p < n, but that Theorem 8.35 gives optimal 
results if for some p < n, t p dominates A near infinity. The former cases are 
those where [Ci] improves on Theorem 8.35. 

There are also some unbounded domains [Ch] for which some Orlicz-Sobolev 
imbeddings are compact. 

The following theorem generalizes (the case m = 1 of) the part of Theorem 4.12 
dealing with traces on lower dimensional hyperplanes. 

8.38 T H E O R E M  (Traces on Planes) Let S2 be a bounded domain in I~ n 
satisfying the cone condition, and let f2k denote the intersection of f2 with a k- 
dimensional plane in IR n . Let A be an N-function for which (18) and (19) hold, 
and let A,  be given by (20). Let 1 < p < n where p is such that the function B 
defined by B( t )  = A ( t  1/p) is an N-function. If either n - p < k < n or p -- 1 
a n d n - 1  < k < n ,  then 

W 1 LA ( ~ )  ~ LAI,,/~ (~k ) ,  

where Ak,/n (t) -- [A , ( t ) ]  k/n. 

Moreover, if p > 1 and C is an N-function increasing essentially more slowly 
than A~,/n near infinity, then the imbedding 

W 1LA(~2) ~ L c ( f 2 k )  (30) 

is compact. 

Proof.  The problem of verifying that Ak,/n is an N-function is left to the reader. 
Let u ~ W 1LA ( ~ )  be a bounded function. Then 

fs2 Ak*/n ( l u ( y ) l ) d y - 1  
k g ' 

K -- Ilu II A~,/n,~ k �9 (31) 
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We wish to show that 

K < K1 [[u 111,a,~ (32) 

with K1 independent of u. Since this inequality is known to hold for the special 
case k - n (Theorem 8.35) we may assume without loss of generality that 

K > IlulIA,,~ = IlUlIAnI"~. (33) 

Let co(t) - [A,(t)] 1/q where q - np/(n - p). By (case m - 1 of) Theorem 4.12 
we have 

kpl(n--p),~2k [ ( )11 < K2 --., Djco + 
j--1 p,f2 

[ 1 s  o ) f ( [u(x ) l )  
= K 2  K---P j= l  g 

+/o (,"(;,.) 

p,f2 

P [Dju(x)lPdx 

Using (31) and noting that IIIoIPlIB,~ ~ IlPll~,~, we obtain 

1--Ifs2~, (A, ([u(~)[)) kin 

< K p  J 
j= l  

2nK2 ( ( ~ ) ) P  
<- K p ~ 

k,s2 

kp/(n--p),f2k 
IlIOju I~ PI ~,~ + K2 

IlulI~,A,~ + K2 

p,f2 

p,f2 
(34) 

Now B- l ( t )  -- (A-l( t ) )  p and so, using (21) and (4), we have 

(J ( t ) )  p -- -q~l (A,(t))P(1-q)/q (Af,(t)) p 

1 1 1 ~ 
= - - A  (t) < - - B - I ( A , ( t ) )  

qP * B- I (A , ( t ) )  - qp 

It follows by (33) that 

1/q dx _ < A, K dx _ < 1. 



Imbedding Theorems for Orlicz-Sobolev Spaces 289 

So 
1 

_< . ( 3 5 ) .  
k,s2 q P 

Now set g(t)  = A , ( t ) / t  p and h(t)  = (co(t) / t )  p. It is readily checked that 
l i m t ~  g ( t ) / h ( t )  - oo. In order to see that h(t)  is bounded near zero let 
s - A , ( t )  and consider 

s (h( t ) )  1/p ( A , ( t ) )  1/q (l/p)-(1/n) slip 
= = < dr .  

t f0 s A-1 ('r) T (n+l)/------------- ~ d r  - f o  s (B-I (T)) I /pT 

Since B is an N-function l i m ~  B - I ( r ) / r  -- cx~. Hence, for sufficiently small 
values of t we have 

S 1/p 1 
(h( t ) )  l/P < = _ 

-- [ s  r -1+(l/p) dr  P 

J 0  

Therefore, there exists a constant K3 such that for t > 0 

1 
(co(t)) p < ~ A , ( t )  -b K3t p. 

- 2K2 

Using (33) we now obtain 

( tll ' t co < A ,  dx  + lu(x)l p dx  
p,~ 2K2 K 

1 2K3 
< ~ -+- ][[u I p II I[lll~ 

1 K4 
< ~ + Ilu II p 
-- 2 K 2  ~ A,a" 

(36) 

From (34)-(36) there follows the inequality 

2 n K 2 .  1 1 K4K2 
1 < Kp qP Ilb/l]f,A,f2 _qt_ ~ _~_ KP IlullP,a 

and hence (32). The extension of (32) to arbitrary u E W 1LA (~)  now follows as 
in the proof of Theorem 8.35. 

Since B(t)  -- A( t  l/p) is an N-function and f2 is bounded, we have 

W 1LA (~-2) --+ W I'p ( ~ )  --~ L 1 (~-2k), 
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the latter imbedding being compact by Theorem 6.3 provided p > 1. The com- 
pactness of (30) now follows from Theorem 8.25. I 

8.39 THEOREM (Imbedding Into a Space of Continuous Functions) 
f2 satisfy the cone condition in I~ n . Let A be an N-function for which 

Let 

f l  ~ A -1 (t) t(n+l)/~- ~ dt < cx~. (37) 

Then 
W 1 L A ( ~ )  --> C ~  - C ( ~ )  A L~ 

Proof. Let C be a finite cone contained in f2. We shall show that there exists a 
constant K1 depending on n, A, and the dimensions of C such that 

Ilull~,c ~ K1 Ilulll,A,C. (38) 

In doing so, we may assume without loss of generality that A satisfies (18), for 
if not, and if B is an N-function satisfying (18) and equivalent to A near infinity, 
then W1LA ( C )  ~ W 1L 8 (C) with imbedding constant depending on A, B, and 
vol(C) by Theorem 8.12. Since B satisfies (37) we would have 

Ilull~,c ~ K2 Ilulll,B,C ~ K3 IlulI1,A,C. 

Now f2 is a union of congruent copies of some such finite cone C so that (38) 
clearly implies 

Ilull~,~ _< K1 Ilulll,a,~ �9 (39) 

Since A is assumed to satisfy (18) and (37) we have 

fo ~ A -1 (t) dt K4 < 
t(n+l)/n �9 

Let 

fo 
t A -1 (r)  

A -1  (t) - -  (n+l)/---------~ dr.  
T 

The A -1 maps [0, c~z) in a one-to-one manner onto [0, K4) and has a convex inverse 
A. We extend the domain of definition of A to [0, ~ )  by defining A (t) = c~ for 
t > K4. The function A is a Young's function. (See Luxemburg [Lu] or O'Neill 
[O].) Although it is not an N-function in the sense defined early in this chapter, 
nevertheless the Luxemburg norm 

. Ac inf{  0 f dx< l} 
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is easily seen to be a norm on L ~ (C) equivalent to the usual norm; in fact, 

1 1 
K4 Ilull~,c < IlUlIA,c < _ _ A _ I ( 1 / v o l ( C )  ) Ilullo~,c. 

Moreover,  s -- A(t )  satisfies the differential equation (21), so that the proof  of 
Theorem 8.35 can be carried over in this case to yield, for u ~ W 1LA (C), 

IlullA,c ~ K5 Ilull l ,a,c 

and inequality (38) follows. 

By Theorem 8.31(d) an element  u 6 W m E a ( ~ )  can be approximated in norm by 

functions continuous on S2. It follows from (39) that u must  coincide a.e. on 

with a continuous function. (See Paragraph 4.16.) 

Suppose that an N-funct ion B can be constructed such that the following conditions 

are satisfied: 

(a) B (t) = a (t) near zero. 

(b) B increases essentially more  slowly than A near infinity. 

(c) B satisfies 

f ~  B - l  (t)  A-' (O 
t ( n + l ) ~ d t < 2 -t-(~+~-- ~ d t < cx~ . 

Then, by Theorem 8.16, u ~ W1LA(C) implies u ~ W 1 E B ( C )  so that we have 

W 1L a ( ~ )  C C (~2) as required. 

It remains,  therefore, to construct an N-funct ion B having the properties (a)-(c).  

Let 1 < tl < t2 < . . .  be such that 

ftk ~ A -l (t) 1 f ~  A -l (t) 
t(n+l)/~ d t  --  ~ t(n+l)/n ~ d t .  

We define a sequence {s~} with s~ > t~, and the function B - l ( t ) ,  inductively as 

follows. 

LetSl -- tl and B - l ( t )  --  A - l ( t ) f o r 0  < t < sl. Having chosens l ,  s2 . . . . .  sk and 
defined B -1 (t) for 0 <_ t < sk-a ,  we continue B -1 (t) to the right of s~_l along a 

straight line with slope (A -1) '  ( s ~ - i - )  (which always exists since A -1 is concave) 
until a point t~ is reached where B -1 (t~,) -- 2 ~-1 a -1 (t~). Such t~, exists because 

- ' > t~ let s~ ' Otherwise let Sk --  tk and extend l i m t ~ A  l ( t ) / t  --  O. I f t  k _  , --  t k. 
B -1 f rom t~ to s~ by setting B -1 (t) -- 2 ~-1A -1 (t). Evidently B -1 is concave and 

B is an N-function.  Moreover,  B ( t )  --  A ( t )  near zero and since 

B - l ( t )  
lim A -  1 t--+~ (t) 

--- 00, 
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B increases essentially more slowly than A near infinity. Finally, 

f l ~ B - l ( t )  f l S ' A - l ( t ) s  
t(n+l)/----- ~ dt < t(n+l)/---------- ~ dt + t(n+l)/n 

k=2 -l 

fS l  A-l(t)  ~ fk~  A-1 
< t(n+l)/----------- ~ dt + 2 k-I (t) 

k=2 -1 t(n+l)/n 

fl ~ A -1 (t) dt = 2 ~t(n+l)/----- 

as required. I 

dt 

~ d t  

8.40 THEOREM (Uniform Continuity) Let ~2 be a domain in R n satisfy- 
ing the strong local Lipschitz condition. If the N-function A satisfies 

f ~  dt < oo (40) 
A- l ( t )  
t(n+l)/n 

then there exists a constant K such that for any u e W 1LA ( ~ )  (which may be 
assumed continuous by the previous theorem) and all x, y e f2 we have 

fx  ~ A- l ( t )  
[ u ( x ) -  u(y)[ ~ K Ilulll,A,a _yl-n t(n+l)/n ~ d t .  (41) 

Proof. We establish (41) for the case where f2 is a cube ofunit edge; the extension 
to more general strongly Lipschitz domains can then be carried out just as in the 
proof of Lemma 4.28. As in that lemma we let f2o denote a parallel subcube of f2 
having edge cr and obtain for x e f2~ 

u(x) ~ u(z)dz 
~r 

By (15), IIl11~,~,~ 
that 

o'n- 1 t-" dt [grad ul dz. 
tcr 

Hence 

-- 1/~4-1(t-nff-n). It follows by H61der's inequality and (4) 

f a  Igradul dz < 2 [IgradullA,a,~ Illll~,a,~ 
t o  

2 
<- ~_l(t_nff_n ) Ilulll,a,~ 

2ffntnA-l (t-ri ft-n) Ilulll,a,~. 

u(x) - u(z)dz o.n f01 ( ' ) < 2~/-na Ilu Ill A,~2 A -1 ~ dt -- , tn ffn 

= 2 f ~  ~A -l(r)  
[[Ulll,a,• -. r(n+l)/n dr. 
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If x, y 6 f2 and cr = Ix - Y l < 1, then there exists a subcube f2~ with x, y 6 f2~, 
and it follows from the above inequality applied to both x and y that 

4 fx ~ A-l(t) lu(x) - u(y)l ~ ~ Ilulll,A,a I -" t(n+l)/n 
-y  

~ d t .  

For Ix - Yl > 1, (41) follows directly from (39) and (40). l 

8.41 (Generalization of Hiilder Continuity) Let M denote the class of pos- 
itive, continuous, increasing functions of t > 0. If # ~ M, the space C~ (~2), 
consisting of those functions u ~ C(f2) for which the norm 

lu(x) - u(y)l 
II.; II - II.; c< )I1 + sup 

~,~ # ( I x -  yl) 
x#y 

is finite, is a Banach space under that norm. The theorem above asserts that if (40) 

holds, then 

W 1LA (~) ~ C# (~), l 
eo A- l ( t )  

where # ( t )  --  (n+l)/--~ dt .  (42) 
ix_yl-n t 

If/z,  v 6 M are such tha t /z /v  ~ M,  then for bounded f2 we have, as in Theorem 
1.34, that the imbedding 

C ,  (S2) ~ C~(S2) 

exists and is compact. Hence the imbedding 

W 1LA(~) ~ Cv(~) 

is also compact if # is given as in (42). 

8.42 (Generalization to Higher Orders of Smoothness) We now prepare to 
state the general Orlicz-Sobolev imbedding theorem of Donaldson and Trudinger 
[DT] by generalizing the framework used for imbeddings of W 1LA (f2) considered 
above so that we can formulate imbeddings of W m LA (~2). 

For a given N-function A we define a sequence of N-functions B0, B1, B2 . . . .  as 
follows: 

Bo(t) = A (t) 

f0  t ( B k _ l )  -1 ( 'r)  (nk) -l(t) - -  (n+l)/n dr ,  k - 1, 2 , . . . .  
r 

(Observe that B1 = A,.) At each stage we assume that 

f0 
1 (B~) -1 (t) 

t(,~+l)/n dt  < oo, (43) 
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replacing Bk, if necessary, with another N-function equivalent to it near infinity 
and satisfying (43). 

Let J = J (A) be the smallest nonnegative integer such that 

fl  ~ (B j) -1 (t) 
t(n+l)/n dt  < cx~. 

Evidently, J ( A )  < n. I f / z  belongs to the class M defined in the previous 
Paragraph, we define the space C~ ([2) to consist of those functions u 6 C (~) for 

m([2) is a Banach space which D'~u E C a ([2) whenever I~1 _< m. The space C a 
with respect to the norm 

I[ u; II - max II ; II Iotl_<m 

8.43 THEOREM (A General Orlicz-Sobolev Imbedding Theorem) Let 
[2 be a bounded domain in I~ n satisfying the cone condition. Let A be an N- 
function. 

(a) If m < J (A) ,  then WmLA([2) --.+ LBm ([2). Moreover, if B is an N- 
function increasing essentially more slowly than Bm near infinity, then the 
imbedding W m LA ([2) ~ LB([2) exists and is compact. 

(b) I fm > J ( A ) ,  then WmLa([2) ~ C~ -- C~ 0 LC~(Q). 

(c) If m > J ( A )  and [2 satisfies the strong local Lipschitz condition, then 
m- J -  1 (~) where W m LA ([2) --+ Ctz 

f ?  (B j) 1 (z') 
# ( t )  -- , .g(n+l)/n dr .  

Moreover, the imbedding W m LA ([2) --+ C m - J - 1  (~) is compact and so is 
W m LA([2) ~ C m-J-1  (~) provided v 6 M and lZ/V ~ M.  

8.44 R E M A R K  Theorem 8.43 follows in a straightforward way from the 
special cases with m = 1 provided earlier. Also, if we replace L A by E A in 
part (a) we get WmEA(~2) -+ EBm ([2) since the sequence {uk} defined by (29) 
converges to u if u ~ W 1EA (S2). Theorem 8.43 holds without any restrictions on 
[2 if W m LA ([2) is replaced with W~' LA ([2). 

8.45 R E M A R K  S i n c e T h e o r e m 8 . 4 3 i m p l i e s t h a t W m L A ( [ 2 )  -+ W1LBm_~([2), 

we will also have WmLA ([2) --~ L[(BmW']([2k), where ~2~ is the intersection of [2 
with a k-dimensional plane in I~ n , provided that (using Theorem 8.38) there exists 
p s a t i s f y i n g l _ < p  < n f o r w h i c h n - p  < k _ < n ( o r n - l _ < k _ < n i f p =  1) 
and B( t )  -- Bm(t l/p) is an N-function. 
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(m, pf)-Polar sets, 70 
Cm-regularity condition, 84 
H =  W, 67 
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N-function dominance 

global or near infinity, 265 

Almost everywhere, 15 
Anisotropic Sobolev inequality, 104 
Approximation 

in LP spaces, 31 
in Orlicz space EA (~'2), 274 

Approximation in W m,p (~) 
by smooth functions on ~, 66 
by smooth functions on R n , 68 

Approximation property, 160 
Arzela-Ascoli theorem, 11 
Averaging lemma of Gagliardo, 95 

Banach algebra, 106 
Banach lattice, 248 
Banach space, 5 

Besov space, 229, 254 
and traces, 234, 240 
homogeneous, 255 
imbedding theorem for, 230 

Bessel potentials, 252 
Bochner integrable function, 207 
Bochner integral, 206 
Boundary trace, 163 
Bounded continuous function space, 10 

Calder6n extension theorem, 156 
Calder6n-Zygmund inequality, 155 
Capacity 

of a subset of a cube, 176 
Cartesian product 

of Banach spaces, 8 
Cauchy sequence, 5 
Characteristic function, 15 
Clarkson inequalities, 43 
Closure, 2 
Compact imbedding, 9, 167 

for unbounded domains, 175 
Compact operator, 9, 167 
Compact set, 7 
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Complementary N-function, 263 
Completely continuous operator, 9, 167 
Completeness, 5 

of LP(~), 29 
of W m,p (~2), 61 

Complete orthonormal system, 200 
Completion 

of a normed space, 5 
Complex interpolation, 247 
Complex interpolation space, 247 
Cone, 81 
Cone condition, 79, 82 

uniform, 82 
weak, 82 

Continuous linear functional, 4 
Continuous functions 

between topological spaces, 3 
Continuous function space, 10 

bounded functions, 10 
H61der continuous functions, 10 
uniformly continuous functions, 10 

Convergence in mean, 270 
Convex function, 261 
Convolution, 32 

Fourier transform of, 251 
Coordinate transformations 

m-smooth, 77 
Cube 

~.-fat or ~-thin, 187 
Cusp, 115 

Decomposition of domains, 93 
Delta-2 (A2) condition 

global or near infinity, 265 
Delta-regular (A-regular), 266 
Dense set, 5 
Derivative 

partial, 2 
weak, 22 

Dirac distribution, 20 
Distance between sets, 3 
Distribution 

derivative of a, 21 
Schwartz, 20 
tempered, 251 

Distribution function, 52, 221 
Domain, 1 

of finite width, 183 
quasibounded, 173 
quasicylindrical, 184 

Dominance of N-functions, 265 
Dominated convergence property 

of a Banach lattice, 248 
Dominated convergence theorem, 17 
Dual of Orlicz space EA (~), 273 
Dual space, 4 

normed, 6 
of LP(f2), 45 
of W m'p (~), 62 
of Wo 'p (f2), 64 

Embedding, see Imbedding 
Equimeasurable rearrangement, 221 
Equivalence 

of J- and K-methods, 215 
of definitions of Sobolev spaces, 67 

Equivalent norm for Wo 'p (S2), 184 
Essentially bounded function, 26 
Exact interpolation theorem, 220, 247 
Extension operator, 146 

total, 255 

Fatou's lemma, 17 
Finite cone, 81 
Finite width, 183 
First countable space, 9 
Flow on a domain, 195 
Fourier inversion theorem, 250 
Fourier transform, 250 

inverse of, 250 
Fractional order Sobolev space, 249 
Fubini's theorem, 19 
Function 

essentially bounded, 26 
measurable, 15 
N-, 262 

Functional, 4 

Gagliardo 
averaging lemma, 95 
decomposition lemma, 93 

Generalized H61der inequality, 268 
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H61der continuity, 10 
generalized, 231 

H61der's inequality, 24, 25 
converse of, 25 
for complementary N-functions, 268 
for mixed-norm spaces, 50 
generalized, 268 
reverse, 27 

Hahn-Banach theorem, 6 
Hausdorff space, 3 
Hilbert-Schmidt 

imbedding, 202 
norm, 200 
operator, 200 

Hilbert space, 5 

Imbedding, 9, 80 
best possible, 108 
boundary trace, 164 
compact, 9, 167 
noncompact, 173 
of an Orlicz-Sobolev space, 284 
restricted, 167 

Imbedding theorem 
for LP spaces, 28 
for domains with cusps, 117 
for Orlicz spaces, 269 
for Sobolev spaces, 85 

Inner product, 5 
for L2(f2), 31 
for W m'2 (~'2), 61 

Integrable function, 16 
Integral 

Lebesgue, 16 
of Banach-space-valued functions, 206 

Intermediate space, 208 
classes ~ ,  ~ff, and Jc", 216 

Interpolation 
complex method, 247 
real method, 208-221 

Interpolation inequality 
for LP spaces, 27 
hybrid, 141 
involving compact subdomains, 143 
on degree of summability, 139 

Interpolation inequality (continued) 
on order of smoothness, 135 

Interpolation pair, 208 
Interpolation space 

complex, 247 
exact, 220 
of type 0,220 

Interpolation theorem 
exact, 220, 247 
Marcinkiewicz, 54 

Inverse Fourier transform, 250 
Irregular domain 

nonimbedding theorem, 111 
Isometric isomorphism, 5 

J-method, 211 
discrete version, 213 

J-norm, 208 

K-method, 209 
discrete version, 210 

K-norm, 208 

LP space, 23 
P space, 35 

Lebesgue integral, 16 
of complex-valued functions, 18 

Lebesgue measure, 14 
Lebesgue space L P (f2), 23 
Linear functional, 4 

on LP(~), 45 
Lipschitz condition, 83, 93 
Lipschitz spaces 

imbeddings into, 99 
Locally convex, 3 
Locally finite open cover, 82 
Locally integrable function, 20 
Lorentz space, 223 
Lusin's theorem, 15 

Marcinkiewicz 
interpolation theorem, 54, 91,226 

Maurin's theorem, 202 
Measurable function, 15 
Measurable set, 14 
Measure, 14 

Lebesgue, 14 
Minkowski's inequality, 25 
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Minkowski's inequality (continued) 
for integrals, 26 
reverse, 28 

Mixed-norm space, 50 
Modulus of continuity 

L p, 241 
higher order, 241 

Mollifier, 36 
for W m'p (~'2), 66 

Monotone convergence theorem, 17 
Multi-index, 2 

Noncompact imbedding, 173, 186 
Nonimbedding theorem 

for irregular domains, 111 
Norm, 4 

equivalent, 5, 183 
in LP (~2), 24 
of a linear functional, 6 
of a linear operator, 9 
of a Sobolev space, 59 

Normed dual, 6 
Normed space, 4 
Norm topology, 4 

Operator, 9 
strong type, 54 
weak type, 54 

Open cover 
locally finite, 82 

Orlicz class KA (~), 266 
Orlicz-Sobolev space, 281 
Orlicz space, 261 
Orlicz space EA (f2), 270 
Orlicz space L a (~),  268 
Orthonomal system 

complete, 200 

Parallelepiped, 81 
Parallelogram law, 6 
Partition of unity, 65 
Permutation inequality 

for mixed norms, 51 
Permuted mixed norm, 50 
Plancherel's theorem, 251 
Poincar6's inequality, 183 
Polar set, 70 
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Precompact set, 7, 167 
in LP(f2), 38 
in an Orlicz space, 276 

Quasi-norm, 54 
Quasibounded domain, 173 
Quasicylindrical domain, 184 

Radon-Nikodym theorem, 18 
Rapid decay, 192 
Rapidly decreasing functions, 250 
Rearrangement of a function 

equimeasurable decreasing, 221 
Reduced Sobolev inequality, 105 
Reflexive space, 7 
Reflexivity 

of LP(f2), 49 
of Orlicz spaces, 274 
of Sobolev spaces, 61 

Regularity condition, 84 
Regularization, 36 
Reiteration theorem, 217 

for complex interpolation, 248 
Rellich-Kondrachov theorem, 168 
Restricted imbedding, 167 
Reverse H61der inequality, 27 
Reverse Minkowski inequality, 28 
Riesz representation theorem, 6 

for LP(~), 47 
for L 1 (f2), 47 

Schwartz distribution, 20 
Schwarz inequality, 31 
Segment condition, 68, 82 
Seminorm, 101, 135 
Separability 

of LP spaces, 32 
of Orlicz spaces, 274 
of Sobolev spaces, 61 

Separable space, 5 
Sigma-algebra, 13 
Simple (m, p)-extension operator, 146 

existence of, 156 
Simple function, 15, 206 
Sobolev conjugate N-function, 282 
Sobolev imbedding theorem, 79, 84 

a limiting case, 277 



Index 305 

Sobolev imbedding theorem (continued) 

alternate proof, 141 
optimality of, 108 
sharper version, 227 

Sobolev's inequality, 102 
anisotropic, 104 
best constant, 104 
reduced, 105 

Sobolev space, 59 
of fractional order, 249 
weighted, 119 

Spiny urchin, 176 
Standard cusp, 115 
Stein extension theorem, 154 
Stone-Weierstrass theorem, 11 
Streamline, 195 
Strong m-extension operator, 146 

existence of, 151 
Strong local Lipschitz condition, 83, 93 
Strongly measurable function, 206 
Strong type operator, 54 
Sublinear operator, 54 
Subspace 

of a normed vector space, 6 
Support, 2 

Tempered distribution, 251 
Tesselation, 187 
Test function, 19 
Topological product, 3 
Topological space, 3 
Topological vector space, 3 

locally convex, 3 
Topology, 3 

weak, 7 

Total extension operator, 146, 255 
existence of, 147, 154 

Trace, 81 
boundary, 163 
of Orlicz-Sobolev functions, 287 
characterization theorem, 233 

Transformation of coordinates, 77 
Triangle inequality, 207 
Triebel-Lizorkin space, 253 

homogeneous, 254 
Trudinger's theorem, 277 

Unbounded domain 
compact imbedding for, 175 

Uniform Cm-regularity condition, 84 
Uniform cone condition, 82 
Uniform convexity, 8 

of LP spaces, 45 
of Sobolev spaces, 61 

Uniformly continuous function spaces, 10 

Vandermonde determinant, 149 
Vector space, 3 

topological, 3 

Wavelet, 256 
Weak cone condition, 82 
Weak convergence, 7 
Weak derivative, 22 
Weak L p space, 53 
Weak sequential compactness, 7 
Weak-star topology, 4 
Weak topology, 7 
Weak type operator, 54, 91 
Weighted Sobolev space, 119 

Young's theorem, 32 
Young's inequality, 34, 35, 208, 264 
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