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PREFACE

This monograph presents an introductory study of of the properties of certain Ba-
nach spaces of weakly differentiable functions of several real variables that arise in
connection with numerous problems in the theory of partial differential equations,
approximation theory, and many other areas of pure and applied mathematics.
These spaces have become associated with the name of the late Russian mathe-
matician S. L. Sobolev, although their origins predate his major contributions to
their development in the late 1930s.

Even by 1975 when the first edition of this monograph was published, there was
a great deal of material on these spaces and their close relatives, though most of it
was available only in research papers published in a wide variety of journals. The
monograph was written to fill a perceived need for a single source where graduate
students and researchers in a wide variety of disciplines could learn the essential
features of Sobolev spaces that they needed for their particular applications. No
attempt was made even at that time for complete coverage. To quote from the
Preface of the first edition:

The existing mathematical literature on Sobolev spaces and their
generalizations is vast, and it would be neither easy nor particularly
desirable to include everything that was known about such spaces
between the covers of one book. An attempt has been made in this
monograph to present all the core material in sufficient generality to
cover most applications, to give the reader an overview of the subject
that is difficult to obtain by reading research papers, and finally ...
to provide a ready reference for someone requiring a result about
Sobolev spaces for use in some application.

This remains as the purpose and focus of this second edition. During the interven-
ing twenty-seven years the research literature has grown exponentially, and there



X Preface

are now several other books in English that deal in whole or in part with Sobolev
spaces. (Forexample, see [Ad2], [Bul], [Mz1], [Tr1], [Tr3], and [Tr4].) However,
there is still a need for students in other disciplines than mathematics, and in other
areas of mathematics than just analysis to have available a book that describes
these spaces and their core properties based only a background in mathematical
analysis at the senior undergraduate level. We have tried to make this such a book.

The organization of this book is similar but not identical to that of the first edition:

Chapter 1 remains a potpourri of standard topics from real and functional analysis,
included, mainly without proofs, because they provide a necessary background
for what follows.

Chapter 2 on the Lebesgue Spaces L” (£2) is much expanded and reworked from the
previous edition. It provides, in addition to standard results about these spaces, a
brief treatment of mixed-norm L7 spaces, weak-L? spaces, and the Marcinkiewicz
interpolation theorem, all of which will be used in a new treatment of the Sobolev
Imbedding Theorem in Chapter 4. For the most part, complete proofs are given,
as they are for much of the rest of the book.

Chapter 3 provides the basic definitions and properties of the Sobolev spaces
W™ P(S2) and Wy (2). There are minor changes from the first edition.

Chapter 4 is now completely concerned with the imbedding properties of Sobolev
Spaces. The first half gives a more streamlined presentation and proof of the var-
ious imbeddings of Sobolev spaces into LP spaces, including traces on subspaces
of lower dimension, and spaces of continuous and uniformly continuous functions.
Because the approach to the Sobolev Imbedding Theorem has changed, the roles
of Chapters 4 and 5 have switched from the first edition. The latter part of Chapter
4 deals with situations where the regularity conditions on the domain £2 that are
necessary for the full Sobolev Imbedding Theorem do not apply, but some weaker
imbedding results are still possible.

Chapter 5 now deals with interpolation, extension, and approximation results for
Sobolev spaces. Part of it is expanded from material in Chapter 4 of the first
edition with newer results and methods of proof.

Chapter 6 deals with establishing compactness of Sobolev imbeddings. It is only
slightly changed from the first edition.

Chapter 7 is concerned with defining and developing properties of scales of spaces
with fractional orders of smoothness, rather than the integer orders of the Sobolev
spaces themselves. It is completely rewritten and bears little resemblance to
the corresponding chapter in the first edition. Much emphasis is placed on real
interpolation methods. The J-method and K-method are fully presented and used
to develop the theory of Lorentz spaces and Besov spaces and their imbeddings,
but both families of spaces are also provided with intrinsic characterizations. A
key theorem identifies lower dimensional traces of functions in Sobolev spaces
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as constituting certain Besov spaces. Complex interpolation is used to introduce
Sobolev spaces of fractional order (also called spaces of Bessel potentials) and
Fourier transform methods are used to characterize and generalize these spaces to
yield the Triebel Lizorkin spaces and illuminate their relationship with the Besov
spaces.

Chapter 8 is very similar to its first edition counterpart. It deals with Orlicz
and Orlicz-Sobolev spaces which generalize L? and W™ 7 spaces by allowing
the role of the function #” to be assumed by a more general convex function
A(r). An important result identifies a certain Orlicz space as a target for an
imbedding of W7 (£2) in a limiting case where there is an imbedding into L?(£2)
for 1 < p < oo butnotinto L*(£2).

This monograph was typeset by the authors using TgX on a PC running Linux-
Mandrake 8.2. The figures were generated using the mathematical graphics soft-
ware package MG developed by R. B. Israel and R. A. Adams.

RAA & JIFF
Vancouver, August 2002
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1
PRELIMINARIES

1.1 (Introduction) Sobolev spaces are vector spaces whose elements are
functions defined on domains in n-dimensional Euclidean space R” and whose
partial derivatives satisfy certain integrability conditions. In order to develop and
elucidate the properties of these spaces and mappings between them we require
some of the machinery of general topology and real and functional analysis. We
assume that readers are familiar with the concept of a vector space over the real or
complex scalar field, and with the related notions of dimension, subspace, linear
transformation, and convex set. We also expect the reader will have some famil-
iarity with the concept of topology on a set, at least to the extent of understanding
the concepts of an open set and continuity of a function.

In this chapter we outline, mainly without any proofs, those aspects of the theories
of topological vector spaces, continuity, the Lebesgue measure and integral, and
Schwartz distributions that will be needed in the rest of the book. For a reader
familiar with the basics of these subjects, a superficial reading to settle notations
and review the main results will likely suffice.

Notation

1.2 Throughout this monograph the term domain and the symbol Q will be
reserved for a nonempty open set in n-dimensional real Euclidean space R". We
shall be concerned with the differentiability and integrability of functions defined
on 2; these functions are allowed to be complex-valued unless the contrary is
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explicitly stated. The complex field is denoted by C. For ¢ € C and two functions
u and v, the scalar multiple cu, the sum u + v, and the product uv are always
defined pointwise:
(cu)(x) = cu(x),
(u+v)(x) = ulx) + v(x),
(uv)(x) = u(x)v(x)

at all points x where the right sides make sense.

A typical point in R" is denoted by x = (xi,...,x,); its norm is given by

x| = (3j_x)"?. The inner product of two points x and y in R" is
n

Xy =3 XY

If @ = (a1, ..., a,) is an n-tuple of nonnegative integers «;, we call o a multi-

index and denote by x* the monomial x{" - - - x2, which has degree || = Y "_, ;.

n j=1
Similarly, if D; = 3/dx;, then
D* =D} -.-Dy

denotes a differential operator of order |a|. Note that DO®y = .

If @ and B are two multi-indices, we say that 8 < « provided B; < «; for
1 < j < n. Inthis case ¢ — B is also a multi-index, and | — B| + | 8] = |«|. We
also denote

! =a!--a!

() =sazm=0) ()
B)  Blla—-p! \B Bn)”

The reader may wish to verify the Leibniz formula

and if 8 < a,

D*un)(x) =y (Z) DPu(x)D*Fu(x)

B=a
valid for functions 1 and v that are || times continuously differentiable near x.

1.3 If G C R" is nonempty, we denote by G the closure of G in R*. We shall
write G € Q if G C Q and G is a compact (that is, closed and bounded) subset of
R*. If u is a function defined on G, we define the support of u to be the set

supp(u) = {x € G : u(x) #0}.

We say that u has compact support in €2 if supp (u) € 2. We denote by “bdry G”
the boundary of G in R", that is, the set G N G¢, where G¢ is the complement of
GnR; G =R'—-G={xeckR" : x&G}.
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If x € R" and G C R, we denote by “dist(x, G)” the distance from x to G, that
is, the number infyc [x — y|. Similarly, if F, G C R" are both nonempty,

dist(F, G) = inf dist(y, G) = inf |y — x|.
yeF YEG

YEF

Topological Vector Spaces

1.4 (Topological Spaces) If X is any set, a topology on X is a collection & of
subsets of X which contains

(i) the whole set X and the empty set ¢,
(i1) the union of any collection of its elements, and
(iii) the intersection of any finite collection of its elements.

The pair (X, 0) is called a topological space and the elements of & are the open
sets of that space. An open set containing a point x in X is called a neighbourhood
of x. The complement X — U = {x € X : x &€ U} of any open set U is called a
closed set. The closure S of any subset S C X is the smallest closed subset of X
that contains S.

Let &1 and &, be two topologies on the same set X. If & C &, , we say that £,
is stronger than 'y, or that £ is weaker than €.

A topological space (X, €) is called a Hausdorff space if every pair of distinct
points x and y in X have disjoint neighbourhoods.

The ropological product of two topological spaces (X, ) and (Y, &y) is the
topological space (X x Y, &), where X x ¥ = {(x,y) : x € X, y € Y} is the
Cartesian product of the sets X and Y, and & consists of arbitrary unions of sets
of the form {OX X Oy : Ox € ﬁx, Oy € ﬁy}

Let (X, &'x) and (Y, &y) be two topological spaces. A function f from X into Y
is said to be continuous if the preimage f~1(0) = {x € X : f(x) € O} belongs
to Oy forevery O € €y. Evidently the stronger the topology on X or the weaker
the topology on Y, the more such continuous functions f there will be.

1.5 (Topological Vector Spaces) We assume throughout this monograph that
all vectors spaces referred to are taken over the complex field unless the contrary
is explicitly stated.

A ropological vector space, hereafter abbreviated TVS, is a Hausdorff topological
space that is also a vector space for which the vector space operations of addition
and scalar multiplication are continuous. Thatis, if X is a TVS, then the mappings

(x,y) > x4y and (c,x) = cx
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from the topological product spaces X x X and C x X, respectively, into X are
continuous. (Here C has its usual topology induced by the Euclidean metric.)

X is a locally convex TVS if each neighbourhood of the origin in X contains a
convex neighbourhood of the origin.

We outline below those aspects of the theory of topological and normed vector
spaces that play a significant role in the study of Sobolev spaces. For a more
thorough discussion of these topics the reader is referred to standard textbooks on
functional analysis, for example [Rul] or [Y].

1.6 (Functionals) A scalar-valued function defined on a vector space X is
called a functional. The functional f is linear provided

flax +by) =af(x) +bf(y), x,yeX, abeC.

If X is a TVS, a functional on X is continuous if it is continuous from X into C
where C has its usual topology induced by the Euclidean metric.
The set of all continuous, linear functionals on a TVS X is called the dual of X

and is denoted by X’. Under pointwise addition and scalar multiplication X’ is
itself a vector space:

(f+)x) = f(x)+gx), (NHx)=cfx), fieeX, xeX, ceC

X’ will be a TVS provided a suitable topology is specified for it. One such
topology is the weak-star topology, the weakest topology with respect to which
the functional F,, defined on X’ by F,(f) = f(x) foreach f € X', is continuous
for each x € X. This topology is used, for instance, in the space of Schwartz
distributions introduced in Paragraph 1.57. The dual of a normed vector space
can be given a stronger topology with respect to which it is itself a normed space.
(See Paragraph 1.11.)

Normed Spaces

1.7 (Norms) A norm on a vector space X is a real-valued function f on X
satisfying the following conditions:

(i) f(x)=0forallx € X and f(x) =0if and onlyif x =0,
(i1) f(cx) =|c|f(x)foreveryx € X andc € C,
(i) fx4+y) < f(x)+ f(y) foreveryx,y € X.

A normed space is a vector space X provided with a norm. The norm will be
denoted ||-; X || except where other notations are introduced.

If » > 0, the set
B(x)={yeX  :lly—x; Xl <r}
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is called the open ball of radius r with center at x € X. Any subset A C X is
called open if for every x € A there exists » > 0 such that B,(x) C A. The open
sets thus defined constitute a topology for X with respect to which X is a TVS.
This topology is the norm topology on X. The closure of B, (x) in this topology is

Bx)={yeX:|ly—x;X| <r}

A TVS X is normable if its topology coincides with the topology induced by some
norm on X. Two different norms on a vector space X are equivalent if they induce
the same topology on X. This is the case if and only if there exist two positive
constants a and b such that,

alixll; < lxlly <blxlh

for all x € X, where {|x||; and ||x ||, are the two norms.

Let X and Y be two normed spaces. If there exists a one-to-one linear operator
L mapping X onto Y having the property | L{(x); Y| = |lx; X| forevery x € X,
then we call L an isometric isomorphism between X and Y, and we say that X and
Y are isometrically isomorphic. Such spaces are often identified since they have
identical structures and only differ in the nature of their elements.

1.8 A sequence {x,} in a normed space X is convergent to the limit x; if and
only if lim,_, ||x, — x9; X|| = 0 in R. The norm topology of X is completely
determined by the sequences it renders convergent.

A subset S of a normed space X is said to be dense in X if each x € X is the limit
of a sequence of elements of S. The normed space X is called separable if it has
a countable dense subset.

1.9 (Banach Spaces) A sequence {x,}in a normed space X is called a Cauchy
sequence if and only if for every € > 0 there exists an integer N such that
lxm — x4 ; X|| < € holds whenever m,n > N. We say that X is complete and a
Banach space if every Cauchy sequence in X converges to a limit in X. Every
normed space X is either a Banach space or a dense subset of a Banach space Y
called the completion of X whose norm satisfies

lx; Yl = |lx; X|| forevery x € X.

1.10 (Inner Product Spaces and Hilbert Spaces) If X is a vector space, a
functional (-, -)x defined on X x X is called an inner product on X provided that
foreveryx,y € X anda,b e C

(1) (x,y)x = (y,x)yx, {(wherec denotes the complex conjugate of ¢ € C)
(i) (ax + by, z)x = alx,2)x +b(y, 2x,
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(iii) (x,x)x = 0if and only if x =0,

Equipped with such a functional, X is called an inner product space, and the

functional
lx; X1l =+ (x, x)x D

is, in fact, a norm on X If X is complete (i.e. a Banach space) under this norm,
it is called a Hilbert space. Whenever the norm on a vector space X is obtained
from an inner product via (1), it satisfies the parallelogram law

e +y: X127+ lle — ys X2 =20 X2+ 21y XI°. @)

Conversely, if the norm on X satisfies (2) then it comes from an inner product as
in (1).

1.11 (The Normed Dual) A norm on the dual X’ of a normed space X can be
defined by setting

|x"; X'|| = sup{Ix'0)| : llx; XI| < 1},

for each x' € X'. Since C is complete, with the topology induced by this norm
X'’ is a Banach space (whether or not X is) and it is called the normed dual of X.
If X is infinite dimensional, the norm topology of X’ is stronger (has more open
sets) than the weak-star topology defined in Paragraph 1.6.

The following theorem shows that if X is a Hilbert space, it can be identified with
its normed dual.

1.12 THEOREM (The Riesz Representation Theorem) Let X be a Hilbert
space. A linear functional x” on X belongs to X' if and only if there exists x € X
such that for every y € X we have

() =, 0)x,

and in this case ||x’; X’ || = |lx; X||. Moreover, x is uniquely determined by
x eX'1

A vector subspace M of a normed space X is itself a normed space under the norm
of X, and so normed is called a subspace of X. A closed subspace of a Banach
space is itself a Banach space.

1.13 THEOREM (The Hahn-Banach Extension Theorem) Let M be a
subspace of the normed space X. If m’ € M’, then there exists x” € X’ such that
”x’; X/“ = “m’; M’” and x’(m) = m’(m) foreverym € M.1

1.14 (Reflexive Spaces) A natural linear injection of a normed space X into
its second dual space X” = (X’)' is provided by the mapping J whose value Jx
at x € X is given by

Jx(x) = x'(x), xeX.
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Since |Jx(x))| < ”x’; X’|| flx; X, we have
| Jx: X" < lIx; X1l

However, the Hahn-Banach Extension Theorem assures us that for any x € X we
can find x’ € X’ such that |x"; X'|| = 1 and x'(x) = |x; X||. Therefore J is an
isometric isomorphism of X into X”.

If the range of the isomorphism J is the entire space X", we say that the normed
space X is reflexive. A reflexive space must be complete, and hence a Banach
space.

1.15 THEOREM Let X be a normed space. X is reflexive if and only if X’ is
reflexive. X is separable if X’ is separable. Hence if X is separable and reflexive,
sois X'. 1

1.16 (Weak Topologies and Weak Convergence) The weak ropology on a
normed space X is the weakest topology on X that still renders continuous each
x’ in the normed dual X’ of X. Unless X is finite dimensional, the weak topology
is weaker than the norm topology on X. It is a consequence of the Hahn-Banach
Theorem that a closed, convex set in a normed space is also closed in the weak
topology of that space.

A sequence convergent with respect to the weak topology on X is said to converge
weakly. Thus x, converges weakly to x in X provided x'(x,) — x'(x) in C
for every x’ € X’. We denote norm convergence of a sequence {x,} to x in
X by x, = x, and we denote weak convergence by x, — x. Since we have
|x"(x, — x)] < ”x/; X’H lx, — x; X||, we see that x,, — x implies x, — x. The
converse is generally not true (unless X is finite dimensional).

1.17 (Compact Sets) A subset A of a normed space X is called compact if
every sequence of points in A has a subsequence converging in X to an element of
A. (This definition is equivalent in normed spaces to the definition of compactness
in a general topological space; A is compact if whenever A is a subset of the union
of a collection of open sets, it is a subset of the union of a finite subcollection
of those sets.) Compact sets are closed and bounded, but closed and bounded
sets need not be compact unless X is finite dimensional. A is called precompact
in X if its closure A in the norm topology of X is compact. A is called weakly
sequentially compact if every sequence in A has a subsequence converging weakly
in X to a point in A. The reflexivity of a Banach space can be characterized in
terms of this property.

1.18 THEOREM A Banach space is reflexive if and only if its closed unit
ball Bj(0) = {x € X : |lx; X|| < 1} is weakly sequentially compact. I
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1.19 THEOREM A set A is precompact in a Banach space X if and only if
for every positive number € there is a finite subset N, of points of X such that

Ac | By).
yeN.

A set N, with this property is called a finite €-net for A. 1l

1.20 (Uniform Convexity) Any normed space is locally convex with respect
to its norm topology. The normon X is called uniformly convex if for every number
€ satisfying 0 < € < 2, there exists a number §(¢) > Osuch thatif x,y € X
satisfy |lx; X|| = [ly; Xl = 1 and |lx — y; X|| > ¢, then [[(x + y)/2; X]|| <
1 — 8(¢). The normed space X itself is called “uniformly convex” in this case. It
should be noted, however, that uniform convexity is a property of the norm—X
may have another equivalent norm that is not uniformly convex. Any normable
space is called uniformly convex if it possesses a uniformly convex norm. The
parallelogram law (2) shows that a Hilbert space is uniformly convex.

1.21 THEOREM A uniformly convex Banach space is reflexive. ll

The following two theorems will be used to establish the separability, reflexivity,
and uniform convexity of the Sobolev spaces introduced in Chapter 3.

1.22 THEOREM Let X be a Banach space and M a subspace of X closed
with respect to the norm topology of X. Then M is also a Banach space under the
norm inherited from X. Furthermore

(i) M is separable if X is separable,
(i) M is reflexive if X is reflexive,
(iii) M is uniformly convex if X is uniformly convex. i

The completeness, separability, and uniform convexity of M follow easily from
the corresponding properties of X. The reflexivity of M is a consequence of
Theorem 1.18 and the fact that M, being closed and convex, is closed in the weak
topology of X.

1.23 THEOREM For j =1,2,...,n let X; be a Banach space with norm
lI-ll;. The Cartesian product X = H;’zl X, consisting of points (xy, ..., x,) with
x; € X;, is a vector space under the definitions

x+y=@& +y,.., %+ ) cx = (X1, ..., CXp),

and is a Banach space with respect to any of the equivalent norms

., 1/p
b= (Shslf) 1z
=1

I¥llo) = max ;]
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Furthermore,
(i) if X is separable for 1 < j < n, then X is separable,
(ii) if X; is reflexivefor 1 < j < n, then X is reflexive,

(iii) if X; is uniformly convex for 1 < j < n, then X is uniformly convex. More
precisely, [|-]| » is a uniformly convex norm on X provided | < p < oco.1

The functionals ||-||,), 1 < p < oo, are norms on X, and X is complete with
respect to each of them. Equivalence of these norms follows from the inequalities

%Mooy < Mxllpy = Xy < mllxll oo -
The separability and uniform convexity of X are readily deduced from the corre-

sponding properties of the spaces X;. The reflexivity of X follows from that of
Xj, 1 < j = n,via Theorem 1.18 or via the natural isomorphism between X’ and

n
I, X!

1.24 (Operators) Since the topology of a normed space X is determined by
the sequences it renders convergent, an operator f defined on X into a topological
space Y is continuous if and only if f(x,) — f(x) in ¥ whenever x, — x in X.
Such is also the case for any topological space X whose topology is determined
by the sequences it renders convergent. (These are called first countable spaces.)

Let X, Y be normed spaces and f an operator from X into Y. We say that f is
compact if f(A) is precompact in ¥ whenever A is bounded in X. (A bounded
set in a normed space is one which is contained in the ball Bg(0) for some R.)
If f is continuous and compact, we say that f is completely continuous. We say
that f is bounded if f(A) is bounded in ¥ whenever A is boundedin X.

Every compact operator is bounded. Every bounded linear operator is continuous.
Therefore, every compact linear operator is completely continuous. The norm of
a linear operator f is sup{|| f(x); Y| : llx; X|| < 1}.

1.25 (Imbeddings) We say the normed space X is imbedded in the normed
space Y, and we write X — Y to designate this imbedding, provided that
(i) X is a vector subspace of Y, and

(ii) the identity operator I defined on X into ¥ by Ix = x forall x € X is
continuous.

Since 7 is linear, (ii) is equivalent to the existence of a constant M such that
Hx; Yl <Mlx: X|l, x eX.

Sometimes the requirement that X be a subspace of ¥ and / be the identity map

is weakened to allow as imbeddings certain canonical transformations of X into

Y. Examples are trace imbeddings of Sobolev spaces as well as imbeddings of
Sobolev spaces into spaces of continuous functions. See Chapter 5.

We say that X is compactly imbedded in Y if the imbedding operator [ is compact.
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Spaces of Continuous Functions

1.26 Let Q be a domain in R*. For any nonnegative integer m let C™(2)
denote the vector space consisting of all functions ¢ which, together with all their
partial derivatives D%¢ of orders || < m, are continuous on 2. We abbreviate
CY) = C(N). Let C(Q) = oy C™().

The subspaces Co(2) and Cg°(£2) consist of all those functions in C(£2) and
C*(2), respectively, that have compact support in 2.

1.27 (Spaces of Bounded, Continuous Functions) Since 2 is open, functions
in C™(R2) need not be bounded on 2. We define C% (2) to consist of those
functions ¢ € C™(Q) for which D*u is bounded on Q for 0 < || < m. C¥ ()
is a Banach space with norm given by

¢: C3 @] = max sup|D*p(x)].
SA=M xeQ

1.28 (Spaces of Bounded, Uniformly Continuous Functions) If¢ € C(Q2)
is bounded and uniformly continuous on €2, then it possesses a unique, bounded,
continuous extension to the closure © of 2. We define the vector space C™ (R2) to
consist of all those functions ¢ € C™(§2) for which D*¢ is bounded and uniformly
continuous on £2 for 0 < |a| < m. (This convenient abuse of notation leads to
ambiguities if € is unbounded; e.g., C™(R") % C™(R") even though R* = R" )
C™(Q) is a closed subspace of C % (S2), and therefore also a Banach space with
the same norm

|¢; C™(Q)| = max sup|D*¢(x)I.
O<a<m xeQ

1.29 (Spaces of Hilder Continuous Functions) If0 < A < 1, we define
C™*(Q) to be the subspace of C™(Q) consisting of those functions ¢ for which,
for0 < o < m, D*¢ satisfies in 2 a Holder condition of exponent A, that is, there
exists a constant K such that

ID"¢(x) - D¢ < K|x —yI*,  x,yeQ.

C™*(Q) is a Banach space with norm given by

|¢; c™* () || = ”¢; ()| +03|}f|”<(m sup | ¢(|)jc) o ¢(y)|‘
= = xr:‘ﬂ -

It should be noted that for0 < v < A <1,

C"MR) G CM(R) S CM(D).
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Since Lipschitz continuity (that is, Holder continuity of exponent 1) does notimply
everywhere differentiability, it is clear that C™1(Q) ¢ C"+1(2). In general,
C"(Q) ¢ C™1(Q) either, but the inclusion is possible for many domains £,
for instance convex ones as can be seen by using the Mean-Value Theorem. (See
Theorem 1.34.)

1.30 If € is bounded, the following two well-known theorems provide useful
criteria for the denseness and compactness of subsets of C (). If ¢ eC (), we
may regard ¢ as defined on £, that is, we identify ¢ with its unique continuous
extension to the closure of 2.

1.31 THEOREM (The Stone;Weierstrass Thg(_)rem) Let 2 be a bounded
domain in R”. A subset &/ of C(2) is dense in C(£2) if it has the following four
properties:
(1) If 9, ¥ € & and ¢ € C, then ¢ + v, ¢, and c¢ all belong to =7
(ii) If € o7, then ¢ € &7, where ¢ is the complex conjugate of ¢.
(iii) If x, y € 2 and x # y, there exists ¢ € &/ such that ¢ (x) # ¢(y).
(iv) If x € 2, there exists ¢ € o7 such that ¢ (x) # 0.

1.32 COROLLARY If Qis bounded in ", then the set P of all polynomials
in x = (xy,...,x,) having rational-complex coefficients is dense in C ). A
rational-complex number is a number of the form c; 4 ic, where ¢ and ¢; are
rational numbers.) Hence C () is separable.

Proof. The set of all polynomials in x is dense in C (2) by the Stone-Weierstrass
Theorem. Any polynomial can be uniformly approximated on the compact set £
by elements of the countable set P, which is therefore also dense in C(£2). 1l

1.33 THEOREM (The Asco_li-Arzela Theorem) Eet 2 be a bounded do-
main in R*. A subset K of C(2) is precompact in C(£2) if the following two
conditions hold:

(i) There exists a constant M such that |¢(x)| < M holds for every ¢ € K
and x € Q.

(ii) For every € > O there exists § > 0 such thatif ¢ € K, x,y € €2, and
[x —y| < 8, then |¢p(x) —d(¥)| < €.l

The following is a straightforward imbedding theorem for the various continuous
function spaces introduced above. It is a preview of the main attraction, the
Sobolev imbedding theorem of Chapter 5.

1.34 THEOREM Let m be a nonnegative integer and let 0 < v < A < 1.
Then the following imbeddings exist:

c"H Q) - CM (), 3)
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cm(Q) - C™(Q), o)
C™M Q) » C™V(RQ). 5)

If Q is bounded, then imbeddings (4) and (5) are compact. If © is convex, we
have the further imbeddings

C"Q) - C™L(Q), (6)
C"tHQ) - CN Q). )

If © is convex and bounded, then imbeddings (3) is compact, and sois (7)if A < 1.

Proof. The existence of imbeddings (3) and (4) follows from the obvious in-
equalities . .
l¢:C"@] < [o: ™)

lo;Ccm @] < |¢: ™ (@] .

To establish (5) we note that for || < m,

|D*¢(x) — D¢ _ sup |D*¢(x) — D¢ (y)]

3

sup <
= e = yI¥ x,yeQ lx — yI*
and D¢ ) — Do
IDT) = D' _ 5 up Do r)l.
x, veQ lx - )’|V xef2

[x=y[zl

from which we conclude that
lo;Ccm @] <2|¢: ™ @] -

If Q is convex and x, y € £, then by the Mean-Value Theorem there is a point
z €  on the line segment joining x and y such that D*¢(x) — D*¢(y) is given
by (x — y) - VD%¢(z), where Vi = (D1u, ..., Dyu). Thus

|D%¢(x) — D*¢ ()| < nlx —yl |¢; C"T1 ()], (8)

and so . -
lo:Cc™ (@] <n|o: ™ @)].
Thus (6) is proved, and (7) follows from (5) and (6).
Now suppose that £ is bounded. If A isa bounded set in C%* (), then there exists
M suchthat ||¢ ; C®*(Q)| < M forallg € A. Butthen |¢(x)—¢ (y)| < M|x—y|*

forall ¢ € A and all x, y € €2, whence A is precompact in C(Q) by the Ascoli-
Arzela Theorem 1.33. This proves the compactness of (4) form = 0. If m > 1 and
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A is bounded in C™*(), then A is bounded in C%*(£2) and there is a sequence
{¢;} C A such that ¢; — ¢ in C(Q). But {D;¢;} is also bounded in CO*()
so there exists a subsequence of {¢,} which we again denote by {¢;} such that
Di¢; = yinC Q). Convergence in C () being uniform convergence on 2, we
have ¥y = D1¢. We may continue to extract subsequences in this manner until we
obtain one for which D*¢; — D*¢ in C(Q) for each « satisfying 0 < || < m.
This proves the compactness of (4). For (5) we argue as follows:

D _pe D — D~ v/
| ¢(|3;)_ylv oMl _ <| ¢(|);)_y|x ¢()’)|) D6 (x) — D¢ (y)|' "/

< const | D% (x) — D“¢(y)|1—u/A ©)

for all ¢ in a bounded subset of C"™*(§2). Since (9) shows that any sequence
bounded in C™*(2) and converging in C™(8) is Cauchy and so converges in
C™V (), the compactness of (5) follows from that of (4).

Finally, if €2 is both convex and bounded, the compactness of (3) and (7) follows
from composing the continuous imbedding (6) with the compact imbeddings (4)
and (5) for the case A = 1.1

1.35 The existence of imbeddings (6) and (7), as well as the compactness of (3)
and (7), can be obtained under less restrictive hypotheses than the convexity of 2.
For instance, if every pair of points x, y € €2 can be joined by a rectifiable arc in
2 having length not exceeding some fixed multiple of |x — y|, then we can obtain
an inequality similar to (8) and carry out the proof. We leave it to the reader to
show that (6) is not compact.

The Lebesgue Measure in R?

1.36 Many of the vector spaces considered in this monograph consist of functions
integrable in the Lebesgue sense over domains in R”. While we assume that
most readers are familiar with Lebesgue measure and integration, we nevertheless
include here a brief discussion of that theory, especially those aspects of it relevant
to the study of the L spaces and Sobolev spaces considered hereafter. All proofs
are omitted. For a more complete and systematic discussion of the Lebesgue
theory, as well as more general measures and integrals, we refer the reader to any
of the books [Fo], [Ro], [Ru2], and [Sx].

1.37 (Sigma Algebras) A collection X of subsets of R” is called a o-algebra
if the following conditions hold:

R ex.
(i) If A € X, then its complement A€ € 3.
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(i) IfA; € 2, j=1,2,...,then U;’il €X.
It follows from (i)—(iii) that:

(iv) The empty set @ € X.

(V) IfA; €%, j=12,..,then[ )2, € Z.

(vi) If A, Be X,thenA—B=ANB e X.

1.38 (Measures) By ameasure 1 on a o-algebra ¥ we mean a function on X
taking values in either R U {+o0} (a positive measure) or C (a complex measure)
which is countably additive in the sense that

n (U Aj) =D _u4)
j=1 j=1

whenever A; € &, j = 1,2,... and the sets A; are pairwise disjoint, that is,
A;j N A; = @ for j # k. For a complex measure the series on the right must
converge to the same sum for all permutations of the indices in the sequence
{A;}, and so must be absolutely convergent. If u is a positive measure and if
A, B e £ and A C B, then u(A) < u(B). Also,if A; € Z, j = 1,2,...and

A1 C Ay C o then (U2, Ap) = limy oo 1(4)).

1.39 THEOREM (Existence of Lebesgue Measure) There exists a o-
algebra T of subsets of R" and a positive measure y on X having the following
properties:
(i) Every open set in R” belongs to X.
(i) fACB,BeXZ,and u(B)=0,then A € ¥ and u(4) = 0.
(i) fA={x eR" :aq, <x; <b;, j=12,...,n}, then A € ¥ and
n(A) = [T, b; — ap.
(iv) p is translation invariant. This means that if x € R* and A € X, then
x+A={x+y:yeAle T, and u(x + A) = n(A). 1
The elements of T are called (Lebesgue) measurable subsets of R*, and p is called
the (Lebesgue) measure in R". (We normally suppress the word “Lebesgue” in
these terms as it is the measure on R we mainly use.) For A € ¥ wecall £ (A) the
measure of A or the volume of A, since Lebesgue measure is the natural extension
of volume in R*. While we make no formal distinction between “measure” and
“volume” for sets that are easily visualized geometrically, such as balls, cubes,
and domains, and we write vol(A) in place of (A) in these cases. Of course the
terms length and area are more appropriate in R' and R?.

The reader may wonder whether in fact all subsets of R* are Lebesgue measurable.
The answer depends on the axioms of one’s set theory. Under the most common
axioms the answer is no; it is possible using the Axiom of Choice to construct a
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nonmeasurable set. There is a version of set theory where every subset of R” is
measurable, but the Hahn-Banach theorem 1.13 becomes false in that version.

1.40 (Almost Everywhere) If B C A C R* and u(B) = 0, then any condi-
tion that holds on the set A — B is said to hold almost everywhere (abbreviated
a.e.) in A. It is easily seen that any countable set in R" has measure zero. The
converse is, however, not true.

1.41 (Measurable Functions) A function f defined on a measurable set and
having values in R U {—o0, +00} is itself called measurable if the set

{x 1 f(x) >a}

is measurable for every real a. Some of the more important aspects of this
definition are listed in the following theorem.

1.42 THEOREM (a)If f is measurable, sois | f].
(b) If f and g are measurable and real-valued, so are f 4+ g and fg.

(c) If { fj} is a sequence of measurable functions, then sup; fi»inf; f;,
limsup;_, , f;, and liminf;_, o f; are measurable.

(d) If f is continuous and defined on a measurable set, then f is measurable.

(e) If f is continuous on R into R and g is measurable and real-valued, then
the composition f o g defined by f o g(x) = f((g(x)) is measurable.

(f) (Lusin’s Theorem) If f is measurable and f(x) = 0 for x € A where
u(A) < 00, and if € > 0, then there exists a function g € Co(R") such that
SUP,ers 8(*) < sup, g f(x) and u ({x € R* & f(x) # g(0)}) < €.l

1.43 (Characteristic and Simple Functions) Let A C R*. The function x4
defined by

1 ifxeA
Xatx) = {o if x ¢ A

is called the characteristic function of A. A real-valued function s on R” is called
a simple function if its range is a finite set of real numbers. If for every x, we have
s(x) € {ay,...,a,},thens = Z;n=1 Xa,(x), where A; = {x € R" : s(x) = a;},
and s is measurable if and only if A, A, ..., A,, are all measurable. Because of
the following approximation theorem, simple functions are a very useful tool in

integration theory.

1.44 THEOREM Given a real-valued function f with domain A C R" there
is a sequence {s;} of simple functions converging pointwise to f on A. If f
is bounded, {s;} may be chosen so that the convergence is uniform. If f is
measurable, each s; may be chosen measurable. If f is nonnegative-valued, the
sequence {s;} may be chosen to be monotonically increasing at each point. I
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The Lebesgue Integral

1.45 We are now in a position to define the (Lebesgue) integral of a measurable,
real-valued function defined on a measurable subset A C R". For a simple

function s = Z;":l ajXa;» where A; C A, A; measurable, we define

/As(x)dx =) _aju(A)). (10)
j=1

If f is measurable and nonnegative-valued on A, we define

/f(x)dx:supfs(x)dx, an
A A

where the supremum is taken over measurable, simple functions s vanishing
outside A and satisfying 0 < s(x) < f(x) in A. If f is a nonnegative simple
function, then the two definitions of f 4 S (x)dx given by (10) and (11) coincide.
Note that the integral of a nonnegative function may be +-o0.

If f is measurable and real-valued, we set f = f+ — f~, where f* = max(f, 0)
and f~ = — min(f, 0) are both measurable and nonnegative. We define

/f(x)dx:ff+(x)dx—/f_(x)dx
A A A

provided at least one of the integrals on the right is finite. If both integrals are finite,
we say that f is (Lebesgue) integrable on A. The class of integrable functions on
Ais denoted L'(A).

1.46 THEOREM Assume all of the functions and sets appearing below are
measurable.

(a) If f is bounded on A and u(A) < oo, then f € L!(A).
(b) Ifa < f(x) <bforall x € A and if u(A) < oo, then

ap(A) < f fx)dx < bu(A).
A
(¢) If f(x) < g(x) forall x € A, and if both integrals exist, then
/ fxydx < f §(x) dx.
A A
(d) If f,g € L'(A), then f + g € L'(A) and

/(f+g)(x)dx=/f(x)dx—i—fg(x)dx.
A A A
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(e) If f e L'(A)and c € R, then ¢f € L'(A) and
/(cf)(x)dx =c / Fx)dx.
a A

(f) If f € L'(A), then | f| € L'(A) and

V fx)ydx S/If(x)ldx.
A A
() If f € L'(A) and B C A, then f € L!(B). If, in addition, f(x) > O for
all x € A, then
/f(x)dXS/f(x)dx.
B A

(h) If u(A) = 0, then [, f(x)dx =0.

(i) If f e L'(A) and fB fx)=0forevery B C A,then f(x) =0aec.onA.l
One consequence of part (i) and the additivity of the integral is that sets of
measure zero may be ignored for purposes of integration. That is, if f and g are
measurable on A and if f(x) = g(x) a.e. on A, then [, f(x)dx = [, g(x)dx.
Accordingly, two elements of L'(A) are considered identical if they are equal
almost everywhere. Thus the elements of L,(A) are actually not functions but
equivalence classes of functions; two functions belong to the same element of
Ly(A) if they are equal a.e. on A. Nevertheless, we will continue to refer (loosely)
to the elements of L;(A) as functions on A.

147 THEOREM If f is either an element of L!(R") or measurable and
nonnegative on R”, then the set function A defined by

)»(A)=/f(X)dx
A

is countably additive, and hence a measure on the o-algebra of Lebesgue measur-
able subsets of R".

The following three theorems are concerned with the interchange of integration
and limit processes.

1.48 THEOREM (The Monotone Convergence Theorem) Let A C R”
be measurable and let {f;} be a sequence of measurable functions satisfying
0< filkx) £ folx) <---foreveryx € A. Then

'lim/‘fj(x)dx:/ ('im fj(x)) dx. 1
J—=00 J4 A U
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1.49 THEOREM (Fatou’s Lemma) Let A C R" be measurable and let
{f;} be a sequence of nonnegative measurable functions. Then

/ (liminf) dx < li_rninff fitx)ydx. 1
A\ J7o® J70 JA

1.50 THEOREM (The Dominated Convergence Theorem) LetA C R"
be measurable and let { f;} be a sequence of measurable functions converging to a
limit pointwise on A. If there exists a function g € L!(A) such that | fix)] < gx)
for every j and all x € A, then

.lim/fj(x)dx——-/ (_im f,-(x)) dx. 1
j=oo fa A \J>©

1.51 (Integrals of Complex-Valued Functions) The integral of a complex-
valued function over a measurable set A C R" is defined as follows. Set f = i+iv,
where u and v are real-valued and call f measurable if and only if # and v are
measurable. We say f is integrable over A, and write f € L!(A), provided
| f| = (u®+v?)"/? belongs to L' (A) in the sense described in Paragraph 1.45. For
f € LY(A), and only for such f, the integral is defined by

/f(x)dx=/M(x)dX+ifv(x)dx.
A A A

It is easily checked that f € L!(A) if and only if u,v € L'(A). Theorem
1.42(a,b,d—f), Theorem 1.46(a,d—i), Theorem 1.47 (assuming f € L'(R")), and
Theorem 1.50 all extend to cover the case of complex f.

The following theorem enables us to express certain complex measures in terms
of Lebesgue measure p. It is the converse of Theorem 1.47.

1.52 THEOREM (The Radon-Nikodym Theorem) Let A be a complex
measure defined on the o-algebra ¥ of Lebesgue measurable subsets of R".
Suppose that A(A) = O for every A € T for which £1(A) = 0. Then there exists
f € LY(R") such that for every A € ©

A(A) = f fx)dx.
A
The function f is uniquely determined by A up to sets of measure zero. I

1.53 If f is a function defined on a subset A of R**™, we may regard f as
depending on the pair of variables (x, y) with x € R" and y € R". The integral
of f over A is then denoted by

ff(x,y)dxdy
A
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or, if it is desired to have the integral extend over all of Rt

flx, y)xalx, y)dxdy,
Rn+m

where x4 is the characteristic function of A. In particular, if A C R”, we may
write

/f(x)dx:/f(xl,...,x,,)dxl'--dx,,.
A A

1.54 THEOREM (Fubini’s Theorem) Let f be a measurable function on
R™*" and suppose that at least one of the integrals

I =/ |f(x, »)ldx,dy,
Rt

12=/( If(x,y)ldx) dy. (12)
m RN

I = / (/ If(x,y)ldy) dx

exists and is finite. For I;, we mean by this that there is an integrable function g
on R" such that g(y) is equal to the inner integral for almost all y, and similarly
for I5. Then

(@) f(,y) e L'(R") for almostall y € R".
(®) f(x,-) € L'(R™) for almost all x € R".
(©) fou fCy)dy € LY(R).

(d) [o f(x,)dx € LI(R™).

e h =L =1.

Distributions and Weak Derivatives

1.55 We require in subsequent chapters some of the basic concepts and tech-
niques of the Schwartz theory of distributions [Sch], and we present here a brief
description of those aspects of the theory that are relevant for our purposes. Of
special importance is the notion of weak or distributional derivative of an inte-
grable function. One of the standard definitions of Sobolev spaces is phrased
in terms of such derivatives. (See Paragraph 3.2.) Besides [Sch], the reader is
referred to [Rul] and [Y] for more complete treatments of the spaces Z(£2) and
2'(Q2) introduced below, as well as useful generalizations of these spaces.

1.56 (Test Functions) Let{2beadomainin R". A sequence {¢;} of functions
belonging to C§°(£2) is said to converge in the sense of the space 2(S2) to the
function ¢ € C5°(€2) provided the following conditions are satisfied:
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(i) there exists K € 2 such that supp (¢j - ¢) C K forevery j, and

(i) limj_.oc D*@;(x) = D*¢p(x) uniformly on K for each multi-index a.
There is a locally convex topology on the vector space C§°(2) which respect to
which a linear functional T is continuous if and only if T(¢;) — T(¢) in C
whenever ¢; — ¢ in the sense of the space Z(2). Equipped with this topology,
C§°(R2) becomes a TVS called 2(2) whose elements are called test functions.
2(£2) is not a normable space. (We ignore the question of uniqueness of the
topology asserted above. It uniquely determines the dual of 2(2) which is
sufficient for our purposes.)

1.57 (Schwartz Distributions) The dual space 2'(2) of 2(£2) is called the
space of (Schwartz) distributions on Q. 2’ (Q) is given the weak-star topology as
the dual of 2(£2), and is a locally convex TVS with that topology. We summarize
the vector space and convergence operations in 2’(S2) as follows: if S, 7T, T;
belong to 2'(£2) and ¢ € C, then

S+ T)o) =S()+T(9), ¢ € 2(Q),
(cT) (@) =cT(9), ¢ € 9(),

T; — T in 2'(Q) if and only if T;(¢) — T (¢) in C for every ¢ € Z(Q2).

1.58 (Locally Integrable Functions) A function # defined almost everywhere
on 2 is said to be locally integrable on 2 provided u € L'(U) for every open
U € Q. In this case we write u € L. (). Corresponding to every u € LIIOC(Q)

loc

there is a distribution T, € 2’(2) defined by
Tu(¢) = / uxp()dx, b€ D), (13)
Q

Evidently 7, thus defined, is a linear functional on 2(£2). To see that it is
continuous, suppose that ¢; — ¢ in Z(2). Then there exists K € Q such that
supp (¢; — ¢) C K forall j. Thus

|Tu(¢)) — Tu(@)| < sup |¢;(x) —¢(X)|/ |u(x)| dx.
xek K
The right side of the above inequality tends to zero as j — oo since ¢; — ¢

uniformly on K.

1.59 Not every distribution T € 2'(Q) is of the form 7, defined by (13) for
some u € L}DC(Q). Indeed, if 0 € Q, there can be no locally integrable function §
on £ such that for every ¢ € 2(R2)

/Q 5(X)p(x) dx = $(0).
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However, the linear functional § defined on 2(2) by

8(¢) = ¢(0) (14)

is easily seen to be continuous and hence a distribution on . It is called a Dirac
distribution.

1.60 (Derivatives of Distributions) Letu € C'(Q) and ¢ € 2(). Since ¢
vanishes outside some compact subset of €2, we obtain by integration by parts in
the variable x;

/ (iu(x)) ¢(x)dx = —/ u(x) <i¢(x)) dx.
o \9x; o dx;

Similarly, if u € C'*1(Q), then integration by parts |«| times leads to
/(Da"(x))¢(x)dx = (—1)|a|/ u(x)D*¢(x) dx.
Q Q

This motivates the following definition of the derivative D*T of a distribution
T € 2'(2):
(D*T)($) = (=T (D*¢). (15)

Since D¢ € 2(2) whenever ¢ € 2(Q), D*T is a functional on 2(), and it is
clearly linear. We show that it is continuous, and hence a distribution on 2. To
this end suppose ¢; — ¢ in Z(2). Then

supp (D*(¢; — ¢)) C supp (¢; — ¢) C K
for some K € Q2. Moreover,
DP(D*(¢; — ¢)) = D*™*(¢; — ¢)

converges to zero uniformly on K as j — oo for each multi-index 8. Hence
D%¢; — D¢ in 2(2). Since T € 2'(2) it follows that

DT (¢;) = (=D (D*¢;) - (—1))T(D*¢) = DT ()

in C. Thus D*T € 2'(Q).

We have shown that every distribution in 2'(£2) possesses derivatives of all orders
in 2’(2) in the sense of definition (15). Furthermore, the mapping D from
2'(Q) into 2'(Q) is continuous; if T; — T in 2'(Q) and ¢ € Z(Q), then

DTi(¢) = (—D)IT{(D*¢) — (=D T(D*¢) = DT ().
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1.61 EXAMPLES

1. If0 € Q and § € 2'() is the Dirac distribution defined by (14), then D*§
is given by

D8(¢) = (=)' D*¢(0).

2. fQ=R(ie,n=1)and H € L}OC(R) is the Heaviside function defined
by
1 ifx>0
H@&) = [0 if x <0,

then the derivative (Ty)’ of the corresponding distribution Ty is 8. To see
this, let ¢ € Z(R) have support in the interval [—a, a]. Then

(Tw)($) = ~Tu(¢) = —/0 ¢'(x)dx = ¢(0) = 8(¢).

1.62 (Weak Derivatives) We now define the concept of a function being the
weak derivative of another function. Let u € L| (). There may or may not
exist a function v, € LIIOC(Q) such that T, = D*T, in 2’(R2). If such a v, exists,
it is unique up to sets of measure zero and is called the weak or distributional
partial derivative of u, and is denoted by D*u. Thus D*u = v, in the weak (or

distributional) sense provided v, € L}, () satisfies

f u(x) DB (x) dx = (— 1) / v (1) (x) dx
Q Q

for every ¢ € 2(2).

If u is sufficiently smooth to have a continuous partial derivative D*u in the usual
(classical) sense, then D”u is also a weak partial derivative of u. Of course, D*u
may exist in the weak sense without existing in the classical sense. We shall show
in Theorem 3.17 that certain functions having weak derivatives (those in Sobolev
spaces) can be suitably approximated by smooth functions.

1.63 Letus note in conclusion that distributions in £ can be multiplied by smooth
functions. If T € 2'(2) and w € C*™®(R), the product 0T € 2'(L2) is defined by

(0T) (@) = T(wg), ¢ € 2(Q).

IfT =T, forsomeu € LIIOC(SZ), then wT = T,,. The Leibniz rule (see Paragraph

1.2) is easily checked to hold for D*(wT).
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THE LEBESGUE SPACES L”(12)

Definition and Basic Properties

2.1 (The Space LP(§2)) LetS2 beadomainin R" and let p be a positive real

number. We denote by L?(2) the class of all measurable functions u# defined on
€2 for which

/ lu(x)|? dx < o0. )
Q

We identify in L7 (S2) functions that are equal almost everywhere in €2; the elements
of LP(2) are thus equivalence classes of measurable functions satisfying (1), two
functions being equivalent if they are equal a.e. in £2. For convenience, we ignore
this distinction, and write u € LP(2) if u satisfies (1), and u = 0 in L?(2)
if u(x) = 0 ae. in Q. Evidently cu € LP(Q) if u € LP(2) and c € C. To
confirm that L?(2) is a vector space we must show that if u, v € L?(2), then
u+v € LP(Q). This is an immediate consequence of the following inequality,
which will also prove useful later on.

22 LEMMA Ifl1<p<ooanda,b > 0,then
(a+b)P <277 Y a” + bP). 2)

Proof. If p = 1, then (2) is an obvious equality. For p > 1, the function #? is
convex on [0, oo); that is, its graph lies below the chord line joining the points
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(a,a?) and (b, b?). Thus

a-+ b\’ - aP + b?
2 - 2 7
from which (2) follows at once. i

If u, v € LP(Q2), then integrating
() + v))” < (Ju@)| + [vE)])? <277 (lu@)IP + [v(x)IP)
over 2 confirms that u + v € LP(2).

2.3 (The L, Norm)  We shall verify presently that the functional ||-|| p defined

by
1/p
lull, = (/ Iu(x)”dx>
Q

is anorm on L?(2) provided 1 < p < co. (Itisnotanormif 0 < p < 1.) In
arguments where confusion of domains may occur, we use || - [[ . in place of |- | ,.
It is clear that |||, > O and ||u||, = O if and only if ¥ = 0 in L?(2). Moreover,

leull, = lel llull, ceC.
Thus we will have shown that ||-||,, is a norm on L?(£2) once we have verified the
triangle inequality
lu+vll, < lull, + llvll, .

which is known as Minkowski’s inequality. We verify it in Paragraph 2.8 below,
for which we first require Holder’s inequality.

24 THEOREM (Holder’s Inequality) Letl < p < oo and let p’ denote
the conjugate exponent defined by

1 1
;/:L, that is —+—==1
p—1 p p
which also satisfies 1 < p/ < 1. Ifu € LP(2) and v € L? (), thenuv € L' (),
and

fQIM(X)v(X)Idx < llaellp vl pr - &)

Equality holds if and only if [u(x)|” and |v(x)|?" are proportional a.e. in 2.
Proof. Leta,b > Oandlet A = In(a?) and B = In(b?). Since the exponential
function is strictly convex, exp((A/p) + (B/p")) < (1/p)expA + (1/p') exp B,
with equality only if A = B. Hence

ab < (@f/p)+ " /p),
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with equality occurring if and only if a? = b”". If either lull, =0or [jvll, =0,
then u(x)v{x) = 0 a.e. in 2, and (3) is satisfied. Otherwise we can substitute
a=lux)|/ ||u||p and b = |v{x)|/ ||v||p, in the above inequality and integrate over
Q to obtain (3). 1

2.5 COROLLARY Ifp > 0,9 > 0Oandr > Osatisfy (1/p)+(1/q) = 1/r,
and if u € LP(2) and v € L9 (§2), then uv € L" (L) and |luvll, < llull, v,
To see this, we can apply Holder’s inequality to |#|"|v|” with exponents p/r and
g/r=(p/r). I

2.6 COROLLARY Holder’s inequality can be extended to products of more
than two functions. Suppose u = ]_[jl.v=1 u; where u; € L% (2),1 < j < N,

where p; > 0. If 3% (1/p;) = 1/q, then u € L (@) and ||ull, < T\, [u; I,

This follows from the previous corollary by induction on N. 1

2.7 LEMMA (A Converse of Hilder’s Inequality) A measurable function
u belongs to L”(£2) if and only if

sup{/ lu()|v(x)dx : v(x) = 00nQ, [vl, < 1} )
Q

is finite, and then that supremum equals ||u || ,.

Proof. This is obvious if flull, = 0. If 0 < |ju||, < oo, then for nonnegative v
with [lv]l,, < 1 we have, by Holder’s inequality,

/Q|u<x)|v<x>dx < lall, ol < Nl

and equality holds if v = (Jul/ |u ||,,)”/"/, for which ||v], = 1.
Conversely, if |lull, = oo we can find an increasing sequence s; of nontrivial
simple functions satisfying 0 < 5;(x) < |u(x)| on Q for which ||sj ||p — o0. If

v = (Isjl/ |s; ||p)p/p,, then

/IM(X)|vj(x)dxZ/SJ(X)Uj(x)dx: Isill,
Q Q

so the supremum (4) must be infinite.

2.8 THEOREM (Minkowski’s Inequality) If 1 < p < oo, then

lu +vll, < llul, + lvll, &)
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Proof. Inequality (5) certainly holds if p = 1 since

/Iu(x)+v(x)|dx§/ |u(x)|dx+/ lv(x)|dx.
Q Q Q

For 1 < p < oo observe that for w > 0, |w]| » < 1 we have, by Holder’s
inequality,

/ (1G] + o) )w(x) dx < / () w(x) dx + f () [w(x) dx
Q Q Q

< ull, + Il
whence [lu + v, < [lull, + |[v]|, follows by Lemma 2.7. I

2.9 THEOREM (Minkowski’s Inequality for Integrals) Let1 < p < oc.
Suppose that f is measurable on R” x R”, that f(-, y) € L?(R™) for almost all
y € R", and that the function y — | f(:, )|, g~ belongs to L'(R"*). Then the
function x — fR,, f(x,y)dybelongs to L?(R™) and

(L. ") <[ ([ senras) " a

That is,
< / 1F Gl s .
p,R”’ R"

[ sy

R7

Proof. Suppose initially that f > 0. When p = 1, the inequalities above
become equalities given in Fubini’s theorem. When p > 1, use a nonnegative
function [|w]| in the unit ball of L7 () as in Theorem 2.8. By Fubini’s theorem
and Holder’s inequality,

/ fx, y)dyw(x)dx = A f&x, y)w(x)dx dy
m JRn m-+n

< /R Il e 1 G )1z

< / 1F ol e dy.
RII

This case now follows by Lemma 2.7. For a general function f as above, split f
into real and imaginary parts and split these as differences of nonnegative functions
satisfying the hypotheses. It follows that the function mapping x to /| e J ) dy
belongs to L”(R™). To get the norm estimate, replace f by | f]. 1
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2.10 (The Space L>°(£2)) A function u that is measurable on 2 is said to be
essentially bounded on €2 if there is a constant K such that ju(x)| < K a.e. on .
The greatest lower bound of such constants K is called the essential supremum of
lu| on €2, and is denoted by ess sup, ., [#(x)|. We denote by L>(2) the vector
space of all functions u that are essentially bounded on €2, functions being once
again identified if they are equal a.e. on 2. It is easily checked that the functional
I-|l  defined by
lulloo = esssup fue(x)|
xeQ2

is a norm on L*°(£2). Moreover, Holder’s inequality (3) and its corollaries extend
to coverthe two cases p =1, p’ =ocand p = o0, p' = 1.

2.11 THEOREM (An Interpolation Inequality) Letl < p <¢g < r, so
that

q P r
for some ¢ satisfying 0 < 6 < 1. If u € LP(Q) N L" (), then u € L9 () and

1 8 1-¢6
+

4 1-6
lully < llulty Neell, ™ .

Proof. Lets = p/(8q). Thens > land s’ = s/(s — 1) = r/((1 — B)q) if
r < oo. In this case, by Holder’s inequality

el =f | (2)|%4 | (x)| '~ dx
o

/s 1/s'
< (/ Iu(x)l"qsdx) (/ lu(x)| =0 dx) = [lull? [l
Q Q

and the result follows at once. The proof if r = o0 is similar. 1

The following two theorems establish reverse forms of Holder’s and Minkowski’s
inequalities for the case 0 < p < 1. The latter inequality, which indicates that
II-1l » is not a norm in this case, will be used to prove the Clarkson inequalities in
Theorem 2.38.

2.12 THEOREM (A Reverse Holder Inequality) Let0O < p < I, so that
p'=p/(p—1)<0.If f e LP(Q) and

0< / lg(0)|” dx < oo,
Q

then

l/p ) 1/p'
flf(x)g(x)ldxz (/ |f(x)l”dx> ([ ()1 dx) . ®
Q Q Q
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Proof. We can assume fg € L'(Q); otherwise the left side of (6) is infinite.
Let ¢ = |g|™7 and ¥ = | fg|? so that ¢3y = |f|?. Then ¢ € LI(Q), where
g =1/p > 1,and since p’ = —pq’ where ¢’ = q/(q — 1), we have ¢ € L9 ().
By the direct form of Holder’s inequality (3) we have

flf(x)l”dx=/g¢(x)10(x)dx < v, o,
Q

p , 1-p
- ( / If(x)g(x)ldx> ( / g7 dx) .
Q Q

Taking pth roots and dividing by the last factor on the right side we obtain (6). 1

2.13 THEOREM (A Reverse Minkowski Inequality) Let0 < p < 1. If
u,v € L?(£2), then
el + v, = Null, + 1l - @)

Proof. Inu = v =0in L”(2), then the right side of (7) is zero. Otherwise, the
left side is greater than zero and we can apply the reverse Holder inequality (6) to
obtain

lul + [olllZ = /Q(|u<x>| + @D’ (0] + o)) dx

1/p
> (L(|u(x>|+|v<x)|)de) (lull, + l1ol,)
= Ilul + 1027 (lull, + lvl,)

and (7) follows by cancellation. Il

Here is a useful imbedding theorem for L? spaces over domains with finite volume.

2,14 THEOREM (An Imbedding Theorem for L? Spaces) Suppose that
vol(Q) = [, 1dx <ooand1 < p < g < oo. Ifu € L9(Q), thenu € L?(RQ) and

leell, < (vol(@) P~V gy, ®)
Hence
L1(Q) — LP(Q). ©))
Ifu € L®(S), then
i lull, = Nl (10)

Finally, if u € LP(2) for | < p < oo and if there exists a constant K such that
for all such p
flul, < K, (1D
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then u € L>*(2) and
lulloo = K. (12)

Proof. If p = g orq = oo, (8) and (9) are trivial. If 1 < p < g < oo and
u € L1(R2), Holder’s inequality gives

rlq 1=(p/q)
/ lu(x))P dx < (/ |u(x)|qu> </ ldx)
Q Q Q

from which (8) and (9) follow immediately. If u € L°°(£2), we obtain from (8)

limsup [lul, < llulls - (13
p—>0

On the other hand, for any € > 0 there exists a set A C €2 having positive measure
1 (A) such that
lu(x)| > |lullo, —€  ifx € A.

Hence

/ lu(x)? dx > / lu(x)P dx = p(A)(lull — €)*.
Q A

1t follows that [lull, > (1(A))"? (lull. — €), whence

Lim inf fluf], > {lulo - (14)
p—>0

Equation (10) now follows from (13) and (14).

Now suppose (11) holds for 1 < p < oo. If u ¢ L°°(2) or else if (12) does not
hold, then we can find a constant K| > K and a set A C £ with «(A4) > 0 such
that for x € A, [u(x)| > K,. The same argument used to obtain (14) now shows
that

liminf lul|, > K,

[)—)OO

which contradicts (11). 11

2.15 COROLLARY LP(Q) C L. (R)forl < p < oo and any domain §2.

loc

Completeness of LP(f2)

2.16 THEOREM L”(£)is a Banach spaceif 1 < p < oc.

Proof. First assume 1 < p < o0 and let {u,} be a Cauchy sequence in L?(£2).
There is a subsequence {u, } of {u,} such that

1
"unﬂ]_unj“pfi, ]=1,2,
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Let v, (x) = Z;."zl |#tn,., (x) = up, (x)|. Then

m
i
”Um”pfg §<1, m=12,....
j=1

Putting v(x) = lim,_, & vy (x), which may be infinite for some x, we obtain by
the Monotone Convergence Theorem 1.48

/ fv(x)|? dx = lim f |um (X)|P dx < 1.
Q m—00 Q

Hence v(x) < oo a.e. on €2 and the series
x
U, (X) + D (0, () — thy, (%)) (15)
j=1

converges to a limit u(x) a.e. on § by Theorem 1.50. Let u(x) = 0 wherever it is
undefined by (15). Since (15) telescopes, we have

lim u,, (x) = u(x) a.e.in 2.
m— 00

For any € > O there exists N such thatif m,n > N, then ||u,, — un|l, < €. Hence,
by Fatou’s lemma 1.49

[ 160 = i ax = [ lim lun ) = wr 017 dx
Q Q>

< liminf/ |, (x) — up (%) dx < €”
jooo Q

ifn > N. Thus u = (u — u,) +u, € LP(Q2) and ||u — u,|l, > O asn — oo.

Therefore L?(£2) is complete and so is a Banach space.

Finally, if {u,} is a Cauchy sequence in L>(£2), then there exists a set A C £2
having measure zero such thatif x ¢ A, then foreveryn,m=1,2, ...

lun ()] < llunll oo » |1 (X)) = tm (X < llty — thmll oo -

Therefore, {u,} converges uniformly on £ — A to a bounded function u. Setting
u =0forx € A, we have u € L*(Q) and |lu, — u|l — 0asn — oo. Thus
L () is also complete and a Banach space. Il

2.17 COROLLARY Ifl < p < oo, each Cauchy sequence in L?(£2) has a
subsequence converging pointwise almost everywhere on 2. I
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2.18 COROLLARY LZ%*()is a Hilbert space with respect to the inner product

(u,v):fu(x)mdx.
Q

Hoélder’s inequality for L?(£2) is just the well-known Schwarz inequality

|G, )] = Nullz vliz . 8

Approximation by Continuous Functions

2.19 THEOREM (y(Q2)isdensein L7(2)if 1 < p < oo.

Proof. Any u € LP(S2) can be written in the form 4 = u; — uz + i(us — us)
where, for 1 < j < 4, u; € L?() is real-valued and nonnegative. Thus it is
sufficient to prove that if € > 0 and ¥ € L”(£2) is real-valued and nonnegative
then there exists ¢ € Co(£2) such that ||¢ — u||, < €. By Theorem 1.44 for such
a function u there exists a monotonically increasing sequence {s,} of nonnegative
simple functions converging pointwise to u on 2. Since 0 < s5,(x) < u(x), we
have s, € L?(S2) and since (u(x) —s5,(x))” < (u(x))”, wehave s, — uin L”(R)
by the Dominated Convergence Theorem 1.50. Thus there exists an s € {s,} such
that |lu — s|l, < €/2. Since s is simple and p < oo the support of s has finite
volume. We can also assume that s(x) = Qif x € Q°. By Lusin’s Theorem 1.42(f)
there exists ¢ € Cy(R") such that

¢ (x)] < |slls forall x € R”,

and

p
vol({x € R" : ¢(x) % s(x))) < < € ) .
415l

By Theorem 2.14

s — ¢ll, < lls — Blloe (vol(ix € R : ¢(x) # s(x)N)"”

€ €
2 — ) = —.
< 2lsle <4nsnm) 2

It follows that |lu — ¢]|, < €.l

2.20 The above proof shows that the set of simple functions in L”(S2) is dense in
L?(2) for 1 < p < oo. That this is also true for L*°(£2) is a direct consequence
of Theorem 1.44.
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2.21 THEOREM LP(f)is separableif 1 < p < oo.
Proof. Form=1,2,...let

Qn={reQ:|x|<m and dist(x,bdry(Q)) > 1/m}.

Then £2,, is a compact subset of €. Let P be the set of all polynomials on R*
having rational-complex coefficients, and let P,, = {xmf : f € P} where xu
is the characteristic function of Q,,. As shown in Paragraph 1.32, P,, is dense in
C (). Moreover, | J_; P, is countable.

If u € LP(RQ) and € > 0, there exists ¢ € Co(£2) such that ju — ¢|, < €/2.
If 1/m < dist(supp (¢) , bdry(2)), then there exists f in the set P, such that

¢ — Flloo < (€/2)(vol(2)) ™7 Tt follows that

I = fll, < 16 — fllo (VL))" < €/2

and so ||lu — fllp < €. Thus the countable set U;ozl P, is dense in L?(£2) and
L () is separable. I

222 C g (£2) is a proper closed subset of L>(2) and so is not dense in that space.
Therefore, neither are Co(2) or C5°(£2). In fact, L (L) is not separable.

Convolutions and Young’s Theorem

2.23 (The Convolution Product) It is often useful to form a non-pointwise
product of two functions that smooth out irregularities of each of them to produce
a function better behaved locally than either factor alone. One such product is the
convolution u * v of two functions u and v defined by

uxv(x) = /R u(x — y)v(y)dy (16)

when the integral exists. For instance, if ¥ € LP(R*) and v € LP (RY),
then the integral (16) converges absolutely by Holder’s inequality, and we have
[uxv(x)| < [lullpllvll, forall values of x. Moreover, u xv is uniformly continuous
in these cases. To see this, observe first that if u € LP(R") and v € Co(R"), then
applying Holder’s inequality to the convolution of u with differences between v
and translates of v shows that u * v is uniformly continuous. When 1 < p’ < oo
a general function v in LP'(R") is the L -norm limit of a sequence, {vj} say, of
functions in Co(IR"); then u * v is the L*°-norm limit of the sequence {u * v;}, and
5o is still uniformlty continuous. In any event, the change of variable y = x — z
shows that u v = v*u. Thus u*v is also uniformly continuous whenu € L' (R")
and v € L*(R").
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2.24 THEOREM (Young’s Theorem) Let p,q,r > 1 and suppose that
(1/p) +(1/q) + (1/r) = 2. Then

s (u*xv)@)wx)dx) < flull, vl lwl, a7)

holds forallu € L? (R*),v e LY (R"),w € L™ (R").

Proof. For now, we prove this estimate when u € Cp(R"), and we explain in
the proof of the Corollary below how to deal with more general functions u.
This special case is the one we use in applications of convolution. The function
mapping (x, ¥) to u(x — y) is then jointly continuous on R* x R", and hence is
a measurable function on on R” x R". This justifies the use of Fubini’s theorem
below. First observe that

so the functions ) ,
Ux,y) = v w)|7?

V(x,y) = lu@x — y)IP? fw(x)|"?
W(x, y) = lux — y)IP" v
satisfy (UVW)(x, y) = u(x — y)v(y)w(x). Moreover,

1/q’
Wiy = ([ weorax [ ue=yray)

= ( |lw(x)|" dx
R!I

1/q
|u(z)|"dz> = full2/4 w7,
]Rn

and similarly | U1, = [[v|27" |w]/?" and [WI|,, = [« 2/ |lv]}#’"". Combining
these results, we have, by the three-function form of Holder’s inequality,

/ (u*xv)(x)wx)dx

sf / e — yllvOllwo)| dy dx
=/ / Ux, )V (x, y)Wix, y) dy dx
< WUl 1V Iy W, = lall, ol Tl

We remark that (17) holds with a constant K = K (p, g, r, n) < 1 included on the
right side. The best (smallest) constant is

pl/pql/qu/r n/2
(PP (@O ()T

K(P,qyr,n)=(
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See [LL] for a proof of this. 1

2.25 COROLLARY If(l/p)+(1/g) =1+ (1/r),andif u € L? (R") and
ve LI(R*), thenuxv e L" (R"), and

luxvll, <K(p,q,r',n)llull, lvlly < lul, lvll, -

This is known as Young’s inequality for convolution. 1t also implies Young’s
Theorem. Whenu € Cy(R"), it follows from Lemma 2.7 and the case of inequality
(17) proved above, with r’ in place of r.

2.26 (Proof of the General Case of Corollary 2.25 and Theorem 2.24) We
remove the restriction u € Co(R") from the above Corollary and therefore from
Young’s Theorem itself. We can assume that p and g are both finite, since the
only other pairs satisfying the hypotheses are (p, ¢) = (1, o0) and (o0, 1), and
these were covered before the statement of the theorem.

Fix a simple function v in L?(R"), and regard the functions « as running through
the subspace Co(R*) of L?(R"). Then convolution with v is a bounded operator,
T, say, from this dense subspace of LP(R") to L"(R"), and the norm of T, is at
most ||v]l;. By the norm density of Co(R*) in L?(IR"), the operator 7, extends
uniquely to one with the same norm mapping all of LP(R") to L™ (IR").

Given u in LP(R"), find a sequence {u;} in Co(R") converging in L? norm to u.
Then T, (u;) convergesin L” norm to T, (). Pass to a subsequence, if necessary,
to also get almost-everywhere convergence of T, (u;) to T, (#). Since the simple
function v also belongs to L7, the integrals (16) defining u % v and u o+ v all
converge absolutely, and

u*v(x) = lim (u; * v(x)) forallx € R".
]—»OO

So T,(u)(x) agrees almost everywhere with u * v(x) as given in (16), and hence
llw * vli, < llulipllvll; when u is any function in L?(IR") and v is any simple
function in L9(R").

We complete the proof with an argument passing from simple functions v to
general functions in LY(R"). For any fixed u in L?(R") convolution with u
defines an operator, S, say, with norm at most ||| ,, from the subspace of simple
functions in L2(R") to L"(R"). By the density of that subspace, the operator S,
extends uniquely to one with the same norm mapping all of L9(R") to L" (R").

To relate this extended operator S, to formula (16), it suffices to deal with the case
where the functions u and v are both nonnegative. Pick an increasing sequence
{v;} of nonnegative simple functions converging in L? norm to v. Then the
sequence {u * v;} converges in L™ norm to S,(v). Again pass to a subsequence
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that converges almost everywhere to S, (v). Since the function u is nonnegative,
the product sequence {u * v;(x)} increases for each x. So it either diverges to
oo or converges to a finite value for u % v(x). From the a.e. convergence above,
the latter must happen for almost all x, and ||u * v||, = [[S. (W, < llull,llvli, as
required. 1

2.27 (The Space ¢P) It is sometimes useful to classify sequences of real or
complex numbers according to their degree of summability. We denote by £7 the

set of doubly infinite sequences a = {a;};2_, for which
50 1/p
(Z |a,-|!’> if0<p<oo
laser] = | \ &=
sup |a;| if p=o00
—00<i <00
is finite. Evidently, ||a; £7| = |lf||p where f is the function defined on R by

f@ =agifori<t<i+1,—00 <i < o0.

If 1 < p < oo, then £7 is a Banach space with norm ||-; £7|. Singly infinite
sequences such as {a;}72,, or even finite sequences such as {a;}!_,, can be regarded
as defined for —oco < i < oo with all a; = 0 for i outside the appropriate interval,
and as such they determine subspaces of of £7.

Holder’s inequality, Minkowski’s inequality, and Young’s inequality follow for
the spaces £7 by the same methods used for LP(IR). Specifically, suppose that
a={a;}2_.andb = {b;}°__.

(a) If @ € £7 and b € {9, then ab = {a;b;}2_., € £ where r satisfies
(1/ry=(1/p)+(1/q), and

lab; || < |a;€?| |b:¢?|.  (Hélders Inequality)
(b) If a, b € ¢P, then
||a +b; Zp” < ||a ; Z"" + ||b  oF || . (Minkowski’s Inequality)
(c) Ifa € £ and b € ¢7 where (1/p) + (1/g) > 1, then the series (a * b);
defined by
o0
(a xb); = Z a;_jb;, (—00 < i < 00),
j=—00

converges absolutely. Moreover, the sequence a * b, called the convolution
of a and b, belongs to £", where 1 4+ (1/r) = (1/p) + (1/g), and

“a xb O ” < Ha : E”” “b Al || . (Young’s Inequality)
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Note, however, that the £7 spaces imbed into one another in the reverse order to
the imbeddings of the spaces L”(£2) where Q2 has finite volume. (See Theorem
2.14)If0 < p < g < o0, then

-4, and  |a; 0| <|a;e?|.

The latter inequality is obvious if ¢ = oo and follows for other ¢ > p from
summing the inequality

lail? = lai|P1a;|*™? < | |a; €°)|"77 < |ail? |as €2]|*".

Mollifiers and Approximation by Smooth Functions

2.28 (Mollifiers) Let J be a nonnegative, real-valued function belonging to
Cy° (R") and having the properties

(i) Jx)=0if |x] = 1, and

(i) fo. J(x)dx =1.
For example, we may take

_ [ kexpl—1/(1 = [xP)] if [x] < 1
/0= {0 if x| > 1,

where k > 0 is chosen so that condition (ii) is satisfied. If € > 0, the function
Jo(x) = €7"J (x/€) is nonnegative, belongs to C;°(IR*), and satisfies

(i) Je(x) =0if |x| > ¢, and

(i) fon Je(x)dx = 1.
Je is called a mollifier and the convolution

Je xu(x) = /R Je(x — y)u(y) dy, (18)

defined for functions u for which the right side of (18) makes sense, is called
a mollification or regularization of u. The following theorem summarizes some
properties of mollification.

2.29 THEOREM (Properties of Mollification) Let u be a function which
is defined on R" and vanishes identically outside €2.

(@) Ifu e L} (R*), then J xu € C®(R").
(b) Ifu € L! () and supp (u) € Q, then J, xu € C§°(82) provided

loc

€ < dist(supp () , bdry (Q)).
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(¢c) Ifu € LP(R2) where 1 < p < 0o, then J, xu € LP(2). Also

e xully < llull, and  lim IlJe xu—ull, =0.

(d) If u € C(Q) and if G € 2, then lim._, ¢, Jo * u(x) = u(x) uniformly
onG.

(e) Ifu € C(R), then lime_, o4 Je * #(x) = u(x) uniformly on .

Proof. Since J.(x — y) is an infinitely differentiable function of x and vanishes
if |y — x| > €, and since for every multi-index « we have

D (Je x u)(x) = / DY Je(x — y)u(y) dy,

n

conclusions (a) and (b) are valid.
If u € LP(Q2) where 1| < p < oo, then by Holder’s inequality (3),

e % u()| = Vm JoGx = y)u(y) dy
1/p 1/p
< (f Je(x—y)dy) ([ Je<x—y>|u<y>|1’dy>

1/p
_ (/ JoGr — y)|u(y)|"dy) . (19)

Hence by Fubini’s Theorem 1.54

fus*u(xw’dxs/ f TG — ) lu(y) [P dy dx
Q n "
=f |u(y>|de/ Jo(x — yydx = ull?.
Rr! er

For p = 1 this inequality follows directly from (18).

Now let n > O be given. By Theorem 2.19 there exists ¢ € Cy(£2) such that
lu — @ll, <n/3. Thusalso | Je xu — Je * &1, < n/3. Now

e *x ¢p(x) —p(x)| = UR Je(x =) (@() — ¢(x)) du
< sup [p(y) — o)l (20)

[y—x|<e

Since ¢ is uniformly continuous on €2, the right side of (20) tends to zero as
€ — 0+. Since supp (¢) is compact, we can ensure that || J. x ¢ — @ll, < n/3
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by choosing € sufficiently small. For such € we have || J. * u — ul| » < nand(c)
follows.

The proofs of (d) and (e) may be obtained by replacing ¢ by « in inequality (20). 11
2.30 COROLLARY C°(2)isdensein LP(Q2)if 1 < p < 0.1

This is an immediate consequence of conclusions (b) and (e) of the theorem and
Theorem 2.19.

Precompact Sets in LP(2)

2.31 The following theorem plays a role in the study of L” spaces similar to that
played by the Arzela-Ascoli Theorem 1.33 in the study of spaces of continuous
functions. If u is a function defined a.e. on 2 C R”, let i denote the zero extension

of u outside Q: .
= u(x) ifx e,

—lo ifx e R* — Q.

232 THEOREM ILetl < p < o0. A bounded subset K C LP() is
precompact in L?(2) if and only if for every number ¢ > 0 there exists a number
8 > 0 and a subset G @ Q2 such that for every u € K and h € R" with |k| < §
both of the following inequalities hold:

/ lie(x + k) —a(x)|P dx < €?, 21
Q
/ _|ux)|Pdx < €F. (22)
Q-G

Proof. Let T,u denote the translate of u by h:

Thulx) =u(x +h).

First we assume that K is precompact in L?(£2). Let € > 0 be given. Since K
has a finite € /6-net (Theorem 1.19), and since Cy(2) is dense in L? () (Theorem
2.19), there exists a finite set S of continuous functions having compact support
in £, such that for each u € K there exists ¢ € § satisfying ||u — oll, < €/3.
Let G be the union of the supports of the finitely many functions in S. Then
G € Q and inequality (22) follows immediately. To prove inequality (21) choose
a closed ball B, of radius » centred at the origin and containing G. Note that
(T — P)(x) = ¢(x + k) — ¢(x) is uniformly continuous and vanishes outside
B, ;| provided |h| < 1. Hence

lim/ I Thp(x) — p(x)|P dx =0,
Rn

|h|—0
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the convergence being uniform for ¢ € S. For |h| sufficiently small, we
have ||T,¢ —¢ll, < €/3. If ¢ € § satisfies |u —¢ll, < €/3, then also
W Twit — Tupll, < €/3. Hence we have for |h| sufficiently small (independent
of u € K),

I Thit — ull, < \Thtt — Tuopll, + 1 Twp — o, + llp —ull, <€

and (21) follows. (This argument shows that translation is continuous in L? (IR").)

It is sufficient to prove the converse for the special case 2 = R”, as it follows for
general  from its application in this special case tothe set K = {i : u € K}.

Let € > 0 be given and choose G € R” such that forall u € K

/ )P dx < § (23)

G

For any n > 0 the function J, * u defined as in (18) belongs to C*°(IR") and in
particular to C(G). If ¢ € Co(R"), then by Holder’s inequality,

P

[y ¢ (0) = p)|” = ‘/R GGG =) —¢(x))dy

s/B LTy (x) — ¢ (x)|” dy.

Hence
|7y ¢ = o], < sup ITugp — 9,
heB,

Ifu € L7(IR"), let {¢;} be a sequence in Cyp(R") converging to u in L? norm. By
2.29(c), {J,, * ¢;} is a Cauchy sequence converging to J, ® u in LP(R"). Since
also T¢; — T,u in LP(R"), we have

"J,7 * U —u||p < hsgg | Thue —ull, .

Now (21) implies that limp o |Thu — u|l, = O uniformly for # € K. Hence
lim, o || J, % u — u“p = 0 uniformly for # € K. Fix 5 > 0 so that

/_IJn*u(x)—u(x)V’dx < (24)
G

€
3.20-1
forallu € K.

We show that {J, x u : u € K} satisfies the conditions of the Arzela-Ascoli
Theorem 1.33 on G and hence is precompact in C(G). By (19) we have

1/p
[Ty % u(x)| < (SUP Jn(y)> llaell,

yeR”
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which is bounded uniformly for x € R” and u € K since K is bounded in L? (R*)
and n is fixed. Similarly,

1/p
[y *u(x +h) — J, xu(x)| < (sup Jn(y)> | Thue — ull,
yeR”

and so limyy; 0 Jy * u(x +h) = J, *u(x) uniformly for x € R* and u € K. Thus
{J, *u : u € K} is precompact in C(G), and by Theorem 1.19 there exists a
finite set {yr1, ..., ¥, } of functions in C(G) such that if u € K, then for some Js
1 <j<m,andall x € G we have

€

Il//j(x) — J’? *u(x)l < m—)

This, together with (23), (24), and the inequality (Ja| + |b|)? < 27~ 1(|a|? + |b|P)
of Lemma 2.2, implies that

/ |u(x>—{u,-<x)|1’dx=/ _|u(x)|de+[_|u(x)—wjmv’dx
Rn R -G G

< % + 2771 /_(Iu(x) — Iy xu(O)P + Iy * u(x) — ;(x)|P) dx
G

€ € € —
<—+2"_1( + _volG>=e.
3 3.2071 7 3.2p-1.vo0l(G) ©

Hence K has a finite e-net in LP(R") and is precompact there by Theorem 1.19.11

233 THEOREM Letl < p < ooandlet K C L?(2). Suppose there exists
a sequence {£2;} of subdomains of & having the following properties:

(i) €2; C ;4 foreach j.
(i) The set of restrictions to §2; of the functions in K is precompactin L (2 )
for each j.

(iii) For every € > O there exists j such that

/ lu(x)|Pdx < € foreveryu € K.
Q-9

Then K is precompact in L?(£2).

Proof. Let {u,} be a sequence in K. By (ii) there exists a subsequence {u"}
whose restrictions of ; converge in L?(£2;). Having selected {u"}, ..., {u®},
we may select a subsequence {u*+1} of {u®} whose restrictions to £, | converge
in LP(S%1). The restrictions of {u{*V} to Q; also converge in L?(£2;) for
1 <j <kby().
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Let v, = u™ forn = 1,2,.... Clearly {v,} is a subsequence of {u,}. Given
€ > 0, (iii) assures us that there exists j such that

/ n () — v (0P dx < &
Q-Q; 2

for all n,m=1,2,.... Exceptfor the first j — | terms, {v,} is a subsequence of
{u{}, so its restrictions to ; form a Cauchy sequence in L?(S2;). Thus forn, m

sufficiently large,
/|mm—wmvw<?
o, 2

and

/ [Ug (x) — U (x)|P dx < €.
Q

Thus {v,} is a Cauchy sequence in L?(£2) and so converges there. Hence K is
precompact in LP($2).11

Uniform Convexity

2.34 As noted previously, the parallelogram law in an inner product space guar-
antees the uniform convexity of the corresponding norm on that space. This
applies to L?(£2). Now we will develop certain inequalities due to Clarkson [Clk]
that generalize the parallelogram law and verify the uniform convexity of L?(£2)
forl < p < o0.

We begin by preparing three technical lemmas needed for the proof.

2.35 LEMMA If0 <s < 1,then f(t) = (I —s")/t is a decreasing function
oft > 0.

Proof. f'(t) = (1/t*)(g(s") — 1) where g(r) =r —rlnr. Since 0 < s' < 1
and since g’(r) = —Inr > 0 for 0 < r < 1, it follows that g(s") < g(1) =1
whence f/(r) < 0.1

236 LEMMA Ifl<p<2and0 <t <1,then

1+\7 1=\ /1 1 \Y&D
(5) () <Gr) 2

where p’ = p/(p — 1) is the exponent conjugate to p.

Proof. Since equality holds in (25) if either p = 2 ort =0 ort = 1, we
may assume that | < p < 2 and that 0 < ¢ < 1. Under the transformation
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t=(1—-s5)/(0+s), whichmaps 0 < ¢ < 1onto1 > s > 0, (25) reduces to the
equivalent form

1((1 +5)?+ (1 =5)") 1 +s")P"' > 0. (26)

NS

The power series expansion of the left side of (26) takes the form

(D (e - (1)

pard pary k=0
£
£l ()02
where
(f)’)z and (1]!:):p(p—l)(p—Zk)!--—(p—k+1)’ —_—

The latter series certainly converges for 0 < s < 1. We prove (26) by showing
that each term of the series is positive for 0 < s < 1. The kth term (in square
brackets above) can be written in the form

plp—DC-p)B=p)---Ck=1-p)

2k)!
_ r-D2-p)---Ck—-1- p)sp’(zk_l) + (p—DH2—-p)---(2k— p)sgkp’
2k — 1! (2k)!
_ 2—-p)--2k— P)szk [ pip—1)  p-—1 P Qk=1=2% p__ISka’—Zk:I
2k — 1! K2k —p) 2%k—p 2%

Q-p)---Qk—p) 5[ 1- s(k=p)/(p=1) 1 — g%/ (p=1
B k-1 [(2/« —p)/p—1) 2k/(p-1) ] ‘

The first factor is positive since p < 2; the factor in the square brackets is positive

by Lemma 2.35 since 0 < (2k — p)/(p — 1) < 2k/(p — 1). Thus (26) and hence
(25) is established. I

237 LEMMA Letz,weC Ifl < p<2andp = p/(p—1),then

P 14 1 1 1/(p—1)
<\ =zlz|? + z|wl? . 27
=< (2|Z| + 2le ) (27)

I+ w
2

—w

2
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If2 < p < oo, then

z+wl|?

2

1
|21” + Elwlp. (28)

Proof. Since (27) obviously holds if z = 0 or w = 0 and is symmetric in z and
w, we can assume that |z| > |w| > 0. If w/z = re’® where 0 < r < 1 and
0 < @ < 2m, then (27) can be rewritten in the form

P’ 1 1 1/(p=1)
<{z+=r . 29
< (2 + 57 ) (29)

1—re®

2

‘1+rei9

,
2]

If & = 0, then (29) is just the result of Lemma 2.36. We complete the proof of
(29) by showing that for fixed r, 0 < r < 1, the function

F(0) =14+re®|? + |1 —re|?”
has a maximum value for 0 < 0 < 27 at & = 0. Since
£0) = (14 r* 4 2rcos0)"? + (1 4 r* — 2r cos0)?'/2,

satisfies f(2m —0) = f(wr —8) = f(8), we need consider f only on the interval
0 <6 < m/2. Since p’ > 2, on that interval

) =-pr sinG[(l +r2+2rcos9) PP (1 +r% = 2r cos 0)(”//2)‘1] < 0.

Thus the maximum value of f does indeed occur at & = ( and (29), and therefore
also (27), is proved.

If2 < p <oo,thenl < p’ <2, and we have by interchanging p and p’ in (27)

and using Lemma 2.2,

? S IS B
<{ =z 14 + = wP
< (2| | 21 I )

Z+w
2

Z—w
2

1
= 5|z|”+ Elwlp,

so that (28) is also proved.ll
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2.33 THEOREM (Clarkson’s Inequalities) Let u,v € L”(Q). For
l<p<ooletp =p/(p—1).If2 < p < o0, then

u+vl? u—v|? 1 1
< = lull2+ = vl?, 30
2 |, 2 _2||M||p+2|lvl| (30)
u+vl|” u—v|” 1 1 p-l
> =2 + < vll2 . 1
2|, 2 p_(2||u||p+2||v||,,) (3D
If1 < p <2,then
utvl|” u—vl|” Pl
5 2 =< < llll? + ||U||p) , (32)
P P
utvl|? u—v|? 1
> 5 == ||MI|P+ > lwlt? (33)
P P

Proof. For 2 < p < o0, (30) is obtained by using z = u(x) and w = v(x)
in (28) and integrating over 2. To prove (32) for 1 < p < 2 we first note that
|| lul? ||p*1 = ||u||1’j’ for any u € L?(£2). Using the reverse Minkowski inequality
(7) corresponding to the exponent p — 1 < 1, and (27) with z = u(x) and
w = v(x), we obtain

u+vl? u—vp_ utvl? N u—vl|?
2 |, 2 |, 2 |, 2|,
N p—1 1/(p=1
{ u(x)+v(x) u(x) — v(x) P)
= dx
2
p-1
[ (B o) ]
p'-1
<2 lully + = ||U||p>
which is (32).

Inequality (31) is proved for 2 < p < oo by the same method used to prove (32)
except that the direct Minkowski inequality (5), correspondingto p — 1 > 1, is
used in place of the reverse inequality, and in place of (27) is used the inequality

(‘S+n

p—1
1
> p _ p
) _2I§I + 5 nl”,

‘E—n
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which is obtained from (27) by replacing p by p’, z by £ + n,and w by & — 7.
Finally, (33) can be obtained from a similar revision of (28).

We remark that if p = 2, all four Clarkson inequalities reduce to the parallelogram
law
e+ w15+ llu = w3 = 21wl + 21lvil3 .8

2.39 THEOREM If1 < p < oo, then L”(f2) is uniformly convex.

Proof. Letu,v € LP(Q) satisty [lul, = [lv|l, = 1 and [lu — vll, > € where
0 <e <2 If2 < p < o0, then (30) implies that

u+v|? e’
<1-—_—.
2 » 2p
If 1 < p < 2, then (32) implies that
utvl|?” €?
= - 2]7/

P

In either case there exists § = §(¢) > 0 such that ||(u + v)/2||p <1-4.1
See [BKC] for sharper information on L? geometry.

2.40 COROLLARY L?(Q)isreflexiveif 1 < p < 0.1

This is a consequence of uniform convexity via Theorem 1.21. We will give a
direct proof after calculating the normed dual of L?($2).

The Normed Dual of LP(f?)

241 (Linear Functionals) Let 1 < p < oo and let p’ be the exponent
conjugate to p. Each element v € L” () defines a linear functional L, on L?(§2)
via

L,(u) = / u(x)v(x)dx, u e LP(Q).
Q
By Holder’s inequality |L, («)| < [lull, vl so that L, € [L?(£2)] and
1 Los [LP(DT]] < vl -

Equality must hold above. If 1 < p < o0, let u(x) = |v(x)|” 2v(x) if v(x) # 0
and u(x) = 0 otherwise. Then u € L?(2) and L,(u) = |lu|, (vl

Now suppose p = 1 s0o p’ = oo. If [v]l, = 0, let u(x) = 0. Otherwise let
0 < € < ||v]l& and let A be a measurable subset of 2 such that 0 < u(A) < o0
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and |v(x)| > |jvll,c — € on A. Let u(x) = v(x)/|v(x)] on A and u(x) = 0
elsewhere. Thenu € L1 () and L, (u) > ||lull; (]vllo — €). Thus we have shown
that

Il Lyo; ILPEDTN = llvll,y (34)

so that the operator £ mapping v to L, is an isometric isomorphism of L7 (Q)
onto a subspace of [LP ()]

2.42 Tt is natural to ask if the range if the isomorphism L is all of [L? ()]’
That is, is every continuous linear functional on L?(£2) of the form L, for some
v € L”/(Q)? We will show that such is the case if 1 < p < oo. For p = 2,
this is an immediate consequence of the Riesz Representation Theorem 1.12 for
Hilbert spaces. For general p a direct proof can be based on the Radon-Nikodym
Theorem 1.52 (see [Ru2] or Theorem 8.19). We will give a more elementary proof
based on a variational argument and uniform convexity. We will use a limiting
argument to obtain the case p = 1 from the case p > 1.

243 LEMMA Letl < p < oo. If L € [LP(Q)], and || L; [LP()T] =1,
then there exists a unique w € L”(82) such that |jw||, = L(w) = 1. Dually, if
w € LP(Q) is given and ||w||, = 1, then there exists a unique L € [L?(£2)Y such
that || L; [LP (]| = L(w) = 1.

Proof. First assume that L € [LP(Q)] is given and || L; [L?(2)Y|| = 1. Then
there exists a sequence {w,} € LP(Q) satisfying ||lw,[l, = 1 and such that
lim,_, o0 |L{w,)| = 1. We may assume that |L(w,)| > 1/2 for each n, and,
replacing w, by a suitable multiple of w, by a complex number of unit modulus,
that L(w,) is real and positive. Let ¢ > 0. By the definition of uniform convexity,
there exists a positive number § > 0 such that if # and v belong to the unit ball of
LP(Q) andif || (x +v)/2|l, > 1 -4, then lu—vl, < €. Onthe other hand, there
exist an integer N such that L(w,) > 1 —48 foralln > N. Whenm > N also, we
have that L((wm + w,,)/2) > 1—4, and then ||w,, — wn|l, < €. Therefore {w,} is
a Cauchy sequence in L?(£2) and so converges to a limit w in that space. Clearly,
lwll, = 1 and L(w) = lim,_ o L(w,) = 1. For uniqueness, if there were two
candidates v and w, then the sequence {v, w, v, w, ...} would have to converge,
forcing v = w.

Now suppose w € LP() is given and [w||, = 1. As noted in Paragraph 2.41 the
functional L, defined by

L,(u) = f u(x)v(x)dx, u € L7 (), (35)
Q

where

otherwise

v(x) = {l)w(x)lp—zw(x) ifwx)#0 (36)
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satisfies L,(w) = |lw|l1’,’ = land ||L,; [LP()]| = vl = ||w||§/”/ = 1. Itre-
mains to be shown, therefore, that if Ly, L, € [LP(2)]’ satisfy || L;]| = ||L2]| =1
and Li(w) = Ly(w) = 1, then L; = L,. Suppose not. Then there exists
u € LP(2) such that Li{u) # L,(u). Replacing u by a suitable multiple of u, we
may assume that L; () — Lo(u) = 2. Then replacing u by its sum with a suitable
multiple of w, we can arrange that L () = 1 and Ly(u) = —1. If t > 0, then
L(w +1tu) = 1 +1t. Since ||L|| = 1, therefore ||w + rul|, > 1 + ¢. Similarly,
Loy(w—tu) = 1 +tandso |w~rtull, = 1+¢ If 1 < p < 2, Clarkson’s
inequality (33) gives

(w~+rtu) + (w —tuw) ||?
2

L+ eP ully = ‘

(w+tu) —(w—r)|?
2

p

1 1
e 5 ||w+tu||£+ 5 [|w ——tu||£ > (1 +0?,

which is not possible for all ¢ > 0. Similarly, if 2 < p < oo, Clarkson’s inequality
(31) gives

(w+tu)+@w—tu)|?
2

L+ o7 ull? = ‘

(w+tu) — (w —tu) ||?
2

p

’

1 1 Pl ,
> (5 lw + tulll + 2 lw — tuIIﬁ,’) > (1+n?,

which is also not possible for all # > 0. Thus no such u can exist,and L; = L,. 1

244 THEOREM (The Riesz Representation Theorem for LP(f2)) Let
1 < p <ooandlet L € [LP(S2)]. Then there exists v € L? () such that for all
ue LP(Q2)

Lwy=L,(u) = / u(x)v(x)dx.
Q

Moreover, |[vll,, = |[L; [LP(2)]'|l. Thus [LP()] = LP(Q); [LP ()] is iso-
metrically isomorphic to L? ().

Proof. If L = 0 we may take v = 0. Thus we can assume L 3# 0, and,
without loss of generality, that ||L; [L?(2)]'|| = 1. By Lemma 2.43 there exists
w € LP(2) with ||w|l, = 1 such that L(w) = 1. Let v be given by (36). Then
L, defined by (35), satisfies ||L,; [LP()]'|| = 1 and L,(w) = 1. By Lemma
2.43 again, we have L = L,. Since ||v||,, = 1, the proof is complete. I

245 THEOREM (The Riesz Representation Theorem for L'(£2)) Let
L € [L'(22)]. Then there exists v € L®(2) such that for all u € L' ()

L(u) =fu(x)v(x)dx
Q
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and [|vllo = [IL; (L' (D]l Thus [L1(Q)] = L™(%).

Proof. Once again we assume that L # 0 and [|L; [LY(SDY = 1. Let us
suppose, for the moment, that €2 has finite volume. If 1 < p < oo, then by
Theorem 2.14 we have LP(2) C L'(§2) and

ILG)] < llully < (vol())' ™" Jull,

for any u € LP(2). Hence L € [L?(2)] and by Theorem 2.44 there exists
vp € L? () such that

L) = / u(x)vp(x)dx, ue L (Q) 37N
Q

and
oo, < (vorcs2)) =" (38)

Since C§°(2) is dense in LP(§2) for 1 < p < 00, and since for any p, g satisfying
1 < p,q < oo and any ¢ € C3°(2) we have

/Q¢(X)vp(X)dx =L(¢$) = /Qd)(x)vq(X)dx,

it follows that v, = v, a.e. on 2. Hence we may replace v, in (37) with a function
v belonging to L¥ () for each p, 1 < p < oo, and satisfying, following (38)

vl < (vol()' ™7 = (vol(s)) """

It follows by Theorem 2.14 again that v € L*°(£2) and

Wl < lim (vol(@)"” = 1. (39)
p—o0

The argument of Paragraph 2.41 shows that there must be equality in (39).

Even if  does not have finite volume, we can still write 2 = Uf?__l G;, where
G; ={x € @ : j—1<|x| < j} has finite volume. The sets G; are mutually
disjoint. Let x; be the characteristic function of G;. If u; € L'(G), let it; denote
the zero extension of u; outside G;. Let L;(u;) = L(u;). Then L; € [Ll(Gj)]’
and ||L;; [LY(G Y1l < 1. By the finite volume case considered above, there exists
v; € L®(G,) such that ||v; ”oo.Gj < 1and

Lj(uj)=/ uj(x)vj(x)dx=Lﬁj(x)v(x)dx,

i
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where v(x) = v;(x) forx € G;, j = 1,2,..., sothat ||[vll, < 1. If u € L'(Q),
we put u = Z;’il x,ju; the series is norm convergent in L!(2) by dominated
convergence. Since

k k k
L (Z xju) =Y Li(xu) = /Q > @ux)vix) dx,
j=1 j=1 j=1

we obtain, passing to the limit by dominated convergence,

L(u)=/u(x)v(x)dx.
Q

It then follows, as in the finite volume case, that ||v]|,, = 1.1

2.46 THEOREM (Reflexivity of L?((2)) LP() is reflexive if and only if
1 <p<oo.

Proof. Let X = L?(Q2), where | < p < oc. Since X' = LP/(Q), we have
X' = [LP(Q)] = LP(Q).

That is, for every element w € X" there exists u € LP(2) = X such that
w(v) = v(u) = Ju(v)forallv € X', where J is the natural isometric isomorphism
of x into X”. (See Paragraph 1.14.) Since the range of J is therefore all of X”, X
is reflexive. i

Since L!(2) is separable while its dual, which is isometrically isomorphic to
L>(£2) is not separable, neither L' (£2) nor L>(£2) can be reflexive.

2.47 The Riesz Representation Theorem cannot hold for the space L>(£2) in a
form analogous to Theorem 2.44, for if so, then the argument of Theorem 2.46
would show that L'(€2) was reflexive. The dual of L>®(2) is larger than LY.
It may be identified with a space of absolutely continuous, finitely additive set
functions of bounded total variation on 2. See, for example, [Y, p 118] for details.

Mixed-Norm L? Spaces

2.48 It is sometimes useful to consider L? type norms of functions on R” in-
volving different exponents in different coordinate directions. Given a measurable
function # on R” and an index vector p = (p,, ..., p,) where 0 < p; < oo for
1 <i < n, we can calculate the number ||u||, by calculating first the L”'-norm
of u(xy, xa, ..., x,) with respect to the variable x|, and then the LP?-norm of the
result with respect to the variable x,, and so on, finishing with the L#"-norm with
respect to x,:

||L£”p - “ . ” Neellercany | Lr2dx) ‘“Ll’n (dx,)
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where

o0 l/q
l:/ If(,..,t,...)lth] if0<g < o0
”f”Lq(d;)= -
esssup [ f(....t,...)] ifg=o00
t

Of course, |||l ¢(4r is not a norm unless ¢ > 1. For instance, if all the numbers
p; are finite, then

pi/ ;2 1/p

o0 o0 00 p2/pi ;
”u”p: / f [f |u(x1,...,x,,)|p' d.X1] d_X2 dx3-..dxn
—0o0 -0 -0

We will denote by LP = LP(R") the set of (equivalence classes of almost every-
where equal) functions « for which {lul|, < oo; thisisa Banach space with norm
-l if all p; > 1. The standard reference for information on these mixed-norm
spaces is [BP]. All that we require about mixed norms in this book are two el-
ementary results, a version of Holder’s inequality, and an inequality concerning
the effect on mixed norms of permuting the order in which the L?-norms are

calculated.

2.49 (Holder’s Inequality for Mixed Norms) Let 0 < p; < oo and let
0<gqgi<ooforl <i<n.Ifue LPandv € LY, then uv € LT where

—=—+—, l<i=<n, (40)
and we have Holder’s inequality:

luvlly < llullp llvllq

This inequality can be proved by simply applying the (scalar) version of Holder’s
inequality given in Corollary 2.5 one variable at a time. As in Corollary 2.5, p;
and g; are allowed to be less than 1 in this form of Holder’s inequality. The n
equations (40) are usually summarized with the convenient abuse of notation

The above form of Holder’s inequality can be iterated to provide a version for a
product of k functions:

k
[1w
j=l

k k
1
< l—[ "uj “p, where — Z p_
j=1 j=1
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2.50 (Permuted Mixed Norms) The definition of |«||, requires the suc-
cessive L7 -norms to be calculated in the order of appearance of the variables
in the argument of u. This order can be changed by permuting the arguments
and associated indices. If o is a permutation of the set {1,2,...,n}, denote
0x = (Xo(1)s Xo(2)s - - - » Xa(my)> and let o'p be defined similarly. Let o u be defined
by cu(ox) = u(x), thatis, cu(x) = u(o6~'x). Then loullyp is called a permuted
mixed norm of u. For example, if n = 2 and o' {1, 2} = {2, 1}, then

oo o P2/ 1/p:
llullp = / [/ [se(x1, x2)]7 dxl] dx;
IeS) 00 pi/p2 1/p
oy = [ / [ / (et x| dx2i| dxl}

Note that ||u|, and |lou|,, involve the same L¥ -norms with respect to the same
variables; only the order of evaluation of those norms has been changed. The
question of comparing the sizes of these mixed norms naturally arises.

2.51 THEOREM (The Permutation Inequality for Mixed Norms) Given
an index vector p, let o, and o* be permutations of {1, 2, ..., n} having compo-
nents in nondecreasing order and nonincreasing order respectively:

Do) < Po,2) =0 = Poyin)s

Pot() Z Por2) Z *** Z Porm)-

Then for any permutation o of {1, 2, ..., n} and any function 4 we have

lowillo,p < lloullop < [lo™ul,., -

Proof. Since any permutation can be decomposed into a product of special
permutations each of which transposes two adjacent elements and leaves the rest
unmoved, proving the inequality reduces to demonstrating the special case: if
p1 < p» < o0, then

o0 00 P2/ p 1/p o0 00 pi/p2
f [/ |u|”'dx1} dn| < / [f |u|mdxz] dx

But this is just a version of Minkowski’s inequality for integrals (Theorem 2.9),

namely
o0
”/ [v(x1, x2)| dxy
—oo

applied to v = |u|” with r = p,/p;. The case where p, = oo is easier. I

1/p

o0
S[ NloCxr, o) dx1

L' (dxz) o
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2.52 REMARK Similar permutation inequalities hold for mixed norm £7
spaces and for hybrid mixtures of £7 and L norms. We will use such inequalities
in Chapter 7.

The Marcinkiewicz Interpolation Theorem

2.53 (Distribution Functions) Let 2 be adomainin R" and u be a measurable
function defined on Q. For ¢ > 0, let

Qu:i={xeQ: |ux)| >t}
We define the distribution function of u to be
8, (1) =1 (Qu,t) ,

where u is the Lebesgue measure on R”. Evidently §, is nonincreasing fort > 0
and if |u(x)| < |v(x)| a.e. on §2, then §,(¢) < §,(¢) fort > 0.

Since |u(x)| > ¢ implies |u(x)| > t + (1/k) for some integer k > 0, we have
Q,, = U,‘:‘;l €, ++(1/k and it follows that 8, is right continuous on the interval
[0, 00). Similarly, if |u(x)| is an increasing limit of {|u;(x)|} at each x, then
lu(x)| > t implies |u;(x)| > ¢t for some j and so 2,, = U;’il €, ,. Hence
im0 8y, (1) = 34 (2).

If |u(x) + v(x)| > ¢, then either ju(x)| > ¢/2 or |v(x)| > t/2 (or both), so that
Quiv.r C Qur2 U Q12 and hence

Sutu (1) < 8u(t/2) + 8,(1/2). (4D

Now suppose u € LP(2) for some p satisfying 0 < p < co. Fort > 0 we have

||u||g=f9|u(x)|f’dxzf (@)1 dx > P ().

St

from which we obtain Chebyshev’s inequality

8u(t) = 1 (Qus) <77 Null? 42)

254 LEMMA If0 < p < oo, then

ety = [ ucorax=p [0 @3)
Q

0
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Proof. First suppose |u| is a simple function, say
lu(x)|=a; on A; CRQ, 1<j<k,
where 0 < a; < ay < - < a; and A; N A; is empty fori # j. Then
Y Ay ifr<a
8u(r) = Zf:,- w(Ay ifa<t<a, Q<j<k
0 if t > a.

Therefore,

P/oot”“au(t)dt =p(/ +Z/ /oo) P78, (1) dt
0 a—y A
k
S uap+ Y (af —aly) D w4
j=1 j=2 i=j
Z PuAy) = llul?,

s

so (43) holds for simple functions. By Theorem 1.44, if u is measurable, then |u|
is a limit of a monotonically increasing sequence of measurable simple functions.
Equation (43) now follows by monotone convergence. ll

2.55 (Weak LP Spaces) If u is a measurable function on £, let

1/p
[u]p = [”]p.Q = (SqupfSu(f)> .

t>0

We define the space weak-L”(£2) as follows:
weak-L?(Q) = {u : [u], < oo}.

It is easily checked that [cu], = |c|[u], for complex c, but [-], is not a norm on
weak-L? () because it does not satisfy the triangle inequality. However, by (41)

1/p
[u + U] <SUP IPS,H_U(I‘))

t>0

¢ £\? 1/p
( sup( > 8,(t/2) + 27 sup (5) 8U(t/2)>
>0 >0

2 [u]p [U]p)
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so weak-L” (€2) is a vector space and the “openballs” B, (u) = {v € weak-L”(£2) :
[v — ul, < r} do generate a topology on weak-L”(£2) with respect to which
weak-L? () is a topological vector space. A functional [-] with the properties of
a norm except that the triangle inequality is replaced with a weaker version of the
form [u + v] < K([u] + [v]) for some constant K > 1 is called a quasi-norm.
Chebyshev’s inequality (42) shows that[u], < |lu||, sothat LP(£2) C weak-L? ().
The inclusion is strict since, if xo € € it is easily shown that u(x) = |x — xo| ™"/
belongs to weak-L*(£2) but not to L7 (§2).

2.56 (Strong and Weak Type Operators) A operator F' mapping a vector
space X of measurable functions into another such space Y is called sublinear if,
for all #, v € X and scalars c,

IF(u+v)| < |[F)| +|F), and
IT(cu)| = |cl|T (w)].

A linear operator from X into Y is certainly sublinear. We will be especially
concerned with operators from L” spaces on a domain € in R" into L9(Q) or
weak-L9 (') where €' is a domain in R* with k not necessarily equal to n.

We distinguish two important classes of sublinear operators:
(a) F is of strong type (p,q), where | < p <ocand1 < g < oo, if F
maps L?(2) into LI(’) and there exists a constant K such that for all
u e L?(Q),
IF@)llgo < K llull,q-

(b) F is of weak type (p,q), where 1 < p <oocand 1 < g < oo, if F maps
LP(Q) into weak-L4(2’) and there exists a constant K such that for all
u € LP(Q),
[F)lgo < K llull,q-

We also say that F is of weak type (p, oo) if F is of strong type (p, 00).
Strong type (p, q) implies weak type (p, g) but not conversely unless g = oo.

2.57 The foliowing theorem has its origins in the work of Marcinkiewicz [Mk]
and was further developed by Zygmund [Z]. It is valid in more general contexts
than stated here, but we only need it for operators between L spaces on domains
in R” and only state it in this context. It will form one of the cornerstones on
which our proof of the Sobolev imbedding theorem will rest. In that context it
will only be used for linear operators.

Because the Marcinkiewicz theorem involves an operator on a vector space con-
taining two different L? spaces, say X and Y, (over the same domain) it is
convenient to consider its domain to be the sum of those spaces, that is the vector
space consisting of sums # + v whereu € X andv € Y.
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There are numerous proofs of the Marcinkiewicz theorem in the literature. See,
for example, [St] and [SW]. Our proof is based on Folland [Fo].

2.58 THEOREM (The Marcinkiewicz Interpolation Theorem) Let
1 <p <q <ooand 1 < pp < g < 00, with g1 < ¢qa. Suppose the
numbers p and ¢q satisfy

- = - ) - = s

p P1 p2 q q1 q2

1 1-6 6 1 1-6 6
+

where 0 < 6 < 1. Let  and ' be domains in R" and R¥, respectively; kK may or
may not be equal to n. Let F be a sublinear operator from L?'(2) + L?*(2) into
the space of measurable functions on €. If F is of weak type (p1, g1) and also of
weak type (p2, g2), then F is of strong type (p, g). That s, if

[F(u)]qj,Q’ = Kj ”u”pj,Q ’ .] = 1’ 27

then
IFllyo < K llull, -

where the constant K depends only on p, p1, g1, p2, ¢2, K1, and K>.

Proof. First consider the case where g; < ¢ < g2 < o0 so that p; and p, are
necessarily both finite. The conditions satisfied by p and g imply that (1/p, 1/g)
is an interior point of the line segment joining ( pl_l, q, 1y and ( 123 " q; 1) in the
(p, g)-plane. Let ¢ be the extended real number equal to g/ p times the slope of
that line segment;
o= g —q) _ p2a2—q)

a(pr=p  @p2—p)
Given any T > 0, a measurable function 4 on  can be written as a sum of a
“small” part ug 7 and a “big” part ug 7 defined as follows:

(44)

u(x) if ju(x)| =T
usr(x) = [ T ) if |u(x)| > T,
lu(x)l
0 if )| < T

upr(x) =ux) —usr(x)= u(x) (1 _ T ) if lu@)| > T.
e (x)]

Since |us7(x)| < T and |ug r(x)| = max{0, |u(x)| — T} for all x € £, the
distribution functions of ug v and up r are given by

s,y ifr <T
5"»*-"(’)={0u ) ifr>T

Buy (1) =68,(t +T).
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It follows, using (43), that

o) T
f lus 7 (017 dx = py f 75, @ dr = pa [P, dr
Q 0 0
o0 oo
/|uB,T(x)|P1 dx =p1/ ;Pl—lau”(t)dr=p1/ 7718, (t + T) dt
Q 0 0

o0 [e.e]
=p1/ (t —T)" 18,(t)dt < p1/ P18, (1) dt.
T T
Using (43) followed by the sublinearity of F and inequality (41), we calculate

o0
IF(u)(y)quy=q/ 197 8 pa () dt
QU - 0
= 2qqf lq_l(SF(u)(Zf) dr
OOO
< 2461/0 197 8 Pty 1)+ Pl (21) dt

oC

o0
52"(1/ tq_ISF(u”)(t)dt%—qu/ t"_I(SF(MBAT)(t)dt. 45)
0 0

This inequality holds for any T > 0; we can choose T to depend on ¢ if we
wish. In the following, let T = ¢ where c is given by (44). For positive s, the
definition of [-]; implies that §,(t) < t~*[v]}. Using this and the given estimate
[F(ge < Kz 0]l ¢ we obtain

o0 o0
/ tq“Bms,T)(t)dts/ 1R F (s )JE dt
0 0
* g—1—q q2
< | (K usa],)" dr
0

o p a2/ P2
< ngpgz/PZL (a1 |;/(; -[pz_lﬁu(‘[)df] dt

— K;]Z ng/Pz 12.

Since g2 > p, we can estimate the latter iterated integral I; using Minkowski’s
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inequality for integrals, Theorem 2.9.

o] e 92/ p2
L= / l:/ t(q—lqz)(Pz/fIZ).[Pzﬁlsu(T)dTil dt
0 0

" aoc 00 P2/92
< / (/ 171 (IPZ_I(SM(I))qZ/m dt) dt
0 rlie

q2/ P2

o o P29
= / 7718, (7) (f 17 dt) dt
0 rh/e
1 o0
= / -L-P:~1+[(q'qz)/C](Pz/ch)su(.L.)d.[i|
Le2—4q Jo

1 00 | 42/ p2 1 , q2/p2
P Su(r)dt) = (— [lzeli ) .
<fI2—CI/o pl@—q) 7F

It follows that

q2/p2

g2/ p2

) . P2 @/ P2
2%1/ 1 S (1) dE < 29g KT (— lull? ) . 46)
0 Flsn) *A\plga—q) " 77

An entirely parallel argument using g, < ¢ instead of g, > g shows that

00 | P q1/p
qu/ 117 8wy (1) dt < 27K <—- el ) . (47)
o (ug.r) 1 (g — q1) p.Q

If |ull,,q = 1, we therefore have

1/q
K q:/p2 KP q1/p:
IF@l, o <K =2¢" Cﬁii{) +(J14—) :
p{g2 ~q) p(g —q1)

By the homogeneity of F, if u 5 0 in L? (), then

u
”nmmn=HFQWWQMEE>

u
Fl——
(IIullp.sz>

Now we examine the case where g = 00. It is possible to choose T (depending
on t) in the above argument to ensure that § p( ,,(#) = Oforallz > 0. If p, = oo,
the appropriate choice is T = r/K; for then

q.%

< K ”u”p,ﬂ .
q.8

= llul, 0

[Fusn)]o = K2 usrln = KT =1,
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and 8r,, () = 0. If ps < 00, the appropriate choice is

c
- p 1/p> ’
Ka(p2 lullh o /p)

where ¢ = p;/(p> — p), the limit as g, — oo of the value of ¢ used in the earlier
part of this proof. For this choice of T,

T
|Fusorg < K3 Jusrl,: = K3 p2 /0 1718, (1) dt

T
< Ky p,TPP / 7718, (1) dt
0

o0
< K{’zpzT”Z‘P/ P18, (1) dt
0

= Ky paTP7P(1/p) luly g = 17,

and again 8, ,)(t) = 0. In either of these cases the first term in (45) is zero and
an estimate similar to (47) holds for the second term provided p; < p,.

If g = oo and p, < p; < 00 we can instead assure that the second term in (45) is
zero by choosing T to force §r,,)(t) = 0 and obtain an estimate similar to (46)
for the first term.

There remains one case to be considered: g, < g < g2 =00, p1 = p = p2 < 0.
In this case it follows directly from the definition of [-], that

1 8r 6 (0) < [F@IY < K lullg .

and hence 8ruy < (K1 llull,.q /t)". On the other hand, 87, (t) = 0 if we have
t>T =Ky lullpo > I1F@)llsq- Thus

. T
IF @)} o =q/ 197 8 (1) dt =qf 197 S p (1) dr
0 0

T
N e A R Y
0

where K is a finite constant because g, < ¢. This completes the proof. 1



3

THE SOBOLEV SPACES W™ (12)

In this chapter we introduce Sobolev spaces of integer order and establish some
of their most important properties. These spaces are defined over an arbitrary
domain §2 C R" and are vector subspaces of various Lebesgue spaces L?(2).

Definitions and Basic Properties

3.1 (The SobolevNorms) We define a functional ||-||
integer and 1 < p < o0, as follows:

m.p» Where m is a positive

l/p
||u||m.,,=( > ||D“u||§) if 1<p<oo, (1)

O<|a|<m

Ntllm,oo = max [[D%ullo 2)
0=|a|=m

for any function u for which the right side makes sense, ||| p» being, of course,
the norm in L?(2). In some situations where confusion of domains may occur
we will use |lull,, , ¢ in place of |[u]|,, ,. Evidently (1) or (2) defines a norm on
any vector space of functions on which the right side takes finite values provided
functions are identified in the space if they are equal almost everywhere in £2.

3.2 (Sobolev Spaces) For any positive integer m and 1 < p < oo we consider
three vector spaces on which ||-]|,, , is a norm:
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(a) H™P(Q2) = the completion of {u € C"(Q) : |lull,, , < oo} with respect
to the norm ||-||,,, p,
(b)y W™P(Q)={u € LP(Q) : D*u € LP(Q) for 0 < |a| < m}, where D*u
is the weak (or distributional) partial derivative of Paragraph 1.62, and
(¢) Wy"(§2) = the closure of C{°(€) in the space W™ ().
Equipped with the appropriate norm (1) or (2) these are called Sobolev spaces over
Q. Clearly WOP(Q) = L?(Q), andif | < p < oo, W(())'p(Q) = LP(Q2) because
Cy°(2) is dense in LP(£2). (See Paragraph 2.30.) For any m, we have the obvious
chain of imbeddings

WohP () — W™P(Q) — LP(Q).

We will show in Theorem 3.17 that H™?(Q2) = W™ P(2) for every domain 2.
This result, published in 1964 by Meyers and Serrin [MS] ended much confusion
about the relationship of these spaces that existed in the literature before that time.
It is surprising that this elementary result remained undiscovered for so long.

The spaces W™ 7 (£2) were introduced by Sobolev [So1,S02]. Many related spaces
were being studied by other writers, in particular Morrey [Mo] and Deny and Lions
[DL]. Many different symbols (W™-? H™P? P™P, Lg, etc.) have been used to
denote these spaces and their variants, and before they became generally associated
with the name of Sobolev they were sometimes referred to under other names, for
example, as Beppo Levi spaces.

Numerous generalizations and specializions of the basic spaces W™ 7 (2) have
been constructed. Much of this literature originated in the Soviet Union. In
particular, there are extensions that allow arbitrary real values of m (see Chapter
7) which are interpreted as corresponding to fractional orders of differentiation.
There are weighted spaces that introduce weight functions into the L? norms; see
Kufner [Ku]. There are spaces of vector fields that are annihilated by differen-
tial operators like curl and divergence; see [DaL]. Other generalizations involve
different orders of differentiation and different L? norms in different coordinate
directions (anisotropic spaces — see [BIN1, BIN2]), and Orlicz-Sobolev spaces
(see Chapter 8) modeled on the generalizations of L? spaces known as Orlicz
spaces. Finally, there has been much work on the interaction between Sobolev
spaces and differential geometry [Hb] and a flurry of recent activity on Sobolev
spaces on metric spaces [Hn, HK].

We will not be able to investigate the most of these generalizations here.

3.3 THEOREM W™?() is a Banach space.

Proof. Let {u,} be a Cauchy sequence in W™ (2). Then {D“u} is a Cauchy
sequence in L?(2) for 0 < || < m. Since L?(Q) is complete there exist
functions # and u,, 0 < |«| < m, such that 4, — u and D*u,, — u, in L7 (2) as
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n — oo. Now L?(£2) C L. (§2) and so u,, determines a distribution T, € 2'()

loc

as in Paragraph 1.58. For any ¢ € Z2(£2) we have
1T, (9) — Tu(P)| < / luen (x) —u()||@ ) dx < NPl Nun —ull,
Q

by Holder’s inequality, where p’ is the exponent conjugate to p. Therefore
T,,(¢) — T,(¢) forevery ¢ € Z(2) as n — oco. Similarly, Tpe,, (¢) = Ty, (@)
for every ¢ € 2(£2). It follows that

T.,(#) = lim Tpe, (¢) = lim (—D*'T,, (D*¢) = (-D"'T,(D"¢)

for every ¢ € Z(2). Thus u, = D%u in the distributional sense on 2 for
0 < |a| < m, whence u € WP (). Since lim,_ o ||u, — ullm.p = 0, the space
W™ P (§2) is complete. I

3.4 COROLLARY H™P(Q)cC W"P(Q).

Proof. Distributional and classical partial derivatives coincide whenever the
latter exist and are continuous on £2. Therefore the set

S={p € C"(Q) : pll,., < o0}

is contained in W™-7 (). Since W™?(2) is complete, the identity operator on §
extends to an isometric isomorphism between H™ (), the completion of S, and
the closure of S in W™ ?(2). We can identify H™ 7 () with this closure.

3.5  Several important properties of the spaces W™?(Q2) can be easily obtained
by regarding W™ 7(£2) as a closed subspace of an L” space on a union of disjoint
copies of .

Givenintegersn > 1 andm > 0, let N = N(n, m) be the number of multi-indices
o = (a1, ..., qy) such that @| < m. For each such multi-index « let 2, be a copy
of  in a different copy of R”, so that the N domains €2, are de facto mutually
disjoint. Let @ be the union of these N domains; Q™ = J ,<,, Q- Givena
function ¥ in W2 (2), let U be the function on Q' that coincides with D%u on
£2,. Itis easy to check that the map P taking u to U is an isometry from W™-? ()
into L”(Q")). Since W™P(§2) is complete, the range W of the isometry P is a
closed subspace of L”(2"™). It follows that W is separable if 1 < p < o0, and
is uniformly convex and reflexive if I < p < oo. The same conclusions must
therefore hold for W™ () = P~1(W).

3.6 THEOREM W™P(Q) is separable if | < p < oo, and is uniformly
convex and reflexive if 1 < p < oc. In particular, W™2() is a separable Hilbert
space with inner product

U, ) =Y (D", D),

O0<|a|<m

where (u, v) = fQ u(x)v(x)dx is the inner product on L2($2). 1
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Duality and the Spaces W ™7 (£2)

3.7 Inthis section we shall take, for fixed €2, m, and p, the number N, the spaces
LP() and W, and the operator P to be specified as in Paragraph 3.5. We also
define

{u,v) = / u(x)v(x)dx
Q

for any functions u, v for which the right side makes sense. For given p let us
agree that p’ always denotes the conjugate exponent:

00 ifp=1
p’:{p/(p—l) ifl<p<oo
1 if p =o0.

First we extend the Riesz Representation Theorem to the space W™ 7 (£2). Then,
we identify the dual of Wy 7 (€2) with a subspace of 2'(2). Finally, we show that
if 1 < p < oo, the dual of W(;" "7 (2) can also be identified with the completion of
L” () with respect to a norm weaker than the usual L? norm.

3.8 (The Dual of LP(2™)) Toevery L € (LP(Q"™)Y, where 1 < p < o0,
there corresponds a unique v € L? () such that for every u € LP(Q™),

L(u) = /Q(m)u(x)v(x)dx = Z

lee|zm

[ matm s = 3 v
Q2

lee]<m

where u, and v, are the restrictions of u and v, respectively, to §2,. Moreover,
|z: @r@m)y | = Jvs L7 @m)]. Thus (L2 @)y = L7 @),

This is valid because L?(§2) is, after all, an L? space, albeit one defined on an

unusual domain.

3.9 THEOREM (The Dual of W™P(§2)) letl < p < oo. For every
L € (W™?(Q))’ there exist elements v € LP (™) such that if the restriction of
v to Q4 1S vy, we have forall u € WP ()

L= Y (D, ). ©)
0<|al<m
Moreover
IL; (WP () || = inf lv; L” ()|l = min |v; L”(Q™), @)

the infimum being taken over, and attained on the set of all v € L (™) for
which (3) holds for every u € W™ ?(£2).
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If1 < p < oo, the element v € L? (™) satisfying (3) and (4) is unique.

Proof. A linear functional L* is defined as follows on the range W of the operator
P defined in Paragraph 3.5:

L*(Pu) = L(u), ue W™P(Q).

Since P is an isometric isomorphism, L* € W’ and

|L*; W'|| = HL; (wmr ()

By the Hahn-Banach Theorem 1.13 there exists a norm preserving extension L of
L*toall of L?(2), and, as observed in Paragraph 3.8 there exists v € L (2™)
such that if ¥ € LP(Q), then

Lawy= Y (uo, ).

O<|a|=m
Thus, for u € W™ 7 (2) we obtain

L(u) = L*(Pu) = L(Pu) = Z (DU, vy).

0<|arj<m
Moreover,
IL; (WP (@)l = IL*; W'l = I|1L; (LP Q™)) || = [lv; LP ()]

Now (4) must hold because any element v € L? () for which (3) holds for
every u € W™7P(Q2) corresponds to an extension L of L* and so will have norm
llv; L7 (22)]| not less than || L; (W™ (£2))']l.

The uniqueness of v if | < p < oo follows from the uniform convexity of
LP(£2) and L” (2") by an argument similar to that in Lemma 2.43. 1

310 If1 < p < oo every element L of (W’"*"(Q))/ is an extension to WP ()
of a distribution T € 2’(2). To see what form this distribution takes, suppose L
is given by (3) for some v € L? () and define T and T,, on 2(X2) by

T= ) (-DFDT,, T,@#)=(p.v) 0<lal<m, (5

0=|a|=m

For every ¢ € 2(Q) C W™P(Q) we have T(¢) = Zosla\sm T, (D*¢) = L(¢)
so that L is clearly an extension of 7. Moreover, by (4)

IL; (W™P()) Il = min{|lv; L7 (") : L extends T given by 5}
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These remarks also hold for L € (W(;" P (Q))/ since any such functional possesses
a norm-preserving extension to W™ 7 ().

3.11 Now suppose T is any element of 2'(2) having the form (5) for some
v e LP(Q), where | < p’ < oo. Then T possesses (possibly non-unique)
continuous extensions to W™ 7 (§2). However, T possesses a unique continuous
extension to Wy"” (). To see this, for u € W, 7(Q) let {¢,} be a sequence in
C3(Q) = 2(Q) converging to u in norm in Wy"” (). Then

1T (d) — T(on)| < Z \T,, (D ¢ — D*¢y,)|

0=<|a|=m
< > ID@e— o, el
0<|a|<m
< 116k = Gullp 05 L7 Q™) - 0 ask, n — 0.
Thus {7 (¢,)} is a Cauchy sequence in C and so converges to a limit that we can
denote by L(u) since it is clear that if also {yr,} C 2(2) and ||[¥, — ull,, , — 0,

then T'(¢,) — T (Y,) — 0asn — oco. The functional L thus defined is linear and
belongs to (W,"” (Q))/, for if u = lim,_, o ¢, as above, then

L@ = lim @] < lm gl v L7 @) = luly v L7 ()]
We have therefore proved the following theorem.

3.12 THEOREM (The Normed Dual of W;,"*(£2)) If1 < p < oo,
p’ is the exponent conjugate to p, and m > 1, the dual space (W, "(2)) is
isometrically isomorphic to the Banach space W7 (Q2) consisting of those
distributions T € 2’(2) that satisfy (5) and having norm

IT 1l = min{|lv; LP ()| : v satisfies (5)}. B
The completeness of this space is a consequence of the isometric isomorphism.
Evidently W=7 () is separable and reflexiveif | < p < oc.

When W(;" "P(Q) is a proper subset of W™ ? (), continuous linear functionals on
W™ P () are not fully determined by their restrictions to Cy(£2), and so are not
determined by distributions T given by (5).

3.13 (The(—m,p’)normon L¥(£2)) Thereisanother way of characterizing
the dual of W, () if 1 < p < oo. Each element v € L” () determines an
element L, of (W(;"‘p(Q))/ by means of L, (1) = (u, v), because

ILy ()| = [{u, v)| < vl llull, < vl Nl -
We define the (—m, p’)-norm of v € L? () to be the norm of L,, that is

Is
ol = Lo (WP (D) | = sup [ {u, v))I.
WEW " (). Il <1
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Clearly ||vll_,, ,» < Ilvll,» and for any u € Wy"?(Q) and v € L? () we have

u
< s U>‘ S ”u"m.p ”v”——m.p’ ) (6)
el m. p

which is a generalization of Holder’s inequality.

Let V = {L, : v € L¥ ()}, which is a vector subspace of (W;""(2))". We
show that V is dense in (Wy"” (Q))/. To this end it is sufficient to show that if
F e (WP ()" satisfies F(L,) = O for every L, € V, then F = 0 in
(W(;"'p(Q))N. But since W7 () is reflexive, there exists f € W, 7(Q) cor-
responding to F € (W7 (2))" such that (f, v) = L,(f) = F(L,) = 0 for every
v e LP (). Butthen f(x) must be zero a.e. in . Hence f = Qin W(;"'p(Q) and
F=0in (Wy" ()"

Let H "7 () denote the completion of L? (£2) with respect to the norm |||, -
Then we have

[, V)| = llulim,

H™™P(Q) = (WP (@) = W ™7 (Q).

In particular, corresponding to each v € H "7 (), there exists a distribution
T, € WP (Q) such that T,(¢) = limy_o0(¢, vx) for every ¢ € 2(2) and
every sequence {v,} C L (§2) for which lim,,_, oo |y — v||~m‘p, = 0. Conversely,
any T € WP (Q) satisfies T = T, for some such v. Moreover, by (6),
1Ty @) <N Dl p 1V, pr-

3.14 A similar argument to that above shows that the dual space (W™ 7($2))’ can

be characterized for 1 < p < oo as the completion of L? () with respect to the
norm

Il = sup {u, v)|.
ueWn-r(Q), llull,, ,<1

Approximation by Smooth Functions on 2

We wish to prove that {¢ € C*(2) : ||#ll,, , < oo} is densein W™P(£2). For this
we require the following existence theorem for infinitely differentiable partirions
of unity.

3.15 THEOREM (Partitions of Unity) ILet A be an arbitrary subset of R”
and let & be a collection of open sets in R* which cover A, thatis, A C | vee U-
Then there exists a collection ¥ of functions ¥ € C§°(R") having the following
properties:

(i) Forevery ¢ € Wandeveryx € R*,0 < ¢ (x) < 1.

(i) If K € A, all but finitely many ¢ € W vanish identically on K.
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(iii) For every ¢ € W there exists U € & such that supp () C U.
(iv) Forevery x € A, we have Zwe\v ¥ix) =1.
Such a collection W is called a C*°-partition of unity for A subordinate to ©'.

Proof. Since the proof can be found in many texts, we give only an outline of
it. First suppose that A is compact. Then there is a finite collection of sets in &
that cover A, say A C U;\;l U;. Compact sets K; C Uy, ..., Ky C Uy can then

be constructed so that A C U;V:] K;. For each j a nonnegative-valued function
¢; € C3°(U;) can be found such that ¢;(x) > 0 for x € K;. A function ¢ in

C*(RR") can then be constructed so that ¢(x) > Oon ¥ and ¢ (x) = Z]N:l ¢;(x)
forx € A. Now ¥ = {y, : ¥;(x) = ¢;(x)/¢(x),1 < j < N} has the required
properties. If A is an arbitrary open set. Then A = Ufi, A;, where
A; ={x €A |x] <janddist(x, bdry A) > 1/j}
is compact. Taking Ag = A_; =, for each j > 1 the collection
0; = {U N (interior of A;, ﬂA§_2) U e 0}

covers A; and so there exists a finite C*°-partition of unity ¥; for A; subordinate
to &;. The sum o (x) = Z;L hI ey, (x) involves only finitely many nonzero
terms at each x € A. The collection W = {¢ : ¥ (x) = ¢ (x) /o (x) for some ¢ in
some V; if x € A, ¥(x) = 0if x ¢ A} has the prescribed properties.

Finally, if A is arbitrary, then A C B where B is the union of all U € & and is an
open set. Any partition of unity for B will do for A as well. 1

3.16 LEMMA (Mollification in W™P({2)) Let J. be defined as in Para-
graph 2.28 and let 1 < p < oo and u € W™ P(Q). If Q' is a subdomain with
compact closure in €2, then lim,_, ¢4 Je x4 = u in W™ ?(Q').

Proof. Let¢ < dist(€’, bdry Q) and #& be the zero extension of u outside Q. If
¢ € 2(),

/ Jexu(x)D"¢(x) dx = / f i#(x — y)J () D¢ (x) dx dy
= (—D'“'/ /Q Dyu(x = y)J () (x) dx dy

= (_1)'“'/ Jo % D*u(x)¢p(x) dx.

Thus D* J. * u = J. *x D%u in the distributional sense in . Since D*u € LP(Q)
for 0 < |«| < m we have by Theorem 2.29(c)

lim |D*Je xu — D%ull, o = lim ||Je * D"u — D%ul|, o = 0.
e—>0+ e—>0+

Thus lim,_,o4 | Jett — ]y o = 0. 1
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3.17 THEOREM (H=W) (See[MS]) Ifl < p < oo, then
H™P(Q) = W™P(Q).

Proof. By Corollary 3.4 it is sufficient to show that W™?(Q) C H™?(£), that
is, that {¢ € C™(Q) : ||}ll,,, < oo} is dense in W™P(L). If u € w™P(2) and
€ > 0, we in fact show that there exists ¢ € C*°(L2) such that ¢ — ull,, , < €, s0
that C®(2) is dense in W™ P(Q2). Fork =1,2,...let

Q= {x € 2 : |x| < k and dist(x, bdry ) > 1/k,
and let Qo = Q_; = @, the empty set. Then
O ={U : U= Q1 N (-1, k=1,2,...}

is a collection of open subsets of € that covers . Let W be a C*-partition
or unity for Q subordinate to &. Let v, denote the sum of the finitely many
functions ¢ € W whose supports are contained in U;. Then ¥ € C5°(Up) and
S Yk(x) =1onQ.

If0 < € < 1/(k + 1)(k + 2), then J, % (u) has support in the intersection
Vi = Qa2 N (S%_2)¢ € Q. Since Yu € W™P(Q2) we may choose ¢, satisfying
0 < ¢ < 1/(k + 1)(k + 2), such that

| ey * (e = V], o = e % Q) — v, < €/25).

Let¢ =Y oy Jo * (Yu). On any Q' € Q only finitely many terms in the sum
can be nonzero. Thus ¢ € C*(Q). For x € 2, we have

k+2 k42
u(x) =Y Yi@u), and () =) Je * (Yu) ).
Jj=1 j=1
Thus
k+2

It = Gl pc, < D ey % Q) = W], o <€
j=1

By the monotone convergence theorem 1.48, lu — ¢ll,, , o < €. 1

3.18 EXAMPLE Theorem 3.17 can not be extended to the case p = oo. For
instance, if Q = {x e R : —1 < x < 1, and u(x) = |x|, then v’(x) = x/1x| for
x #0andsou € W (Q). Butu ¢ H'*(). In fact, if 0 < € < 1/2, there
exists no function ¢ € C'(2) such that Hq&’ - u’"oo < €.

Approximation by Smooth Functions on R"

3.19 Having shown that an element of W™ 7 (£2) can always be approximated by
functions smooth on £ we now ask whether the approximation can in fact be
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done with bounded functions having bounded derivatives of all orders, or at least
of all orders up to and including at least m. That is, we are asking whether, for any
values of k > m, the space C¥(?) is dense in W™ P (). The following example
shows that the answer may be negative.

320 EXAMPLE LetQ={(x,y)eR :0< x| <1,0<y < 1}. Then
the function defined on 2 by

1 ifx>0

u(x, y) = [o ifx <0

evidently belongs to W!7(Q2). However, if € > 0 is sufficiently small, there can
exist no ¢ € C'() such that ||u — ¢||; p.o < €. To see this, suppose there exists
suchag. fL={(x,y): -1 <x<0,0<y<l}andR={{(x,y):0<x <1,
0 <y <1}, then Q2 =LUR. We have ¢l < li¢ll, . < € and similarly
It — @ll; g < € from which we obtain ||¢||; x > 1 —€. If

1
o) =f0 6(x,y) dy,

then there exist a and b with —1 < a < 0and 0 < b < 1 such that $(a) < € and
dB)>1—€. If0 <e < 1/2,then

b
1 —2¢ < &(b) — P(a) =/ ' (x)dx < ‘/_IquS(x, v} dxdy
Q

a

<27 |Dygll,q < 27

Thus 1 < €(2 + 2"/#"), which is not possible for small €.

The difficulty with the domain in this example is that it lies on both sides of part
of its boundary, namely the line segment x = 0, 0 < y < 1. We now formulate
a condition on a domain €2 that prevents this from happening and guarantees that
for any k and m, C*(Q) is dense in W™ (Q) provided 1 < p < oo.

3.21 (The Segment Condition) We say that a domain 2 satisfies the segment
condition if every x € bdry 2 has a neighbourhood Uy and a nonzero vector y,
suchthatifz € QN U,,thenz +ty, € Qfor0 <t < 1.

If nonempty, the boundary of a domain satisfying this condition must be (n — 1)-
dimensional, and the domain cannot lie on both sides of any part of its boundary.

3.22 THEOREM If Q satisfies the segment condition, then the set of restric-
tions to €2 of functions in C§°(R") is dense in W™ () for 1 < p < o0.

Proof. Let f be a fixed function in C§°(R") satisfying
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() fx)=1if [x] =1,
(i) f(x)=0if x| > 2,
@iii) |D* f(x)| < M (constant) for all x and 0 < || < m.

For ¢ > 0 let fe(x) = f(ex). Then f.(x) = 1 for [x] < 1/¢ and also
|ID* f.(x)] < Ml < Mife < 1. Ifu €¢ W"P(Q), then u. = f.u belongs to
WP (€2) and has bounded support. For0 < € < 1 and |o| < m

2:(;>lﬁuo»D*¢ﬁcw 5A4§:(2)|Dﬁuxn

pa B=a

|D%uc(x)| =

Therefore, setting Q. = {x € Q : |x| > 1/€}, we have

”u — Ue ”m,p,Q = “M — Ue ”m,p,Qs
= “u”m,p.QE + ”’/teum.p,ﬂF < const ”u"mpﬂF .
The right side approaches zero as € — 0+4. Thus any u € W™?(Q) can be
approximated in that space by functions with bounded supports.
We now, therefore, assume that K = {x € & : u(x) # 0} is bounded. The
set F = K — (Uxebdryg Ux) is thus compact and contained in 2, {U,} being
the collection of open sets referred to in the definition of the segment condition.
There exists an open set Uy such that F &€ Uy € 2. Since K is compact, there
exists finitely many of the sets U,, let us rename them Uy, ..., Uy, such that

K cU,LWU U---UU,. Moreoverihere are other open sets Vg, V1, ..., Vi such
thath@UjforOSjSkbutstillK CcVoUViU...UV,.

Let W be a C*™-partition of unity subordinate to {V; : 0 < j < k}, and let y;
be the sum of the finitely many functions ¢» € W whose supports lie in V;. Let
u; = Yrju. Suppose that for each j we can find ¢; € C°(R") such that

luj = &5, , 0 < €/G+D. (7)

Then, putting ¢ = Z?:o ¢;, we would obtain

k
Nt = Gllmp < D Juj = 85,0 < €

=0

A function ¢y € Cg°(R") satisfying (7) for j = 0 can be found via Lemma 3.16
since supp (o) C Vo € Q2. It remains, therefore, to find ¢; satisfying (7) for
1 < j < k. For fixed such j we extend u; to be identically zero outside 2.
Thus u; € W™P(R" —T'), where I' = Vj M bdry Q. Let y be the nonzero vector
associated with the set U; in the definition of the segment condition. (See Fig. 1.)
LetT', = {x —ty : x € I'}, where ¢ is so chosen that

0 <t < min{l, dist(V;, R" — U))/Iy|}.
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|~

Fig. 1

Then I', C U; and T, N Q is empty by the segment condition. Let us define
u;j(x) = u;(x +ty). Thenu;, € W»P(R" —I';). Translation is continuous in
LP(Q2) (see the proof of Theorem 2.32) so D%u;; — D%u;in LF(2) ast — O+
for |@| < m. Thus u;, — u; in W™"?(Q) as t — 0+, and so it is sufficient
to find ¢; € C3°(R") such that [|u;, — ¢;],, , is sufficiently small. However,
QNU; @R* — T, and so by Lemma 3.16 we can take ¢; = Js * u;, for suitably
small § > 0. This completes the proof. I

323 COROLLARY W’ (R") = W™ (R").

Approximation by Functions in Cg°({2)

3.24 Corollary 3.23 suggests the question: For what domains €2 is it true that
WmP(Q) = W, P (), that is, when is CJ°(2) dense in W™?(Q)? A partial an-
swer to this question can be formulated in terms of the nature of the distributions
belonging to W=7 (R*). The approach below is due to Lions [Lj]. Through-
out this discussion we assume 1 < p < oo and p’ is the conjugate exponent

p=p/(p—-1.

3.25 ((m,p')-Polar sets) Let F be a closed subset of R*. A distribution
T € 2'(R") is said to have support in F (supp (T) C F) provided that T (¢) = 0
forevery ¢ € 2(R" — F). We say that the closed set F is (m, p’)-polar if the only
distribution T € W~"?'(R") having support in F is the zero distribution T = 0.

If F has positive measure, it cannot be (m, p’)-polar because the characteristic
function of any compact subset of F having positive measure belongs to L? (R")
and hence to W=7 (R").
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We shall show later that if mp > n, then WP (R") — C(R") in the sense that if
u € W™P(R"), then there exists v € C(R") such that u(x) = v(x) a.e. in R* and

[v(x)| < const [|ull,, ,,

the constant being independent of x and u. It follows that the Dirac distribution 8,
given by §,(¢) = ¢(x) belongs to (WP (R")) = (WP (R")) = WP (R").
Hence, if mp > n a set F cannot be (m, p/)-polar unless it is empty.

Since W thP(Q) — WP (Q) any bounded linear functional on the latter space is
also bounded on the former. Thus W7 (Q) ¢ W=""1F () and, in particular,
any (m+1, p')-polar setis also (m, p’)-polar. The converse is, of course, generally
not true.

3.26 (Zero Extensions) If function u is defined on  let & denote the zero
extension of u to the complement Q€ of €2 in R*:

u(x) ifx e L,

=10 ifxeq

The following lemma shows that the mapping u — i maps W, " () (isometri-
cally) into W™-P(R").

327 LEMMA Letu € WP(Q). If |¢| < m, then D® = D% in the
distributional sense in R". Hence # € W™-7 (R").

Proof. Let {¢;} be a sequence in C$°(Q2) converging to u in Wy 7(Q). If
Y € Z(R"), then for |a} < m

(—D'“'f ﬁ(x)DWx)dx:(—l)'“'f u(x) DY (x) dx
" Q
= lim (—1)'“'/ ¢ (x)D*Y(x) dx
J—oo Q
= lim | D%¢;(x)y(x)dx
j—=o0 Jo
=/ Deu(x)¥(x) dx.

Thus D& = D% in the distributional sense in R" and these locally integrable
functions are equal a.e. in R". It follows that ||ul,, , g+ = llull,n p o |

We can now give a necessary and sufficient condition that the mapping u — &
carries Wy ¥ () onto WP (R").

3.28 THEOREM Cg°(€)isdensein W™ 7 (R") if and only if the complement
Q€ of Qis (m, p')-polar.
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Proof. First suppose C5°(€2) is dense in W™P(R"). Let T € WP (R") have
support in Q°. If u € W™P(R"), then there exists a sequence {¢;} C C{°()
converging to # in W7 (R"). Hence T(u) = limj o T(¢;) =0andso T = 0.
Thus Q€ is (m, p’)-polar.

Conversely, suppose that C5°(€2) is not dense in W™ *(R"). Then there exists
u € W™P(R") and a constant k > O such that for all ¢ € C§°(£2) we have
lu — @l pre = k. The Hahn-Banach theorem 1.13 can be used to show that
there exists 7 € W=7’ (R") suchthat T (¢) = Oforallu € C3°(2) but T (u) # 0.
Since supp (T) C Q€ but T # 0, Q€ cannot be (m, p')-polar. 1

As a final preparation for our investigation of the possible identity of Wy"* (€2) and
WP () we establish a distributional analog of the fact, obvious for differentiable
functions, that the vanishing of first derivatives over a rectangle implies constancy
on that rectangle. We extend this first to distributions (in Corollary 3.30) and then
to locally integrable functions.

329 LEMMA Let B = (a1, b;) X - -+ X (a,, b,) be an open rectangular box
in R* and let ¢ € 2(B). If fB¢(x) dx = 0, then ¢(x) = Z;’zl ¢;(x), where
¢; € Z(B) and

b;
/ ¢j(X1,...,Xj,...,x,,)de:0 (8)
aj
for every fixed (x1,...,Xj_1, Xj41, ..., %) € RE.

Proof. Forl < j < nselectfunctionsu; € C3°(a;, bj)suchthatfa? uj(t)ydt = 1.
For2 < j <n,let

B; = (aj, b;) x (aj11,bj11) X -+ x (ap, by),

by by by
I//j(xj,.--,Xn)zf dtl f dt2"’ ¢(t17"'7tj—1)xjy"'7xn)dtj—17
a) a) aj

@j(x) = u1(xy) - uj 1 (- DV; (x5, ..., Xn).

Then ¥, € Z(B;) and w; € Z(B). Moreover
f Yi(xj, ..., x)dx; oo dx, = / ¢(x)dx =0.
B B

Letg) = ¢ —wr, ¢y = wj —wj1if2 < j <n—1,and ¢, = w,. Clearly
¢ Z(Byforl < j<n,and ¢ = Z;-'Zl ¢;. Finally,
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b
d1(x1, ..., x,)dxy

a)
by

by
= ¢(x1,---,xn)dx1—Wz(xz,---,xn)/ ui(x)dxy =0

b;
/ @i (x1, ..., x5) dx;

=u(x) - ujr(xj-1)

b; b;
X (/ 1//j(x1,...,x,,)dxj—1//j+1(xj+1,...,x,,)/ uj(xj)dxj>
a; aj

=0, 2<j<n-—1,
b b
Ou(Xy, .. x)dxy = ur (X)) - g1 (Xn1) Y (xn) dx,

an an

= ul(xl)"‘un—l(xnfl)\/‘ ¢(x)dx =0. 1
B

3.30 COROLLARY IfT € 9'(B)and D;T =0for 1 < j < n, then there
exists a constant k such that for all ¢ € 2(B),

T($) = k/ $(x)dx.
B

Proof. First note that if f s ®(x)dx = 0, then T(¢) = 0, for, by the above
lemma we may write ¢ = Z}l:] ¢;, where ¢; € Z(B) satisfies (8), and hence
¢; = D;0;, where 6; defined by

Xj
@(x):/ ¢j(x1,...,xj_1,t,xj+1,...,x,,)dt
a;

belongs to Z(B). Thus T (¢) = Z;'zl T(D;b;) = — Z;’zl(Dj T)(©®;) =0.

Now suppose T' # 0. Then there exists ¢g € Z(B) such that T (¢¢) = k1 # 0.
Thus fB do(x)dx = ky # 0 and T(¢g) = ka ¢o(x)dx, where k = ki /k;. If
¢ € P(B) is arbitrary, let K (¢) = [, ¢(x) dx. Then

K
/ <¢(X) - k(¢) ¢o(X)> dx =0
B 2
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and so T (¢ — [K (¢)/ka2]do) = 0. It follows that

T (¢o)
k2

T(¢) = — K@) = kK(®) =kf pe)dx. W

B
Note that this corollary can be extended to any connected set 2 € R” via a partition
of unity for 2 subordinate to some open cover of 2 by open rectangular boxes
that are contained in 2. We do not, however, require this extension.

The following lemma shows that different locally integrable functions on an open
set 2 determine different distributions on §2.

331 LEMMA Letu € L!

loc
2(2). Then u(x) =0 a.e.in Q.
Proof. If ¢ € Cy(L2), then for sufficiently small positive €, the mollifier J, * yr
belongs to 2(2). By Lemma 2.29, J, x ¥ — 1 uniformly on  as ¢ — 0+.
Hence [, u(x)¥(x)dx = 0 for every ¢ € Co(S2).

Let K €Q and let ¢ > 0. Let yxx be the characteristic function of K. Then
/, x lu(x)dx < oo. There exists § > O such that for any measurable set A C K
with £ (A) < § we have fA lu(x)] dx < €/2 (see, for example, [Ru2, p. 124]). By
Lusin’s theorem 1.42(f) there exists ¥ € Co(R*) with |y (x)| < 1 for all x, such
that

(Q) satisfy [, u(x)¢(x)dx = 0 for every ¢ in

nlix € R @ ¥(x) # xx ()sgnux)}) <.
Here

v(x)/lv(x)] ifv(x) #0
0

sgnv(x) = [ if v(x) = 0.

Hence

/ x| dx = f u(X) xx ()sgn WG dx
K Q
- / UGV () dx + / u () (xx ()sgn (@) - ¥ () dx
Q Q

§O+2/ _ju)]dx < e.
{xeQiy (x)#xx (x)sgnu(x)}

Since ¢ is arbitrary, u(x) = O a.e. in K for each such K, and hence a.e. in 2. 1

3.32 COROLLARY If B is a rectangular box as in Lemma 3.29 and u in
LIIOC(B) possesses weak derivatives Dju = 0 for 1 < j < n, then for some
constant k, u(x) = k a.e. in B.

Proof. By Corollary 3.30, since D;T, =0for1 < j < n, we have

/M(X)¢(X)dx =T.(¢) =k/B¢>(x)dX-
B

Hence u(x) —k=0ae.in B. 1
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3.33 THEOREM Letm > 1.
(a) If WmP(Q) = Wy " (), then QF is (m, p’)-polar.
(b) If Q€ is both (1, p)-polar and (m, p’)-polar, then W™ (Q2) = W(;"‘p(Q).

Proof. (a) Assume W™P(Q) = W, 7 (). We deduce first that Q¢ must have
measure zero. If not, there would exist some finite open rectangle B C R* which
intersects both £ and £2° in sets of positive measure. Let u be the restriction to 2
of a function in Cg°(R*) which is identically one on B N . Then u € W™ ()
andsou € W(;""’(Q). By Lemma 3.27, the zero extension & of u to R* belongs to
WP (R") and Djii = Dju in the distributional sense in R” for 1 < j < n. Now
Dju is identically zero on B and so D;iz = 0 as a distribution on B. By Corollary
3.32, i must have a constant value a.e. in B. Sincesz = lon BN Q and # = 0 on
B N QF, we have a contradiction. Thus £2¢ has measure zero.

Now if v € W™ P(R") and u is the restriction of v to €2, then u belongs to WP (£2)
and hence, by assumption, also to W,"”(2). By Lemma 3.27, u € W™ (R") and
can be approximated by elements of C5°(€2). But v(x) = &1(x) on L, that is, a.e.
in R”. Hence v and # have the same distributional derivatives, and coincide in
WP(R*). Therefore C3°(2) is dense in W™P(R") and Q€ is (m, p’)-polar by
Theorem 3.28.

(b) Now assume Q¢ is (1, p)-polar and (m, p’)-polar. Let u € W™P(2). We
show that u € Wy " (). Since i € L?(R"), the distribution Tp,z, correspond-
ing to D;ii, belongs to W~ 1P(R"). Since ﬁfu e LP(R*)Y c H “P(R") (see
Paragraph 3.13), therefore 75, € w—LP(R*). Hence Tpabu € w-Lr(RY).
But Djit — bvju = 0 on £ so supp (TD,'E—B\,;{) C ¢ Since Q€ is (1, p)-
polar, Dt = bvju in the distributional sense on R", whence D;iz € L?(R") and
i € W™P(IR"). Since ° is (m, p’)-polar, C3°(R2) is dense in W™ (IR"), and thus
ue Wy (. 1

3.34 If (m, p')-polarity implies (1, p)-polarity, then Theorem 3.33 amounts to
the assertion that (m, p")-polarity of ¢ is necessary and sufficient for the equality
of W™ (Q) and Wy"” (). This is certainly the case if p = 2.

The following two lemmas develop properties of polarity. The first of these shows
that it is a local property.

335 LEMMA F C R"is (m, p')-polarif and only if F N K is (m, p’)-polar
for every compact set K C R".

Proof. Clearly the (m, p")-polarity of F implies that of F N K for every compact
K. We need only prove the converse.

Let T € WP (R") be givenby T = Zogalgm(_l)m'Da T,,, where sequence
{ve} C LP(R"). Suppose T has support in F. We must show that 7 = 0. Let
f € CP(R") satisfy f(x) =1if |x|] <1and f(x) = 0if |x| > 2. Fore > 0, let
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fe(x) = f(ex) sothat D® f.(x) = €/ D* f(ex) — O uniformly in x as € — 0+.
Then f,T € WP (R") by induction on m, and for any ¢ € Z(R") we have

T@) - LT@) = T@) - T(f.6)]
> [ wwpfom(i - fw)]as

0<]a|<m

>3 (Z) /R e (X)DPp(x)D*P(1 = fo(x)) dx

0<|a|<m B<a

=2 | 1w DAl dx < @l [ws L7 @™,
B<a vR"

i

where

wpx) = Y. (;)va(xw“‘ﬂ(l—fe(x))

la)<m, B<c

=um1-fo)- Y <;>va(x)D“"’fe<x).

lo|<m. B<a,B#a

Since fo(x) = 1 for x| < 1/e, we have lim._,o4 || wpg , =0. Thus f.T - T

in WP (R") as € - 0+. But £.T = 0 by assumption since it has compact
supportin K. Thus 7 =0. 1

336 LEMMA If p’ < g’ (thatis, p > g) and f C R" is (m, p’)-polar, then
F is also (m, ¢’)-polar.

Proof. Let K C R" be compact. By the previous lemma it is sufficient to show
that FN K is (m, ¢’)-polar. Let G be an open, bounded setin R* containing K. By
Theorem 2.14, W;"?(G) — W, ?(G), so that W9 (G) ¢ WP (G). Any
distribution T € W~"-4 (R") having supportin K N F also belongs to W4 (G)
and so to W7 (G). Since K N F is (m, p')-polar, T = 0. Thus K N F is also
(m, g’)-polar. 1

3.37 THEOREM Letm > 1and p > 2. Then W™?(Q) = W, (Q) if and
only of Q€ is (m, p’)-polar.

Proof. Since p’ < 2, Q° is (m, p)-polar and therefore also (1, p)-polar. The
result now follows by Theorem 3.33.

3.38 The Sobolev Imbedding Theorem 4.12 can be used to extend the previous
theorem to cover certain valuesof p < 2. If (n— 1) p < n, the imbedding theorem
gives

np

WrhPRY) > WHERYD,  g=——
n—(m-—1)p
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which in turn implies that w-LRY W"”'p'(R” ). Ifalso p > 2n/(n+m—1),
then ¢’ < p and so by Lemma 3.36, Q¢ is (1, p)-polar if it is (m, p’)-polar. Note
that 2n/(n +m — 1) < 2 if m > 1. If, on the other hand, (m — 1)p > n, then
mp > n, and, as pointed out in Paragraph 3.25, Q¢ cannot be (m, p’)-polar unless
it is empty, in which case it is trivially (1, p)-polar.

The only values of p for which we do not know that the (m, p’)-polarity of Q°
implies (1, p)-polarity and hence is equivalent to the identity of W™ 7 () and
Wy 7 (), are given by 1 < p < min{n/(m — 1),2n/(n + m — 1)}.

3.39 Whenever W, 7 () # W™P(), the former space is a closed subspace
of the latter. In the Hilbert space case, p = 2, we may consider the space W;-
consisting of all v € W™2(2) such that (v, ¢),, = O forall ¢ € Co°(2). Every
u € Wm2(Q) can be uniquely decomposed in the form u = ug + v, where
o € Wy*(2) and v € Wy Integration by parts shows that any v € Wit must
satisfy

Z (=D DX y(x) =0

O<laj=m

in the weak sense, and hence a.e. in §2.

Coordinate Transformations

3.40 Let ® be a one-to-one transformation of a domain  C R" onto a domain
G € ", having inverse W = ®~!. We say that ® is m-smooth if, when we write
y = ®(x) and x = W(y) in the form

yi=¢1(x1, ..., x,), X1 =Y1(V1, -5 Yn)s

Y2 =¢a(x1, ..., Xn), X2 =Y2(¥1s .-y Yu)s

Yn = Pu(x1, ..., Xn), Xp =Y (Y1, -5 Yu),
then ¢y, ..., ¢, belong to C™ () and ¥, . .., ¥, belong to C"(G).
If u is a measurable function on €2, we define a measurable function Au on G by
Au(y) = u(¥(y)). )]

Suppose that @ is 1-smooth so that there exist constants 0 < ¢ < C such that for
allx € @
¢ < |det®'(x)| < C, (10)

where @' denotes the Jacobian matrix d(yy, ..., y,)/3{(y1, ..., y»). Since smooth
functions are dense in L? spaces, the operator A defined by (9) transforms L?(2)
boundedly onto L?(G) and has a bounded inverse; in fact, for 1 < p < oo,

1 1
P lullpg < Aull,e < C77 llull,q-
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We establish a similar result for Sobolev spaces.

3.41 THEOREM Let @ be m-smooth, where m > 1. The operator A defined
by (9) transforms W7 (£2) boundedly onto W™ P (G) and has a bounded inverse.

Proof. We show that the inequality ||Aull,, , ¢ < const [|lull,, , o holds for
every u € W™ P (), the constant depending only on the transformation ®. The
reverse inequality [|Aull,, , ¢ > const [[u]l,, , o (with a different constant) can
be established similarly, using the inverse operator A~!. By Theorem 3.17 for
given u € W™P(Q2), there exists a sequence {u;} C C*°(£2) converging to u in

W™ P (Q)-norm. For such smooth u; it is readily checked by induction on |« that

D*(Au;)(y) = ZMaﬂ()’)A(Dﬁuj)(y)v Y]

Ba

where M,z is a polynomial of degree not exceeding | 8| in derivatives of orders
not exceeding |« of the various components of . If 8 € Z(G) integration by
parts gives

(—1)'“'/G(Auj)(y)l)"9(y)dy =Z/ AD ) MMap (O () dy, (12)
G

B=o

or, replacing y by ®(x) and expressing the integrals over £2,
(—1)'“'/ u; (x)(D*0) (P (x))|det &' (x)| dx
Q

=Z/ DPuj(x)Mop (@ (x))0 (P (x))Idet &' (x)|dx.  (13)
Q

B=a

Since Dﬁuj — u in LP(R2) for |B| < m, we can take the limit through (13) as
n — oo and hence obtain (12) with u replacing u;. Thus (11) holds in the weak
sense for any u € W™ ?(Q2). Therefore

14
/G ID*(Aw) ()P dy < (Zl) max. (suleam fG |<Dﬁu>|(wy))|"dy>
B=a -

yeG

< const max f |DBu(x)|? dx,
1BI=lel Jo

from which it follows that ||Aul|,, , ¢ < const |lull,, , - |

Of special importance in later chapters is the case of the above theorem corre-
sponding to nonsingular linear transformations & or, more generally, affine trans-
formations (compositions of nonsingular linear transformations and translations).
For such transformations det ®’(x) is a nonzero constant.



4

THE SOBOLEV
IMBEDDING THEOREM

4.1 The imbedding characteristics of Sobolev spaces are essential in their uses
in analysis, especially in the study of differential and integral operators. The
most important imbedding results for Sobolev spaces are often gathered together
into a single “theorem” called the Sobolev Imbedding Theorem although they are
of several different types and can require different methods of proof. The core
results are due to Sobolev [So2] but our statement (Theorem 4.12) also includes
refinements due to others, in particular Morrey [Mo] and Gagliardo [Gal].

Most of the imbeddings hold for domains 2 C R* satisfying some form of
“cone condition” that enables us to derive pointwise estimates for the value of a
function at the vertex of a truncated cone from suitable averages of the values of
the function and its derivatives over the cone. Some of the imbeddings require
stronger geometric hypotheses which, roughly speaking, force €2 to have an (n—1)-
dimensional boundary that is locally the graph of a Lipschitz continuous function
and which, like the segment condition described in Paragraph 3.21, requires 2 to
lie on only one side of its boundary. We will discuss these geometric properties
of domains prior to the statement of the imbedding theorem itself.

4.2 (Targets of the Imbeddings) The Sobolevimbedding theorem asserts the
existence of imbeddings of W™ () (or W, ”(R)) into Banach spaces of the
following types:

(i) W/9(Q), where j < m, and in particular L4 (S2),

(ii) W79 (), where, for 1 < k < n, § is the intersection of € with a
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k-dimensional plane in R".

(iii) Cé (£2), the space of functions having bounded, continuous derivatives up
to order j on 2 (see Paragraph 1.27) normed by

”u;Cé (Q)“ = max sup|D%u(x)|.

O<le|<j xeQ

(iv) C/(), the closed subspace of C£ (82) consisting of functions having
bounded, uniformly continuous derivatives up to order j on £ (see Para-
graph 1.28) with the same norm as C 113 (2):

[¢:C7 @] = max sup| D% (x)1.
A=) xeQ

This space is smaller than C g () in that its elements must be uniformly
continuous on 2. For example, the function u of Example 3.20 belongs to
C}, (Q) but certainly not to C'(€2) for the domain Q of that example.

(v) C7*(Q), the closed subspace of C/(Q) consisting of functions whose
derivatives up to order j satisfy Holder conditions of exponent A in €2 (see
Paragraph 1.29). The norm on C/*(Q) is

L L D~ — D~
”¢:CM(§2)H = ]|¢>; C](Q)II +omaxA sup D¢ ) - ¢(y)|.
<lo|<j £1c8 [x — y]

Since elements of W7 (S2) are, strictly speaking, not functions defined every-
where on €2, but rather equivalence classes of such functions defined and equal
up to sets of measure zero, we must clarify what is meant by imbeddings of types
(1i)—~(v). What is intended for imbeddings into the continuous function spaces
(types (iii}-(v)) is that the “equivalence class” u € W™?(Q2) should contain an
element that belongs to the continuous function space that is the target of the
imbedding and is bounded in that space by a constant times ||u||,, , . Hence, for
example, existence of the imbedding

WmP(Q) —» C/(Q)

means that each u € W™ P (£2) when considered as a function, can be redefined on
a subset of 2 having measure zero to produce a new function u* € C/() such
that u* = u in W™P(Q) (i.e. u* and u belong to the same “equivalence class” in
WP (Q)) and

[u*s CT@| < Kl p0

with K independent of u.
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Even more care is necessary in interpreting imbeddings into spaces of type (ii):
WP (Q) — W ()

where € is the intersection of €2 with a plane of dimension & < n. Each element
of WP (L) is, by Theorem 3.17, a limit in that space of a sequence {u;} of
functions in C*°(£2). The functions u; have traces on € (that is, restrictions
to €2) that belong to C*°(€2;). The above imbedding signifies that these traces
converge in W/ (§;) to a function u* that is independent of the choice of {u;}
and satisfies

””*”,’.q.szk < Kllullmp.

with K independent of u.

4.3 Let us note as a point of interest, though of no particular use to us later,
that the imbedding W™?(Q2) — W/9(RQ) is equivalent to the simple containment
WmP(Q) C W/9(Q). Certainly the former implies the latter. To verify the
converse, suppose W2 (Q) C W/4(Q), and let I be the linear operator taking
W™ P () into W/9(Q) defined by Iu = u foru € W"?(Q). If uy — uin
W™P(£2) (and hence in L?(2)) and Ju; — v in W/-9($2) (and hence in LI(2)),
then, passing to a subsequence if necessary, we have by Corollary 2.17 that
up(x) = u(x) ae. on Q, up{x) = Tup(x) = v(x) a.e. on . Thus u(x) = v(x)
a.e. on £2, that is, /u = v, and [ is continuous by the closed graph theorem of
functional analysis.

Geometric Properties of Domains

4.4 (Some Definitions) Many properties of Sobolev spaces defined on a do-
main £2, and in particular the imbedding properties of these spaces, depend on
regularity properties of Q. Such regularity is normally expressed in terms of geo-
metric or analytic conditions that may or may not be satisfied by a given domain.
We specify below several such conditions and consider their relationships. First
we make some definitions.

Let v be a nonzero vector in R*, and for each x # 0 let Z(x, v) be the angle
between the position vector x and v. For given such v, p > 0, and « satisfying
0 < x < 7, the set

C=xelR :x=00r0< x| <p, Z(x,v) <k/2)

is called a finite cone of height p, axis direction v and aperture angle x with vertex
at the origin. Note that x + C = {x + y : y € C} is a finite cone with vertex
at x but the same dimensions and axis direction as C and is obtained by parallel
translation of C.
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Given n linearly independent vectors yi, ..., y, € R", the set

P=

A]y]0_<_kj§1,1§J§n}
j=1

is a parallelepiped with one vertex at the origin. Similarly, x + P is a parallel
translate of P having one vertex at x. The centre of x + P is the point given by
c(x+ P)y=x+(1/2)(y1 + - -- + yu). Every parallelepiped with a vertex at x is
contained in a finite cone with vertex at x and also contains such a cone.

Anopencover & ofaset S C R is said to be locally finite if any compact set in [R*
can intersect at most finitely many members of &". Such locally finite collections
of sets must be countable, so their elements can be listed in sequence. If S is
closed, then any open cover of S by sets with a uniform bound on their diameters
possesses a locally finite subcover.

We now specify six regularity properties that a domain £ C R* may possess. We
denote by €25 the set of points in §2 within distance § of the boundary of 2:

Qs = {x € Q: dist(x, bdry ) < §}.

4.5 (The Segment Condition) As defined in Paragraph 3.21, a domain Q
satisfies the segment condition if every x € bdry @ has a neighbourhood U, and
a nonzero vector y, such that if z € QN Uy, then z +ty, € Qfor0 <t < 1.
Since the boundary of €2 is necessarily closed, we can replace its open cover by the
neighbourhoods U, with a locally finite subcover {U;, U, ...} with corresponding
vectors y|, ys, ... such that if x € Q N U; for some j, then x + ty; € Q for
O<r<1.

4.6 (The Cone Condition)  satisfies the cone condition if there exists a
finite cone C such that each x € 2 is the vertex of a finite cone C, contained
in £ and congruent to C. Note that C, need not be obtained from C by parallel
translation, but simply by rigid motion.

4.7 (The Weak Cone Condition) Given x € €, let R(x) consist of all points
y € 2 such that the line segment from x to y lies in £2; thus R(x) is a union of
rays and line segments emanating from x. Let

Fx)={yeRx):|ly—x| <1}

We say that Q satisfies the weak cone condition if there exists § > 0 such that

pa(C(x)) > 8 forall x € €,
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where 1, is the Lebesgue measure in R*. Clearly the cone condition implies
the weak cone condition, but there are many domains satisfying the weak cone
condition that do not satisfy the cone condition.

4.8 (The Uniform Cone Condition) £ satisfies the uniform cone condition
if there exists a locally finite open cover {U;} of the boundary of €2 and a corre-
sponding sequence {C;} of finite cones, each congruent to some fixed finite cone
C, such that
(i) There exists M < oo such that every U; has diameter less then M.

(ii) s C 72, U; for some & > 0.

(i) Qj = Useqny, (x +C)) C Q2 forevery j.

(iv) For some finite R, every collection of R + 1 of the sets ; has empty

intersection.

4.9 (The Strong Local Lipschitz Condition)  satisfies the strong local
Lipschitz condition if there exist positive numbers § and M, a locally finite open
cover {U;} of bdry 2, and, for each j a real-valued function f; of n — 1 variables,
such that the following conditions hold:
(i) For some finite R, every collection of R + 1 of the sets U; has empty
intersection.
(ii) For every pair of points x, y € §; such that |[x — y| < &, there exists j
such that

x,y €V, ={x e U; : dist(x, bdry U;) > §;.
J J J

(iii) Each function f; satisfies a Lipschitz condition with constant M: that is, if
E=(,....6_Dand p = (pi,..., pn1) arein R~} then

1) — fp)| < M|§ — pl.

(iv) For some Cartesian coordinate system ({1, ..., in U;, N U; is
represented by the inequality

Cim < [i(Gn s Snm1)e

If  is bounded, the rather complicated set of conditions above reduce to the simple
condition that £ should have a locally Lipschitz boundary, that is, that each point
x on the boundary of €2 should have a neighbourhood U, whose intersection with
bdry §2 should be the graph of a Lipschitz continuous function.
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4.10 (The Uniform C™-Regularity Condition) < satisfies the uniform C™-
regularity condition is there exists a locally finite open cover {U;} of bdry 2, and a
corresponding sequence {®;} of m-smooth transformations (see Paragraph 3.40)
with @; taking U; onto the ball B = {y € R* : |y| < 1| and having inverse
v = <I>j_1, such that:
(i) For some finite R. every collection of R + 1 of the sets U; has empty
intersection.
(i) Forsome 8 > 0,2s C 72, ¥;({y e R : [y| < 3}).
(iii) Foreach j, ®;(U;NQ) ={y € B :y, > 0}.
(iv) If (@1, ..., ¢;n) and (¥ 1, ..., ¥ n) are the components of ¢; and V;,
then there is a finite constant M such that for every @ with 0 < || < m,
every i, | <i < n, and every j we have

[D%;i(x)| = M, forx € Uj,
ID*Y;i(y)| < M, fory € B.

4.11 Except for the cone condition and the weak cone condition, the other
conditions defined above all require that the boundary of €2 be (n — 1)-dimensional
and that © lie on only one side of its boundary. The domain 2 of Example 3.20
satisfies the cone condition (and therefore the weak cone condition), but none of
the other four conditions. Among those four we have:

the uniform C"™-regularity condition (m > 2)
= the strong local Lipschitz condition
= the uniform cone condition

—> the segment condition.

Also,
the uniform cone condition

= the cone condition

= the weak cone condition

Typically, most of the imbeddings of W™ #(2) have been proven for domains
satisfying the cone condition. Exceptions are the imbeddings into spaces C/(£2)
and C/*(£2) of uniformly continuous functions which, as suggested by Example
3.20, require that 2 lie on one side of its boundary. These imbeddings are usually
proved for domains satisfying the strong local Lipschitz condition. It should be
noted, however, that  need not satisfy any of these conditions for appropriate
imbeddings of Wy () to be valid.
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4.12 THEOREM (The Sobolev Imbedding Theorem) Let 2 be a domain
inR" and, for 1 < k < n, let 2 be the intersection of Q with a plane of dimension
kin R*. (If k = n, then Q; = ©.) Let j > 0 and m > 1 be integers and let
1 <p<oo.

PART I Suppose Q2 satisfies the cone condition.

Case A Ifeithermp > norm =n and p = 1, then
Witmr(Q) — Ch (). (1)
Moreover, if 1 < k < n, then
WitmP(Q) — Wi ()  forp <q < oo, (2)
and, in particular,
WP (Q) — LT (Q) for p < g < o0.
CaseB If1 <k <nandmp = n, then
WiHmP(Q) — W79 (),  forp <gq < oo, 3)
and, in particular,
WP (Q) — L1(Q), for p < g < oo.

Case C Ifmp <nandeithern —mp <k <norp=1landn—m <k <n,
then

WitmP(Q) — Wi (), for p < q < px=kp/(n —mp). )
In particular,

w™P(Q) — L1(Q), for p <q < px=np/(n —mp). (5)

The imbedding constants for the imbeddings above depend only onn, m, p, q, j, k,
and the dimensions of the cone C in the cone condition.

PART II Suppose 2 satisfies the strong local Lipschitz condition. (See Para-
graph 4.9.) Then the target space C £ () of the imbedding (1) can be replaced
with the smaller space C/ (), and the imbedding can be further refined as follows:

If mp >n > (m—1)p, then

WitmP(Q) — CIHQ) forO <A <m—(n/p), (6)
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andif n = (m — 1) p, then

Wj+m~1’(§2) - Cj'k(ﬁ) forO < A < 1. @)

Also,if n =m — 1 and p = 1, then (7) holds for A = 1 as well.

PARTIII Al of the imbeddings in Parts A and B are valid for arbitrary domains
Q if the W-space undergoing the imbedding is replaced with the corresponding
Wy-space.

4.13

1.

REMARKS

Imbeddings (1)-(4) are essentially due to Sobolev [So1, So2], although his
original proof did not cover the all cases. Imbeddings (6)—(7) originate in
the work of Morrey [Mo].

. Imbeddings (2)-(4) involving traces of functions on planes of lower dimen-

sion can be extended in a reasonable manner to apply to traces on more
general smooth manifolds. For example, see Theorem 5.36.

. If Q; (or ) has finite volume, then imbeddings (2)—(4) also hold for

1 < g < p in addition to the values of ¢ asserted in the statement of the
theorem. This follows from Theorem 2.14. It will be shown in Theorem
6.43 that no imbedding of the form W™?(Q) — L7 (2) where g < p is
possible unless €2 has finite volume.

. Part III of the theorem is an immediate consequence of Parts I and IT applied

to R" because, by Lemma 3.27, the operator of zero extension of functions
outside Q maps W,"” () isometrically into W™ (RR").

. More generally, suppose there exists an operator £ mapping W™#(£2) into

wmP(R") such that Fu(x) = u(x) ae. in Q and such that
NEully pre < Killully pq- (Such an operator is called an (m, p)-
extension operator for Q. If the imbedding theorem has already been
proved for R, then it must hold for the domain € as well. For example, if

WmP(R*) - L7 (R"), and u € W™P(£2), then

lully @ < NEully g < K2 | Ettllyn pre < K2Ky el 2 -
In Chapter 5 we will establish the existence of such extension operators, but
only for domains satisfying conditions stronger than the cone condition, so
we will not use such a technique to prove Theorem 4.12.

. It is sufficient to prove imbeddings (1)—(4), (6)-(7) for the special case

J =0, as the general case follows by applying this special case to derivative
D%u of u for |a| < j. For example, if the imbedding W™ 7 (2) — L9 (2)
has been proven, then for any u € W/7™7 (Q) we have D*u € W™P ()
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for |a} < j, whence D*u € L9 (). Thus u € W/9 (Q) and

1/q
lull; g = (Z uD“unz.q)

lee|<j

1/p
<K (Z ||D“un,':,,,,) < Ko llulljym.p -

lal<j

7. The authors have shown that all of Part I can be proved for domains
satisfying only the weak cone condition instead of the cone condition. See
[AF1].

4.14 (Strategy for Proving the Imbedding Theorem) We use two overlap-
ping methods to prove the imbeddings in Part I of Theorem 4.12. The first,
potential theoretic in nature, was used by Sobolev. It works when p > 1, and
gives the right order of growth of imbedding constants as ¢ — oo when mp = n;
this will be useful in Chapter 7. Here we use the potential method to prove Case
A and the imbeddings in Cases B and C for p > 1. The other approach is based
on a combinatorial-averaging argument due to Gagliardo [Gal]. We will use it to
establish Cases B and C for p = 1, though it could be adapted (with a bit more
difficulty) to prove all of Part I. (See, in particular, Theorem 5.10 and the Remark
following that theorem.)

Part II of the theorem follows by sharpening certain estimates used in obtaining
Case A of Part L.

The entire proof of Theorem 4.12 is fairly lengthy and is broken down into several
lemmas. Throughout we use K, and occasionally K, K3, . .., to represent various
constants that can depend on parameters of the spaces being imbedded. The values
of these constants can change from line to line. While stated for the cone condition,
the potential method works verbatim under the weak cone condition as well.

Imbeddings by Potential Arguments

415 LEMMA (A Local Estimate) Let domain Q C R* satisfy the cone
condition. There exists a constant K depending on m, n, and the dimensions o
and « of the cone C specified in the cone condition for Q such that for every
u € C*(R), every x € L, and every r satisfying 0 < r < p, we have

Iu(x)lsK( > r'“""f |D“u(y)l dy
Cer

joe|zm—1

+ Zf |D°‘u<y)||x—y|’"—"dy>,
C.Y./

la|=m

®)
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where C,, = {y € Cy : |x — y| < r}. Here C, C € is a cone congruent to C
having vertex at x.

Proof. We apply Taylor’s formula with integral remainder,

m—1

1, 1 !
1O =Y 0+ [a-omtsmaa

=
to the function f(r) = u(tx 4+ (1 —t)y), where x € Q2 and y € Cy,,. Noting that
i
[§3] . J: o
fO = ; D ufrx + (1= 0y)(x = y)*,
al=j
where a! = ap!---a,tand (x — y)* = (x; — y)* - - - (x, — ¥p)*, we obtain

1
< Yo — D u)lx =y

lor|lsm—1 """

i
+ Z %Ix - y|"’/0 a- t)'”_llD"‘u(tx + 1 - t)y)|dt.

|a|=m
If C has volume cp”, then C, , has volume cr”. Integration of y over C, , leads to

cr’lu(x)|

ylal

S| ;_1—!  1Du()ldy

1
m m bt o
+ EJ/C Ix — | dyfo (1 =)™ ' |D%u(tx + (1 — t)y)| dt.

la|=m

In the final (double) integral we first change the order of integration, then substitute
z=tx+(1—1t)y,sothatz —x = (1 —r)(y —x) anddz = (1 — )" dy, to obtain,
for that integral,

1
/ (- dt/ lz — x|"|D*u(z)| dz.
0 Cei-nr
A second change of order of integration now gives for the above integral
1—(|lz=x[/r)
f [x — zI”’lD“u(z)Idz/ (1—0™""'dr
C.\’,V‘ O

rn
=< —/ lx —z|"7"|D%u(z)| dz.
n Je,,
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Inequality (8) now follows immediately. I

4.16 (Proof of Part I, Case A of Theorem 4.12)  As noted earlier, we can
assume that j = 0. Letu € W™2(Q) N C*(2) and let x € Q2. We must show
that

lu() < K lullyp - )
For p = 1 and m = n, this follows immediately from (8). For p > 1 and mp > n,
we apply Holder’s inequality to (8) with r = p to obtain

|u(x)|sK( D M D

la|<m—1
1/p
+ ZMD“unp.cW[f |x—y|<""”“’dy} )
loe|=m Crop

where ¢ is the volume of C, and p’ = p/(p — 1). The final integral is finite
since (im — n)p’ > —n when mp > n. Thus

)| < K Y [1D%ll,c,, (10)

la|<m
and (9) follows because C, , C £2.

Next observe that since any u € W™ ?(Q) is the limit of a Cauchy sequence of
continuous functions by Theorem 3.17, and since (9) implies this Cauchy sequence
converges to a continuous function on 2, ¥ must coincide with a continuous
function a.e. on 2. Thusu € C g (2) and imbedding (1) is proved.

Now let ©; denote the intersection of € with a k-dimensional plane H, let
Q, = {x € R" : dist(x, ) < p}, and let u and all its derivatives be extended
to be zero outside 2. Since C,, C B,(x), the ball of radius p with centre at x,
we have, using (10) and denoting by dx’ the k-volume element in H,

[ werar <k 3 [ ar' [ iptuerdy
&% & B,(x)

le|<m

-y [

laf<m ¥ $kp

ID“u(y)I”de dx' < Ky |lullf, o>
HNB,(y)

and W™P(Q) — L” (). But (9) shows that W"™7(Q) — L% (£4) and so
imbedding (2) follows by Theorem 2.11. 11

Let x, be the characteristic function of the ball B, (0) = {x € R” : |x| < r}. Inthe

following discussion we will develop estimates for convolutions of L? functions
with the kernels w,, (x) = |x|" " and

x|"" if x| <r,
0 if x| > r.

Xrwom(x) = {
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Observe thatif m <nand 0 < r < 1, then
Xr(X) < Xrom(x) < om(x).
417 LEMMA Letp > 1,1 <k < n,and n —mp < k. There exists a

constant K such that for every r > 0, every k-dimensional plane H C R*, and
every v € L? (R"), we have x,op, *x |v| € L? (H) and

—(n—k
X @m * [0, gy < Kr™ =R o], g (11)
In particular,
lx1*vlll, g < lxi0m * 10, g < K V]l R-
p P p

Proof. If p > 1, then by Holder’s inequality

erm*|U|(X)=f |U(y)||x—y|_s|x_y|s+m—ndy
B, (x)

l/p ) 1/p
< <f lv()7]x — yl‘”’dy) </ |x — y|lstm-mp dy)
B,(x) B,(x)
i/p
= Krstm=(/p) <f [v)IP1x — yI ™7 dy) :
B, (x)

provided s + m — (n/p) > 0. If p = 1 the same estimate holds provided
s +m — n > 0 without using Holder’s inequality.

Integrating the pth power of the above estimate over H (with volume element
dx’), we obtain

| xrcom * |v|”ZH = / |erm * |U|(x)|pdx/
H

< Krlstmp f dx’ f 1P Lx — yI7" dy
H B, (x)

< Krltmp=n pkosp )P o= Krr= ool P,

provided k > sp.

Since n — mp < k there exists s satisfying (n/p) —m < s < k/p, so both
estimates above are valid and (11) holds. 1

418 LEMMA Letp > l,mp <n,n—mp <k <n,and p* =kp/(n—mp).
There exists a constant K such that for every k-dimensional plane H in R* and
every v € L (R"), we have w,, * |v| € L”” (H) and

xu* ol g < Mx1@m % [0l g < Neom * (0]l e g < K lPollp e (12)
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Proof. Only the final inequality of (12) requires proof. Since mp < n, for each
x € R" Holder’s inequality gives

1/p'
/ |U()’)||x - y|m_" dy < ”v”p,R" (/ |x — yl(m_")P dy>
"—B,(x) R"—B, (x)

00 , i/p
= K, ”v”p,IR" (f t(mfn)P +n—1 dt)
r

= Klrm_("/p) ”v”p,R" .

If 7 > 0, choose r so that K7™~ ®/P) ||| , 5. = 1/2. If

wm * |V (x) = f lvWllx —yI" ™" dy > 1,
R#

then

Yoom # 101 x) =/ WO x = yI"" dy > 1/2.
B, (x)

Thus
mi({x € H : o % |0l(x) > 1}) < pui(fx € H & Yr0m * [0](x) > 1/2))

2\? p
(;) I Xr com * |U|||p,]~1

pn/py—m NP " , .
< ————) Kr"" )P b, = Kor
= (Kl uvn,,,Rn) PR

IA

by inequality (11). But r* = (2K, [[vll, g+ /7)” , 50

*

2K, p
pi(fx € H : oy * [v|(x) > 1}) < K, - lvllpre ) -

Thus the mapping [ : v > (@, * |v|)‘H is of weak type (p, p*).

For fixed m, n, k, the values of p satisfying the conditions of this lemma constitute
an open interval, so there exist p; and p» in that interval, and a number 6 satisfying
0 < 6 < 1 such that

1 1-9 o
R + —,
14 141 P2
and
1 n/k m 1-6 0
p p k PP
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Since p* > p, the Marcinkiewicz interpolation theorem 2.58 assures us that / is
bounded from L? (R") into L?" (H), that is, (12) holds. B

4.19 (Proofof PartI, Case C of Theorem4.12forp > 1) Wehavemp < n,
n—mp<k<n,and p <q < px =kp/(n —mp). Letu € C*(2) and extend
u and all its derivatives to be zero on R* — . Taking r = p in Lemma 4.15 and
replacing C, , with the larger ball B (x), we obtain

lu ()| sK( Y xIDul) + Y xlwm*|D"u|<x>). (13)

|| <m—1 =

If1/q =6/p+(1—06)/p* where 0 < 6 < 1, then by the interpolation inequality
of Theorem 2.11 and Lemmas 4.17 and 4.18

0 1-9
Nully o < Nally g llull sz

6 1-6
<K (Z uD“un,,,Rn) (Z ||D°‘u||,,,w>

la|<m || <m

< K [|ullm.p.0

as required. I

4.20 (Proof of Part1, Case B of Theorem4.12forp > 1) Wehavemp =n,
1 <k <n,and p < g < oo. We can select numbers p;, ps, and 6 such that
l<p <p<pan—mpy <k 0<8 <1, and

1 6 1-6 1
+ —
p nm P2 9 PN

As in the above proof of Case C for p > 1, the maps v > (X1 * |v|)|H and
v ((10m * |v1)|H are bounded from L” (R") into LP' (Rt) and so are of weak
type (p1, p1). As in the proof of Case A, these same maps are bounded from
LP2 (R") into L (R*) and so are of weak type (p2, ). By the Marcinkiewicz
theorem again, they are bounded from L? (R") into L4 (R¥) and

x1 % vllly m < lxiwn * vl g < K (vl R

and the desired result follows by applying these estimates to the various terms of
(13). 1
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Imbeddings by Averaging

4.21 We still need to prove the imbeddings for Cases B and C with p = 1. We
first prove that W' () — L™~V (Q) and deduce from this and the imbeddings
already established for p > 1 that all but one of the remaining imbeddings in
Cases B and C are valid. The remaining imbedding is the special case of C where
k=n—m, p =1, px = 1 which will require a special proof.

We first show that any domain satisfying the cone condition is the union of
finitely many subdomains each of which is a union of parallel translates of a
fixed parallelepiped. Then we establish a special case of a combinatorial lemma
estimating a function in terms of averages in coordinate directions. Both of these
results are due to Gagliardo [Gal] and constitute the foundation on which rests
his proof of all of Cases B and C of Part I.

422 LEMMA (Decomposition of £2) Let 2 C R” satisfy the cone condi-
tion. Then there exists a finite collection {21, ..., 2y} of open subsets of Q such
that Q = U;v=1 £2;, and such that to each ; there corresponds a subset A; C €;
and an open parallelepiped P; with one vertex at O such that Q; = | J, . 4 (x+P).

If @ is bounded and p > 0 is given, we can accomplish the above decomposition
using sets A; each satisfying diam (Aj) < p.

Finally, if €2 is bounded and p > 0 is sufficiently small, then each ©2; will satisfy
the strong local Lipschitz condition.

Proof. Let C be the finite cone with vertex at 0 such that any x € Q is the vertex
of a finite cone C, C 2 congruent to C. We can select a finite number of finite
cones Cy, ..., Cy each having vertex at 0 (and each having the same height as C
but smaller aperture angle than C) such that any finite cone congruent to C and
having vertex at 0 must contain one of the cones C;. For each j, let P; be an open
parallelepiped with one vertex at the origin, contained in C;, and having positive
volume. Then for each x € 2 there exists j, 1 < j < N, such that

x+PCx+C;CC, Cq.

Since €2 is open and x + P; is compact, y + P; C 2 for any y sufficiently close
to x. Hence every x € Q belongs to y + P; for some j and some y € . Let

Aj={yeQ:y+P CQandletQ; =, v+ P). Then @ =L, ;.

Now suppose Q2 is bounded and p > 0 is given. If diam (Aj) > p we can
decompose A; into a finite union of sets A;; each with diameter less than p and
define the corresponding parallelepiped P;; = P;. We then rename the totality of
such sets Aj; as a single finite family, which we again call {A;} and define 2; as
above.

Figure 2 attempts to illustrate these notions for the domain in ’R? considered in
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Example 3.20:

Q={Gx»eR :0<ix|<1,0<y<1l},
C={(x,»eR :x>0y>0x*+y <1/4},
p < 0.98.

Finally, we show that if p is sufficiently small, then €; satisfies the strong local
Lipschitz condition. For simplicity of notation, let G = | J,.4(x + P), where
diam (A) < p and P is a fixed parallelepiped. We show that G satisfies the
strong local Lipschitz condition if p is suitably small. For each vertex v; of P let
Q; ={y=v,+Ax —v;) : x € P, A > 0} be the infinite pyramid with vertex v;
generated by P. Then P = (") Q;, the intersection being taken over all 2" vertices
of P. Let G; = | J,c4(x + Qj). Let & be the distance from the centre of P to
the boundary of P and let B be an arbitrary ball of radius o = §/2. For any fixed
x € G, B cannot intersect opposite faces of x + P so we may pick a vertex v; of
P with the property that x + v; is common to all faces of x + P that intersect B,
if any such faces exist. Then BN (x +P) = BN (x + Q;). Nowletx,y € A
and suppose B could intersect relatively opposite faces of x + P and y 4+ P, that
is, there exist points a and b on opposite faces of P such that x + a € B and
y+ b e B. Then

p > dist(x, y) =dist(x + b,y + b)
> dist(x + b, x +a) — dist(x +a,y + b)
> 28 —20 =6.

It follows that if p < §, then B cannot intersect relatively opposite faces of x + P
andy + P forany x, y € A. Thus BN (x + P) = BN (x 4+ @;) for some fixed j
independent of x € A, whence BN G = BN G;.

Choose coordinates & = (£§,§,) = (&,...,&x-1,&,) in B so that the &,-axis
lies in the direction of the vector from the centre of P to the vertex v;. Then
B N (x + Q) is specified in B by an inequality of the form £, < f,(&") where
fx satisfies a Lipschitz condition with constant independent of x. Thus B N G;,
and hence B N G, is specified by &, < f(£'), where f(£') = sup,.4 fx (&) is
itself a Lipschitz continuous function. Since this can be done for a neighbourhood
B of any point on the boundary of G, it follows that G satisfies the strong local
Lipschitz condition. 1
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4.23 LEMMA (An Averaging Lemma) Let 2 be a domain in R” where
n > 2. Let k be an integer satisfying 1 < k < n,andlet« = (x1,..., k) bea
k-tuple of integers satisfying 1 < k| < k2 < -+ < kx < n. Let S be the set of all
(%) such k-tuples. Given x € R", let x, denote the point (X, ..., X,,) in R¥ and
letdx, = dx, --- dx,.

Fork € S let E, be the k-dimensional plane in R” spanned by the coordinate axes
corresponding to the components of x,:

E,(——-{XER” :xi=0ifi¢/<},
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and let €2, be the projection of €2 onto E,:

Q= {x€E:x=x for some y € Q}.

Let F, (x,) be a function depending only on the k components of x, and belonging
to L*(Q,), where A = (2:11 ) Then the function F defined by

Fx) =[] Fexo

KeS

belongs to L' (), and | F |}y g < [Tees 1 Fellr g, thatis,

A
(/IF(x)ldx) 5]_[f |Fe(x0))" dx. (14)
Q Q

keS

Proof. We use the mixed-norm Holder inequality of Paragraph 2.49 to provide
the proof. For each k € S let p, be the n-vector whose ith componentis A if i € «
and oo if i ¢ k. Foreachi, 1 <i < n, exactly (k/n) (}) = A of the vectors p,
have ith component equal to A. Therefore, in the notation of Paragraph 2.49

1 1

keS P« w

where w is the n-vector (1, 1, ..., 1).

Let F, (x,) be extended to be zero for x, & 2, and consider F, to be defined on
R* but independent of x; if j & «. Then Fy is its own supremum over those x;
and

| Fe ”A,SZK = || F “pK,R”'

From the mixed-norm Holder inequality

Il < 1Flwge < []1Fellp e = [[ 1N,

keSS keS
as required. il

4.24 LEMMA If Q satisfies the cone condition, then W!! () — L? () for
l<p=n/(n-1.

Proof. By Lemma 4.22, Q is a finite union of subdomains each of which is a
union of parallel translates of a fixed parallelepiped. It is therefore sufficient to
prove the imbedding for one such subdomain. Thus we assume Q = | J, ., (x+ P)
where P is a parallelepiped. There is a linear transformation of R* onto itself that
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maps P onto a cube @ of unit edge with edges parallel to the coordinate axes. By
Theorem 3.41 it is therefore sufficient to prove the lemma for Q = | J, ., (x + Q).

For x € Q let £ be the intersection of §2 with the line through x parallel to the
x;-axis. Evidently £ contains a closed interval of length 1 containing x;, say the

interval [&, &]. If f € C([0, 1]), then | f(t)| < |f(t)| + ’ft(t) o dt’, and
integrating over ¢ over [0, 1] yields

1
| f (20)] Sfo (fOI+1f O dt.

For u € C*®(£2) we apply this inequality to u(z, x1) (Where X1 = (x2, ..., x,)) to
obtain

&
nMstb/ (Ju(e, 30| + 1Dyutc, 21)1) dr

< f(lu(t,fcl)l + |Dyu(t, £1)|) dt.
£

Let £ be the orthogonal projection of 2 onto the hyperplane of coordinates X1,
and let

1/(n—1)
up(xy) = </(|u(f,f61)|+|D1M(l‘,f€1)|)df> .
¢
(Evidently u(X) is independent of x;) We have
leilli/m-1).0, =/ |y (0"~ d%) < Neelhi 1o -
Q

Similarly, for 2 < j < n we can define u; to be independent of x; and to satisfy
()] < (u;(x))" """ and

"uj ”1/("—1).QJ = ”ullllﬂ .

Since |u(x)|V*" D < [Tj, #;(x), applying inequality (14) with k =n — 1 = 1
now gives

n
- PN T (n—1)
/MMW”MSH/MMW di; < llulig" .
Q i1 VY
Jj=1 j

For the original domain §2, this will imply that

Nellyn-1y.0 < K llull 10
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where the constant K depends on n and the cone C of the cone condition. These
determine the number N of subdomains needed, and the size of the determinant
of the linear transformation needed to transform the parallelepipeds for each
subdomain into Q. The imbedding W"! (Q) — LP(Q) for1 < p <n/(n—1)
now follows by L? interpolation (Theorem 2.11) 1

4.25 (Proofof PartI, Cases B and C of Theorem4.12forp =1,k > n—m)
Let m < n. By the above lemma and previously proved parts of Cases B and C
for p > 1, we have

Wl (Q) > WP (Q) forl < p<n/(n—1).

Sincek > n —m, thereforek > n—m+1>n—(m—1)p forany p > 1.
Therefore W17 () — L7 (§) holds for

l<g<p= kp kn/(n — 1) k

n—(m—l)pzn—(m—l)n/(n—l)=n—m'

Combining these imbeddings we get W™! () — LP(Q),1 < g <k/(n —m).
For p = 1, m = n the imbedding W™ (Q) — LI (), 1 <g <o0,1<k<n
was already proved under Case A. I

4.26 (Proof of Part I, Case C of Theorem4.12forp=1,k=n —m) In
this case we want to show W™! () — L' (). As in the proof in Paragraph
4.24 it is sufficient to establish the imbedding for a domain 2 that is a union of
parallel translates of a unit cube with edges parallel to the coordinate axes. We
can also assume that 0 € € and that

Q={x=ux,x")eQ:x' =0},

where x' = (x1,... xn) and x”" = (Xug1,...,%n). Forx € Q let Q, be the
intersection of © with the m-plane of variables x’ passing through x. €, contains
an m-cube Q, of edge 1 containing x, and so by Case A of Theorem 4.12 applied
to this cube, we have for u € C* (),

lu(x)| < K Z/ |D*u(x’, x")| dx'.
la]<m ¥ S
Integrating x” over €2 then gives
weldx” <& 3 [ 10t ds.
szk Q

lel<m

The proof of Part I of Theorem 4.12 is now complete. R
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Imbeddings into Lipschitz Spaces

4.27 To prove Part II of Theorem 4.12, we now assume that the domain Q C R*
satisfies the strong local Lipschitz condition defined in Paragraph 4.9, and that
mp > n > (m — 1) p. We shall show that W"?(Q) — C%*(Q) where:

() 0<i<m—@n/p) ifn>(@m-—1)p,or
i) 0<i<l ifn=m—1pandp > 1,0r
(i) 0 <A <1 ifn=m—landp=1.
In particular, therefore, W™?(Q) — C°(Q). The imbedding constants may
depend on m, p, n, and the parameters § and M specified in the definition of the

strong local Lipschitz condition. Since that condition implies the cone condition,
we already know that W™ 7 (Q2) — Cg (RQ), soif u € W™P(Q2), then

sup lu(x)| < Ky lullm p.q -
xeQ

It is therefore sufficient to establish further that for the appropriate A,

| (x) — u(y)l
sup —————

evee |x — y|*
x#y

<Ky llullpmpo-

Since mp > n > (m — 1) p, Cases B and C of Part I of Theorem 4.12 yields the
imbedding W7 (Q) — W'’ (Q) where:
i) r=np/(n—m+Dpandsol —(n/r)y=m—(n/p)ifn > (m—1)p,or
(i) p<r<ooandso0<1—(n/ry<lifn> (m—1)p,or
(iii) r=o0candsol —(n/r)=1ifn=m—land p = 1.

It is therefore sufficient to establish the special case m = 1.

428 LEMMA Let Q satisfy the strong local Lipschitz condition. If u belongs
to W'P (Q) where n < p < oo, andif 0 < A < 1 — (n/p), then

|u(x) — u(y)l
sup ———

wea |x =y
xEY

<K ully g (15)

Proof. Suppose, for the moment, that €2 is a cube having unit edge length. For
0 <t < 1let O, denote a subset of €2 that is a closed cube having edge length ¢
and faces parallel to those of Q2. If x, y € Q and |x — y| = 0 < 1, then there is a
fixed such cube Q, such thatx,y € Q,.

Letu € C*(Q2) If z € Q,, then

1
u(x) —u@z) = / iu(()c +t(z — x))dt,
o dt
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so that .
lu(x) —u(z)| saﬁ/ lgradu((x + t(z — x))| dt.
0

It follows that

u(x) — ai”/ u(z)dz

‘Ui,,/ga(u(x) —u(z))dz

1
< fl dz/ lgrad u((x + 1(z — x))| dt
4 O, 0
n 1
=ani_1 i r"dt/ |lgrad u(¢)| d¢

A

1
n ’
0{_1 lgradully , o / (vol(Q)i,) " 17" d1 (16)
0

< Ko~/ |lgradully . q

where K = K(n, p) = /n fol t™"/Pdt < 0o. A similar inequality holds with y
in place of x and so

lu(x) — u(y)| < 2K|x — y|'"""P|igradully , -

It follows that (15) holds for 0 < A < 1 — (n/p) for &2 a cube, and therefore via a
nonsingular linear transformation, for Q a parallelepiped.

Now suppose that €2 is an arbitrary domain satisfying the strong local Lipschitz
condition. Letd, M, 25, U; and V; be as specified in the definition of that condition
in Paragraph 4.9. There exists a parallelepiped P of diameter § whose dimensions
depend only on § and M such that to each j there corresponds a parallelepiped P;
congruent to P and having one vertex at the origin, such that for every x € V; N Q
we have x + P; C Q. Furthermore, there exist constants 8o and §; depending only
on § and P, with 8y < §, such thatif x,y € V; N and |x — y} < 8o, then there
exists z € (x + P;) N (y + P;) with {x —z{ + |y — z| < 81|x — yj. If follows from
applications of (15) to x + P; and y + P; thatif u € C*(§2), then

l(x) — u(¥)| < |ux) —u@)| + [uly) — u{z)|
< Klx —z[* ully po + Kly — 2" luly o
<Kilx =yl llull - (7

Now let x, y be arbitrary points in Q. If |[x — y| < §p < § and x,y € €, then
x,y € V; for some j and (17) holds. If |[x — y| < o, x € §25, y € 2 — 8,
then x € V; for some j and (17) still follows by an applications of (15) to x + P;
andy + P;. If [x — y| < 89, x, ¥y € 2 — €, then (17) follows from applications
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of (15) to x + P’ and y + P’ where P’ is any parallelepiped congruent to p and
having one vertex at the origin. Finally, if |[x — y| > §, then

lu(x) — u| < luC)| + )| < Ky llully po < Ko x =y lully pg-

Thus (15) holds for all ¥ € C*(2) and, by Theorem 3.17, for all u € Cg (). 1

This completes the proof of Part II of Theorem 4.12 and therefore of the whole
theorem since, as remarked earlier, Part III follows from the fact that Parts I and
II hold for 2 = R".

Sobolev’s Inequality

4.29 (Seminorms) For1 < p < oo and for integers j, 0 < j < m, we
introduce functionals |-|; , on W™ (£2) as follows:

1/p
lulj,p = lul; po = (Z |D°‘u(x>|"dx> .

la|=j

Clearly |uly , = lullg,, = llull, is the norm on L?(£2) and

m 1/p
letll,p = (Z lut,'i,,> :
j=0

If j > 1, we call |-|; , a seminorm. It has all the properties of a norm except that
lul;,, = 0 need not imply # = 0 in W™? (). For example, u may be a nonzero
constant function if € has finite volume. Under certain circumstances which we
begin to investigate in Paragraph 6.29, |-|,, ,, is a norm on Wy (Q) equivalent to
the usual norm |-{l, ,. In particular, this is so if £2 is bounded.

For now we will confine our attention to these seminorms as they apply to functions
in C°(R").

4.30 The Sobolev imbedding theorem tells us that W(;" PRy - L9 (R") for
certain finite values of ¢ depending on m, p, and n; for such ¢ there is a finite
constant K such that for all ¢ € C3°(R") we have

161, < K I, -

We now ask whether such an inequality can hold with |-|,, , in place of |-|l,, -
That is, do there exist constants K < oo and g > 1 such that for all ¢ € C°(R")

Rn

q/p
|¢<x)|ququ(Z |D°'¢<x)|"dx> ? (18)

o= R”
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If so, for any given ¢ € Cy°(R"), the inequality must also hold for all dilates
¢:(x) = ¢(tx), 0 < t < o0, as these functions also belong to C3°(R"). Since
lgell, = 72 | ¢ll, and [[D*¢, ||, = t™~"/P | D*||, if || = m, we must have

q/p
f |6 (x)14 dx < K4gmima—nalp) ( > |D"¢<x)|ﬂdx>
Rn

Ja)=m Y R”

This is clearly not possible for all # > 0 unless the exponent of ¢ on the right side
is zero, that is, unless ¢ = p* = np/(n — mp). Thus no inequality of the form
(18) is possible unless mp < r and ¢ = p* = np/(n — mp). We now show that
(18) does hold if these conditions are satisfied.

4.31 THEOREM (Sobolev’s Inequality) When mp < n, there exists a
finite constant K such that (18) holds for every ¢ € C3°(R"):

ol re < K 16l p (19)

if and only if ¢ = p* = np/(n — mp). This is known as Sobolev’s inequality.
Proof. The “only if” part was demonstrated above. For the “if” part note first
that it is sufficient to establish the inequality for m = 1 as its validity for higher m

(with mp < n) can be confirmed by induction on m. We leave the details to the
reader.

Next, it suffices to prove the case m = 1, p = 1, that is

n n/(n—1)
f lp0) "™ Vdx < K (Z / |D,-¢(x>|dx> : (20)
Rn j=1 ]Rn

forif 1 < p < n and p* = np/(n — p) we can apply (20) to |¢(x)|° where
s = (n — 1) p*/n and obtain, using Holder’s inequality,

n n/(n—1)
f ()17 dx < K (st(x)lf‘lwm(xndx)
Rn

n/(n—1)
Dj¢||,,) -

j=1
Since (s — 1)p’ = p* and p* — (s — Dn/(n — 1) = n/(n — 1), it follows by
cancellation that

n
—1
<K (Z lli5,
j=1

ol < K219l -
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It remains, therefore, to prove (20). Let ¢ € Ci°(R") and for x € R" and
l<j<nletkx;j=(x1,...,Xj—1,Xj41,...,%n). Let

h e 1/(n=1)
uj(x;) = (Zf IDj¢>(X)|dxj> .
iz1 J—o0

which is evidently independent of x; and satisfies

n—1
(o) = e

Since

¢(X)=/ D¢ (t, %) dt

o0

we have

I (x)] sf D16, R0l dr < (ur(R))".

o0

Similarly, [¢ (x)] < (u i (fcj))"_l. Applying the inequality (14) from Lemma 4.23
withk =n — 1 = A we obtain

bl Vax < [ TuGpds
Al

R#

n 1/n=1)
~ — N n/(n—1
= I | / |uj(xj)|n ldxj = lull/lan ) »
i=1 Rn-1 v

which completes the proof of (20) and hence the theorem. il

4.32 (REMARK) Forthecasem = 1,1 < p < n, Talenti [T] and Aubin, as
exposed in Section 2.6 of [Au], obtained the best constant for the equivalent form
of Sobolev’s inequality

16y r— e < K Ngraddll, o @1

by showing that the ratio
”d)”np/(n—p)

lgrad gl ,
is maximized if u is a radially symmetric function of the form

u(x) = (a+ blx[P/P=0) P

which, while not in Cj°(R") is a limit of functions in that space. His method
involved first showing that replacing an arbitrary function # vanishing at infinity
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with a radially symmetric, non-increasing, equimeasurable rearrangement of u

decreased ||grad u|| , g while, of course, leaving [l /n— p) g+ Unchanged.

Talenti’s best constant for (21) is

K =g 1p (P_‘I)W ( (1 +n/2)I(n) >l/n
n-p Fn/pTd+n—@/p))

Variations of Sobolev’s Inequality

4.33 Mixed-norm L” estimates of the type considered in Paragraphs 2.48-2.51
and used in the proof of Gagliardo’s averaging lemma 4.23 can contribute to gen-
eralizations of Sobolev’s inequality. We examine briefly two such generalizations:

(a) anisotropic Soholev inequalities, in which different L” norms are used
for different partial derivatives on the right side of (19), and

(b) reduced Sobolev inequalities, in which the seminorm ||, , g+ on the
right side of (19) is replaced with a similar seminorm involving only a
subset of the partial derivatives of order m of ¢.

Questions of this sort are discussed in [BIN1] and [BIN2]. We follow the treatment
in [A3] and [A4] and most of the details will be omitted here.

4.34 (A First-Order Anisotropic Sobolev Inequality) If p; > 1 for each j
with 1 < j < n and ¢ € C§°(R"), then an inequality of the form

g, <k ) |Diel, (22)
j=1

is a (first-order) anisotropic Sobolev inequality because different L” norms are
used to estimate the derivatives of ¢ in different coordinate directions. A dilation
argument involving ¢(A1x1, ..., Apx,) for 0 < A; < 00, 1 < j < n shows that
no such anisotropic inequality is possible for finite g unless

"1 1
—>1 and -
=1 Pi q

{p n

1 &1 1
n -
j=

If these conditions are satisfied, then (22) does hold. The proof is a generaliza-
tion of that of Theorem 4.31 and uses the mixed-norm Holder and permutation
inequalities. (See [A3] for the details.)

4.35 (Higher-Order Anisotropic Sobolev Inequalities) The generalization
of (22) to an mth order inequality by induction on m is somewhat more problematic.



Variations of Sobolev’s Inequality 105

The mth order isotropic inequality (19) follows from its special case m = 1 by
simple induction. We can also obtain

lgll, < K > 1Dl .

la|=m

I_IZ(m)l m (m)_ m!
q_n’" a/ pg n’ a’  alag!-a!

|a)=m

where

by induction from (22) under suitable restrictions on the exponents p,, but the

restriction : )
m m
. Z ( ) >
n" Lo N/ pa n

will not suffice in general for the induction even though ZI(xI:m ('(:’) = n". The
conditions mp, < n for each « with || = m will suffice, but are stronger than
necessary.

For any multi-index S and 1 < j < n, let

ﬁ[]] = (ﬂla --'7/3j—1v:8j+ 17 :Bj-H’---an)-

Evidently, |8[j]| = |8|+ 1 and it can be verified that if the numbers p, are defined
for all @ with || = m, then

m—1\ e~ 1 my 1
|ﬁ|§—1< B );%1;%(“);;

This provides the induction step necessary to verify the following theorem, for
which the details can again be found in [A3].

4.36 THEOREM Let p, > 1 for all & with || = m. Suppose that for every
B with |B| = m — 1 we have

"1
= psii

> m.

Then there exists a constant K such that the inequality

lgll, <& > ID“6ll,,

|arj=m

holds for all ¢ € C§°(R"), where
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4.37 (Reduced Sobolev Inequalities) Another variation of Sobolev’s inequal-
ity addresses the question of whether the number of derivatives estimated in the
seminorm on the right side of (19) (or, equivalently, (18)) can be reduced with-
out jeopardizing the validity of the inequality for all ¢ € C°(R"). If m > 2,
the answer is yes; only those partial derivatives of order m that are “completely
mixed” (in the sense that all m differentiations are taken with respect to different
variables) need be included in the seminorm. Specifically, if we denote

M=M(n,m)={a tel=m, «a=0oraq;=1forl <j<n,
then the reduced Sobolev inequality

lell, < K > 1D%¢l,
aeM
holds for all ¢ € Cg°(R*), provided mp < n and g = np/(n — mp). Again
the proof depends on mixed-norm estimates; it can be found in [A4] where the
possibility of further reductions in the number of derivatives estimated on the right
side of Sobolev’s inequality is also considered. See also Section 13 in [BIN1].

W™P(f2) as a Banach Algebra

4.38 Given u and v in W™ ?(2), where 2 is a domain in R”, one cannot in
general expect that their pointwise product uv will belong to W™P(2). The
imbedding theorem, however, shows that this is the case provided mp > n and Q
satisfies the cone condition. (See [Sr] and [Mz2].)

4.39 THEOREM Let 2 be a domain in R* satisfying the cone condition.
If mp > nor p=1andm > n, then there exists a constant K* depending
on m, p, n, and the cone C determining the cone condition for §2, such that for
u,v € WP () the product uv, defined pointwise a.e. in €2, satisfies

”uU”m,p,Q S K* “u”m,p,Q “v”m,p,Q . (23)

In particular, equipped with the equivalent norm ||-|| defined by

*
m,p,Q
Nl po2 = K* Nty

W™-P(2) is acommutative Banach algebra with respect to pointwise multiplication
in that

luvlly, o < el 0 V15 .0

Proof. We assume mp > n; the case p = 1, m = n is simpler. In order to
establish (23) it is sufficient to show that if |a| < m, then

/;le“[u(x)v(X)]l” < Ko |[ullm,p.0 1V]m,p.0
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where K, = K, (m, p, n, C). Letus assume for the moment that u € C*°(£2). By
the Leibniz rule for distributional derivatives, that is,

D)=y (“) DPuD Py,
B<a B

it is sufficient to show that for any 8 < «, |¢| < m, we have

fQIDﬂM(X)D“_ﬁv(x)I”dx < Kop lully, , o 005, a0

where K, 3 = Ko p(m, p,n, C). By the imbedding theorem there exists, for
any B with |8 < m, a constant K(8) = K(B,m, p,n, C) such that for any
w e WP (Q),

fQ IDPw()|"dx < K(B) lwl, ,q- (24)

provided (m — |B)p <nand p <r <np/(n—[m — |Bllp)[orp <r < xif
(m — |Bl)p = n], or alternatively

IDPw(x)] < KB) |l o  aeinf

provided (m — |B)p > n.

Let & be the largest integer such that (m —k) p > n. Since mp > n we have k > 0.
If 8| <k, then (m — |B])p > n,s0

fQ D u(x) D" Po(@)|P dx < K(B)” Null}, , o [ D Polg 0

< KB Il g0l g

Similarly, if |« — 8| < k, then
fg|D"u<x)D“—"v(x>|de <K@—p) lull o Ivl? o

Now if |B| > k and |@ — B] > k, then, in fact, || > k+ land & — 8| > k+ 1
sothatn > (m — |B])pandn > (m — |@ — B|) p. Moreover,

n—m—1php  n—(m—le=php _, @m—labp _, mp _
n n n n

Hence there exist positive numbers r and r’ with (1/r) + (1/r’) = 1 such that

_hw
n—(m-—|BHp’

np
n—(m—la—pghp

p=rp< p<r'p<
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Thus by Holder’s inequality and (24) we have

r 1
,/.iDﬂu(x)Da_ﬂv(xﬂpdx < </ IDﬂu(x)|”’dx) (/ ID“_’Sv(x)|r’pdx>
Q Q o

< (KP®)" (K@— )"

lall? o VN2 g

This completes the proof of (23) foru € C*(2), v € W™F(Q).

If u € W™P(£2) then by Theorem 3.17 there exists a sequence {u;} of C*()
functions converging to # in W2 (). By the above argument, {1, v} is a Cauchy
sequence in W™ ?(£2) and so it converges to an element w of that space. Since
mp > n, u and v may be assumed to be continuous and bounded on 2. Thus

lw —uvllgpo < [w— “j””o,p,sz + [ - u)v||0'p‘9

< fw=uly,q+ WWloma 4 —uly,q

-0 as j — oo.

Hence w = uv in L?(£2) and so w = uv in the sense of distributions. Therefore,
w = uv in WP (2) and

N0l p. = Nl pg < limsup [ujv]], o < K™ ullm,pa 1Vl ps0
]—>OO

as was to be shown. i

We remark that the Banach algebra W™ 7 (Q) has an identity element if an only
if Q is bounded. That is, the function e(x) = 1 belongs to W7 (£2) if and only
if © has finite volume, but there are no unbounded domains of finite volume that
satisfy the cone condition.

Optimality of the Imbedding Theorem

4.40 The imbeddings furnished by the Sobolev Imbedding Theorem 4.12 are
“best possible” in the sense that no imbeddings of the types asserted there are
possible for any domain for parameter values m, p, g, A etc. not satisfying the
restrictions imposed in the statement of the theorem. We present below a number
of examples to illustrate this fact. In these examples it is the local behaviour of
functions in W™ 7 (£2) rather than their behaviour near the boundary that prevents
extending the parameter intervals for imbeddings.

There remains the possibility that a weaker version of Part I of the imbedding
theorem may hold for certain domains not nice enough to satisfy the (weak) cone
condition. We will examine some such possibilities later in this chapter.
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4.41 EXAMPLE Let k be an integer such that 1 < k < n and suppose that
mp <nandq > p* = kp/(n —mp). We construct a functionu € W™ 7 (2) such
that u & L7 (S2;), where 2 is the intersection of Q with a k-dimensional plane,
thus showing that W™ 7 (£2) does not imbed into L7 (£2;).

Without loss of generality, we can assume that the origin belongs to Q2 and that
U =xeQ:ixy1=---=x,=0}. ForR > 0,let Bg = {x € R* : |x|] < R}.
We fix R small enough that B, C Q. Let v(x) = |x|#; the value of x will be
set later. Evidently v € C*(R" — {0}). Letu € C*(R" — {0}) be a function
satisfying u(x) = v(x) in Bg and u{x) = 0 outside B,g. The membership of u in
W™ P (£2) depends only on the behaviour of v near the origin:

ue WhP(Q) < veW"?(Bp).
It is easily checked by induction on |«| that
D*u(x) = Po(x)|x|* 72,

where P, (x) is a polynomial homogeneous of degree (| in the components of x.
Thus | D*v(x)| < Ku|x|*71* and, setting p = |x],

R
/ ID“v(x)I”dng,,K[/ pllabpn=1 g o
By 0

where K, is the (n — 1)-measure of the sphere of radius 1 in R". Therefore
ve W™P(Bg)and u €¢ W™P(Q) provided i > m — (n/p).

On the other hand, denoting x; = (x|, ..., x¢) and r = |X|, we have

R
O e o e
0

o2 (Br)x

Thus u & LI1(2) if u < —(k/q).
Since g > kp/(n — mp) we can pick u sothat m — (n/p) < u < —(k/q), thus
completing the specification of u. 1

Note that i < 0, so u is unbounded near the origin. Hence no imbedding of the
form W™P(Q) — C% (Q) is possible if mp < n.

4.42 EXAMPLE Supposemp > n > (m — l)p,andlet A > m — (n/p). Fix
wusothat m — (n/p) < @ < A. Then the function u# constructed in Example 4.41
continues to belong to W™ 7(£2). However, if |x| < R,

) =4Ol _ s

— oo as|x| = 0.
lx — 0
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Thus u ¢ C%*(2), and the imbedding W™ 7 (Q) — C%*(Q) is not possible. 1§

443 EXAMPLE Suppose p > 1 and mp = n. We construct a function u
in W™P(Q) such that u ¢ L*>(£2). Hence the imbedding W™ *(Q2) — L9(S),
valid for p < g < oo, cannot be extended to yield W"™P(Q2) — L°°(2) or
WmP(Q) — C°(Q) unless p = 1 and m = n. (See, however, Theorem 8.27.)

Again we assume 0 € 2 and define u(x) as in Example 4.41 except with a different
function v(x) defined by

v(x) = log(log(4R/|x|}).

Clearly v is not bounded near the origin, so u & L*(£2). It can be checked by
induction on |e| that

o]

Dv(x) = Y Poj(0)lx| 2 (log@R/IxD)) ~/,

=

where P, j(x) is a polynomial homogeneous of degree || in the components of
x. Since p = n/m, we have

ler|

ID“v@)|” < Y Ko jlxl "™ (log(4R/\x])) 77,
j=t

so that, setting p = |x|,

lel AR )
f |D*v(x)|Pdx < KZf (log(4R/p)) /7 plein/mtn=1 g
Bg =1 0

The right side of the above inequality is certainly finite if |«| < m. If |o| = m,
we have, setting 0 = log(4R/p),

e 00
f |ID*v(x)|Pdx < K Zf o /P do
Br j=1 log 4
which is finite since p > 1. Thus v € W™P(Bg) andu € W"?(Q2). 1

It is interesting that the same function v (and hence 1) works for any choice of m
and p with mp = n.

444 EXAMPLE Suppose (m — 1)p = n and p > 1. We construct « in
W™P () such that u ¢ C%'(Q). Hence the imbedding W™?(Q) — C%*(Q),
valid for 0 < A < 1 whenever Q satisfies the strong local Lipschitz condition,



Nonimbedding Theorems for Irregular Domains 111

cannot be extended to yield W7 () — C%'(Q) unless p=1andm — 1 = n.

Here u is constructed as in the previous example except using
v(x) = |x|log(log(4R/|x])).

Since [v(x) — v(0)|/]x — 0| = log(log(4R/|x|)) — 00 as x — Q it is clear that
v & C%'(Bg) and therefore u ¢ C%!(L2). The fact that v € W™ ?(Bg) and hence
u € W™ () is shown just as in the previous example. 1

Nonimbedding Theorems for Irregular Domains

4.45 The above examples show that even for very regular domatins there can exist
no imbeddings of the types considered in Theorem 4.12 except those explicitly
stated there. It remains to be seen whether any imbeddings of those types can
exist for domains that do not satisfy the cone condition (or at least the weak
cone condition). We will show below that Theorem 4.12 can be extended, with
weakened conclusions, to certain types of irregular domains, but first we show
that no extension is possible if the domain is “too irregular.” This can happen if
either the domain is unbounded and too narrow at infinity, or if it has a cusp of
exponential sharpness on its boundary.

An unbounded domain 2 C R” may have a smooth boundary and still fail to
satisfy the cone condition if it becomes narrow at infinity, that is, if

‘l‘im dist(x, bdry ) = 0.
xeQ

The following theorem shows that Parts I and II of Theorem 4.12 fail completely
for any unbounded €2 which has finite volume.

446 THEOREM Let 2 be an unbounded domainin R* having finite volume,
and let ¢ > p. Then W™-P(Q2) is not imbedded in L7(£2).

Proof. We construct a function u(x) depending only on distance p = |x| of x
from the origin whose growth as p increases is rapid enough to prevent membership
in L4(€2) but not so rapid as to prevent membership in W7 (Q).

Without loss of generality we assume vol(£2) = 1. Let A(p) denote the surface
area ((n — 1)-measure) of the intersection of 2 with the surface |x| = p. Then

/ A(p)dp = 1.
0

Letrg = O and define ry fork = 1,2, ... by

0 1 e
/ A(p)dp = —:f A(p)dp.

k
Tk 2 Yi—1
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Since 2 is unbounded, ry increases to infinity with k. Let Ary = ryy; —r¢ and fix €
suchthat0 < € < [1/(mp)] —[1/(mg)]. There must exist an increasing sequence
{k;}52, such that Ary, > 27¢i | for otherwise Ary < 27 for all but possibly
finitely many values of k and we would have Y o Are < 00, contradicting
limr; = oo. For convenience we assume k; > 1 sok; > jforall j. Letay =0,
aj =ry41,and by = ry,. Note that aj_; < b; < a; and aj — b; = Ary, > 274,

Let f be an infinitely differentiable function on R having the properties:
() 0< f(t) <lforally,
(i) f()=0ift <0and f(r)y =1ifr > 1,
(iii) [(d/dn)* f@)l < M foralltif 1 <k <m.
Ifx € Qand p = |x|, set

2ki-1/g fora;_) < p < b;

= — b
u(x) 2K4-1/4 4 (2ki/4 — 2ki-1/4) f (2_71) forb; < p <aj.
a; = b;

Clearly u € C*(£2). Denoting Q; = {x € Q : g;—; < p < qa;}, we have

b; a;
Lm(xn"dx:(f +[) )(u(x))”A(mdp

o0 a;
fzkj*"’/qf A(p)dp + 247/ f " Alp)dp

-1 b;

2~ki-1(I=p/9) 4 2~ki(1-p/q) - 1
- 2 — 20-H-p/D)"

Since p < g, the above inequality forces

/ lu(x)|? dx = Zf lu(x)|? dx < oo.
Q2 j=1v%

Also, if 1 < ¥ < m, we have

J,

p
A(p)dp

K

P a; d
dx = / !
b,

J dp*

< M2 (g - bj)_Kp/ " A(p)dp
b

'}

d“u
dp*

MP2ki(l—p/g—exp)  prpo—Cij
= <
2 - 2 7
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where C = 1 — p/q — €xp > 0 because of the choice of €. Hence D*u € L?(2)
for |a| < m, that is, u € W™ ?(2). However, u ¢ L9(2) because we have for
each j,

/ ()| dx zz"f-'/" A(p)dp
Q; a

j—1

— 2kj,| (2—/(],1—1 _ 2—kj—1) >

FNgS

Therefore W™ ?(£2) cannot be imbedded in LI(£2). 1

The conclusion of the above theorem can be extended to unbounded domains
having infinite volume but satisfying

limsupvol({x e R: N < |[x| < N+ 1}) =0.

N—oo
(See Theorem 6.41.)

4.47 Parts I and II of Theorem 4.12 also fail completely for domains with
sufficiently sharp boundary cusps. If € is a domain in R” and x¢ is a point on
its boundary, let B, = B,(xy) denote the open ball of radius r and centre at xg.
Let 2, = B, N Q, let 5, = (bdry B,) N 2, and let A(r, 2) be the surface area
((n — 1)-measure) of S,. We shall say that 2 has a cusp of exponential sharpness
at its boundary point x; if for every real number & we have

. A )
lim P =
r—0+ v

0. (25)

4.48 THEOREM If Q is a domain in R* having a cusp of exponential sharp-
ness at a point xo on its boundary, then W™?(€2) is not imbedded in L9(£2) for
any q > p.

Proof. We construct u € W™?(Q) which fails to belong to L?(2) because
it becomes unbounded too rapidly near xo. Without loss of generality we may
assume xo = 0, so that r = |x|. Let * = {x/|x|? : x € Q, |x| < 1}. Then Q* is
unbounded and has finite volume by (25), and

Ar, QY =r*""VAU/r, Q).

Let ¢ satisfy p < t < g. By Theorem 4.46 there exists a function v € C"(0, co)
such that

) vir)y=0if0 <r <1,
(i) f 5D A, Q) dr < 00if0 < j <m,
1
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(iii) [OO [B(HI2A(r, Q%) dr = 0.
1

[Specifically, v(y) = ¥(|y|) defines v € W™ (Q*) but v ¢ L(2*).] Let
x =y/|yl*sothat p = |x| = 1/|y| = 1/r. Set > = 2n/q and define

u(x) = i(p) = r*v(r) = [yl v(y).
It follows for |a| = j < m that

J
ID*u(x)| < @) <Y cyr™H 50 (),

i=1

where the coefficients ¢;; depend only on A. Now u(x) vanishes for [x| > 1 and
)

1 fo'e]
flu(x)lquzf m(p)WA(p,sz)dp:f BT Ar, Q%) dr = 0o,
Q 0 1

On the other hand, if 0 < |a| = j < m, we have
1 .
f |D*u(x) [P dx < f @ ()P A, @) dp
Q 0
J 0 ) o
<Ky / [5O () |PrOHHOP=2 A (r Q%) dr.

If it happens that (A + 2m)p < 2n, then, since p < t and vol(2*) < oo, all the
integrals in the above sum are finite by Holder’s inequality, and u € W™ ().

Otherwise let ;

r—p

+ 2n.

k= ((A +2m)p — 2n)
By (25) there exists a < 1 such thatif p < a, then A(p, 2) < o, It follows that

ifr > 1/a, then
rk—ZnA(r’ Q*) < rk—Zpk — 7_2.

Thus
oo
/ |59 (r)|PrOH TP Ay, Q) dr
1

o]
- / Iﬁ(’)(r)]pr(k_z")(t_p)/tA(r, QY dr
i

o P/t s roo (t=p)/t
< ( f 159 () A, Q9 dr) ( / 2 A, Q*)dr)
1 1
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which is finite. Hence u € W™ ?(2) and the proof is complete. I

Imbedding Theorems for Domains with Cusps

4.49 Having proved that Theorem 4.12 fails completely for sufficiently irregular
domains, we now propose to show that certain imbeddings of the types considered
in that theorem do hold for less irregular domains that nevertheless fail to satisfy
even the weak cone condition. Questions of this sort have been considered by
many writers. The treatment here follows that in [A1].

We consider domains €2 in R* whose boundaries consist only of (n—1)-dimensional
surfaces, and it is assumed that €2 lies on only one side of its boundary. For such
domains we shall say, somewhat loosely, that ©2 has a cusp at point x( on its
boundary if no finite open cone of positive volume contained in €2 can have its
vertex at xg. The failure of a domain to have any cusps does not, of course, imply
that it satisfies the cone condition.

We consider a family of special domains in R” that we call standard cusps and
that have cusps of power sharpness (less sharp than exponential sharpness).

4.50 (Standard Cusps) Ifl1 <k <n—1and A > 1, let the standard cusp
Q.. be the set of points x = (x1, ..., x,) in R" that satisfy the inequalities

2 2 2
Xyt X <X Xg+1 > 0,...,x, >0,

i+ )+ xp o+ x? < a? (26)

where ¢ is the radius of the ball of unit volume in R”. Note that a < 1. The
cusp Q. has axial plane spanned by the x;, . . ., x, axes, and verticial plane (cusp
plane) spanned by xi42, ..., x,. If k = n — 1, the origin is the only vertex point
of O«. The outer boundary surface of Oy, corresponds to equality in (26) in
order to simplify calculations later. A sphere or other suitable surface bounded
and bounded away from the origin could be used instead.

Corresponding to the standard cusp Qy » we consider the associated standard cone
Cr = Q.1 consisting of points y = (yy, ..., y,) in R” that satisfy the inequalities

y12+---+y,% <y,f+1, Vir1 >0, ..., 9, > 0,
y12+---+y,21 <a’
Figure 3 illustrates the standard cusps Q1 in R?, and Q2 and Q| , in R?, together
with their associated standard cones. In R* the cusp Q> ; has a single cusp point
(vertex) at the origin, while Q) 2 has a cusp line along the x3-axis.

It is convenient to adopt a system of generalized “cylindrical” coordinates in R”,
(Fks @15 ooy Dty Vi1, -y Yn), sothat e > 0, =1 < ¢y < 7,0 < ¢,...,
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i1 =< m,and

Y1 =rg sin ¢y sin ¢z - -+ sin ¢y

Y2 = 1y cOs ¢ sin ¢y - -~ sin ¢y

y3 = i COS ¢y - - - sin @y @7
Yk = T COS y—1.
In terms of these coordinates, Cy is represented by
O0<rm <y+1, Yt1>0,...,9, >0,
r,<2+y,f+1+---+y3‘ <a2.
X2 4 X2
Q12 Ied
R? R?
X1 x:
X3 X3 4
022 e,
R? R?
X1 / X2 X1 / X2
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X3 X3 4

Cia C

x; X2
3
X1 R X1 R}

Fig. 3

The standard cusp Qy.; may be transformed into the associated cone Cy by means
of the one-to-one transformation

X1 =r£‘ sin ¢1 sin ¢2 sin ¢k71

Xy = r,? COS ¢ sin ¢py - -+ sin @y

X3 = r,? COS¢2--‘ sin ¢k—1
(28)
Xk = rr cos P
Xi+1 = Yr+1
Xn = Yn,
which has Jacobian determinant

a(xy, ..., X _
‘ (x1 n) _ )‘rlik Dk (29
0¥, .vy Yn)

We now state three theorems extending imbeddings of the types considered in
Theorem 4.12 (except the trace imbeddings) to domains with boundary irregular-
ities comparable to standard cusps. The proofs of these theorems will be given
later in this chapter.

4.51 THEOREM Let © be a domain in R" having the following property:
There exists a family " of open subsets of € such that
(1) Q= U(;Er G,
(ii) T has the finite intersection property, that is, there exists a positive integer
N such that any N + 1 distinct sets in I have empty intersection,
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(iii) at most one set G ¢ T satisfies the cone condition,

(iv) there exist positive constants vand A such that foreach G € I" not satisfying
the cone condition there exists a one-to-one function ¥ = (Y1, ..., ¥,)
mapping G onto a standard cusp Qy ,, where (A — 1)k < v, and such that
foralli, j,(1 <i,j <n),allx € G,andally € O,

v (o,
ﬂ SA and M SA'
0X; ay;
If v > mp — n, then
Wm’P(Q) — L‘I(Q)’ for p < q < _(li_—f—_l’l)—p
v+n—mp

If v = mp — n, then the same imbedding holds for p < ¢ < co, and for g = oo
If v < mp — n, then the imbedding holds for p < g < oc.

4,52 THEOREM Let Q2 be a domain in R* having the following property:
There exist positive constants v < mp — n and A such that for each x € 2 there
exists an openset G withx € G C 2 and a one-to-one mapping ¥ = (1, ..., ¥,)
mapping G onto a standard cusp Qy x, where (A — 1)k < v, and such that for all
i,j,(1<i,j<n),allx € G,andall y € O,

oy
Bxi

Y,

< A.
ay; -

<A and ‘

Then
WP (Q) — C5 ().

More generally, if v < (m — j)p —n where 0 < j < m — 1, then

WP (Q) - C}(Q).

4.53 THEOREM Let Q be a domain in R* having the following property:
There exist positive constants v, §, and A such that for each pair of points x, y €
with |x — y| < § there exists an open set G with x,y € G C € and a one-to-
one mapping ¥ = (¥, ..., ¥,) mapping G onto a standard cusp Oy ,, where
(L= Dk < v,and suchthatforalli, j, (1 <i, j <n),allx € G,andally € Oy,

i

3X,'

Y,

< A.
Y -

<A and ‘
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Suppose that in—j—1)p < v+n < (m— j)pforsomeinteger j,(0 < j <m—1).

Then
n+v

P

If (m — j —1)p = v +n, then the same imbedding holds for 0 < p < 1. In either
event we have W7 (Q) — C/(Q).

WP (Q) — CHH(R) for O<p<m—j—

4.54 REMARKS

1. In these theorems the role played by the parameter v is equivalent to an
increase in the dimension » in Theorem 4.12, where increasing n results
in weaker imbedding results for given m and p. Since v > (A — 1)k, the
sharper the cusp, the greater the equivalent increase in dimension.

2. The reader may wish to construct examples similar to those of Paragraphs
4.41-4.44 to show that the three theorems above give the best possible
imbeddings for the domains and types of spaces considered.

4.55 EXAMPLE To illustrate Theorem 4.51, consider the domain
Q={x=(x1,x,x3) € R x>0, %3 <x < 3x3}.

If a = (47/3)~/3, the radius of the ball of unit volume in R?, it is readily verified
that the transformation

y1=x1+2x§, ya=x2, yi=x3—(k/a), k=0,%£1,£2,...

transforms a subdomain G of Q onto the standard cusp Q12 C R® in the manner
required of the transformation ¥ in the statement of the theorem. Moreover,
{G}72 _ ., has the finite intersection property and covers 2 up to a set satisfying
the cone condition. Using v = 1, we conclude that W™P(QQ) — L9(R2) for
p<q <4p/4 —mp)if mp < 4,orfor p < g < oo if mp = 4, or for
p<qg<ocifmp > 4.

Imbedding Inequalities Involving Weighted Norms

4.56 The technique of mapping a standard cusp onto its associated standard cone
via (28) and (29) is central to the proof of Theorem 4.51. Such a transformation
introduces into any integrals involved a weight factor in the form of the Jacobian
determinant (29). Accordingly, we must obtain imbedding inequalities for such
standard cones involving L”-norms weighted by powers of distance from the axial
plane of the cone. Such inequalities are also useful in extending the imbedding
theorem 4.12 to more general Sobolev spaces involving weighted norms. Many
authors have treated the subject of weighted Sobolev spaces. We mention, in
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particular, Kufner’s monograph [Ku] which focuses on a different class of weights
depending on distance from the boundary of €2.

We begin with some one-dimensional inequalities for functions continuously dif-
ferentiable on an open interval (0, 7') in R.

457 LEMMA Letv > Oandu € C'(0,T). If fOT | (£){t" dt < oo, then
lim, o4 u(t)|t* =0.

Proof. Lete > 0 be given and fix s in (0, 7/2) small enough so that for any ¢,
0 <t < s, we have

/ lu'(v)|t" dT < €/3.
t

Now there exists § in (0, s) such that
T/2
8w (T/2)| <€/3 and (8/s)”/ lu' (D)t dT < €/3.
s
If0 <t <4, then
T/2
)| < @/l + [ wwlde
t
so that
s T/2
t"u(@)| < 8" |\u(T/2)| +/ [ (T)|t" dT + (8/s)”/ W' (T)|t" dt < €.
t s

Hence lim, oy |u()|t* =0. 1

458 LEMMA Lletv>0,p>1l,andue C'(0, T). Then
T 1 T T
/ lu@®)|P’dr < if |u(t)|”t”dt+£/ ()P ' ()¢ de. (30)
0 vl Jo v Jo

Proof. We may assume without loss of generality that the right side of (30) is
finite and that p = 1. Integration by parts gives

r v+ 1 T 1 d
t e dr=— £ — =) ()| dt,
[ wor (st = e Y= [ (= 1) S

the previous lemma assuring the vanishing of the integrated term at zero. Trans-
position and estimation of the term on the right now yields

T 1 T T
v/ lu@®|t" " dr < Ki—f |u(t)|t”dt+/ |’ (1)|¢" dt,
0 T Jo 0
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whichis (30) forp = 1. 1
459 LEMMA letv>0,p>1,anduc C10, 7). Then

T T
sup Ju(t)|P < %f |u<r>|Pdt+p/ (1P~ ' (0)) d 31
0 0

O<t<T
T

v U+3 v r —1..7 v
sup |u(@®)|Pt’ < —— lu()|Pt" dt + 2p (P~ u' (O|t” de. (32)
0<i<T T Jo 0

Proof. Again the inequalities need only be proved for p = 1. If 0 <t < T/2,
we obtain by integration by parts
t+ d d
u — -7 T
2

/o u<t+5—r) drzzlu(m—/o T—

dt
whence
2 T T
lu(@)] < —/ Iu(c)ld0+f lu'(0)| do.
T Jo 0

For T/2 < t < T the same inequality results from the partial integration of
fOT/2 |u(t + 7 — T/2)|dz. This proves (31) for p = 1. Replacing u(t) by u(¢)r"
in this inequality, we obtain

O<t<T

2 (T T
sup [u(n)it” < 7/ |u<r)|t”dz+f ('O + viu@r™") dr
0 0

2 T T
—f lu(t)|t” dt +/ lu’ ()" dt
T Jo 0

v+1 (T ) 1T,
+v lu(®)|t" dt + — lu'(®)|t" de ),
vl Jp v Jo

where (30) has been used to obtain the last inequality. This is the desired result
(32)forp=1. 1

4.60 Now we return to R” for n > 2. If x € R*, we shall make use of the
spherical polar coordinate representation

x=(p7¢)=(pa¢17~--’¢n—l)5
Wherepzov_ﬂs(pl§n705¢27"'7¢n—1 Snyand

X; = p Sin ¢ sin ¢y - -+ Sin @1,
X2 = pCos¢ singy--- sin @y,

X3 = pCOSPy -+ sin P,

X, = PCOSP,_1.
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The volume element is

n—1
dx =dxidxy -+ dx, = p"! l_lsinj—1 oidpde,
j=1

where dp =d¢py -+ - dpp_1.
We define functions ry = ry(x) for 1 < k < n as follows:

n—1

ri(x) = plsing || [ sing;,
i=2

n—1

re(x) =pl_[sin¢j, k=2.3,...,n—1,
j=k

rn(x) = p.

For1 <k <n — 1, ri(x) is the distance of x from the coordinate plane spanned
by the axes Xxx41, . . ., Xn; of course r,(x) is the distance of x from the origin. In
connection with the use of product symbols of the form P = []_, P;, we follow
the conventionthat P =1 if m < k.

Let C be an open, conical domain in R* specified by the inequalities

O<p<a, —Pi<pr<p, 0=¢;<p, Q=<j=n-1, (33

[T L]

where 0 < B; < m. (Inequalities “<” in (33) corresponding to any f§; = 7 are
replaced by “<.” If all 8; = m, the first inequality is replaced with 0 < p < a.)
Note that any standard cone C; (introduced in section 4.50) is of the form (33) for
some choice of the parameters §;, 1 <i <n — 1.

4,61 LEMMA Let( beasspecifiedby (33)andlet p > 1. Suppose that either
m=k=1l,or2<m<nandl <k <n.Letl —k <v; <v <vy, <00. Then
there exists a constant K = K(m, k, n, p,vl,v2, By, ..., B,_1) independent of v
and a, such that for every u € C!(C) we have

/ | Q)P [re ()] [rm ()]~ dx
‘ . (34)
< Kfc lu(x)|P~! (;Iu(x)l + |gradu(x)|) [re(x)]” dx.

Proof. Once again it is sufficient to establish (34) for p = 1. Let C be the set
{x =(p,9) : ¢y > 0}and C_ the set {x = (p,¢) : ¢, <0}. ThenC =C, UC_.
We prove (34) only for C+ (which, however, we continue to call C); a similar proof
holds for C_, so that (34) holds for the given C. Accordingly, assume C = C;..
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For k < m we may write (34) in the form (taking p = 1)

k-1 m—1 n—1
f lu| [ [sin/=" ¢; [] sin**/ =" ; [ [ sin"*/ 2 0" "2 dp dop
c j=2 Jj=k Jj=m

1 k=1 ] n—1 ]
<K - d i1 savj—1 o v+n—1d do.
< & [ (Gt tersaur) [ s ¢, [sin"/~ 050"+ dp

j=2 j=k
For k > m > 2 we may write (34) in the form

m—1 k—1 n—1 .
/ |u 1_[ sin/~! ¢; ]_[ sin/ 2 ¢; n sin"™ 2 ¢ 0" "2 dpdg
c =2 m j=k

j:
k—1 n—1
1 s j—1 s ovtj-1 vtn—1
<K [ [ ~|ul+ |gradu] sin/ =1 ¢; [ [ sin"*/ " ¢y dpdé.
c \a 3 "

j=2 j=k

By virtue of the restrictions placed on v, m, and k in the statement of the lemma,
each of the two inequalities above is a special case of

i—1 n—1
/ |ul ]’[ sin® ¢ H sin' " ¢ p" "2 dp d
¢ =1 =i
| - (35)
< Kf (—lu|+lgradul)]—[sin“’ ¢ip" " dpdg,
c\a j=1

where 1 <i <n,u; > 0,and u; > 0if j > i. We prove (35) by backwards
inductiononi. Fori = n, (35) is obtained by applying Lemma 4.58 to u considered
as a function of p on (0, a), and then integrating the remaining variables with the
appropriate weights. Assume, therefore, that (35) has been proved fori = k + 1
where 1 < k < n — L. We prove it must also hold for i = k.

If B < mr, we have

sin ¢ < ¢ < K;singy, 0< ¢y < B, (36)
where K| = K (). By Lemma 4.58, and since

n—1

< plgradu| [ sing;.
j=k+1

ey

‘Bu

we have

B
/ [u(p, $)|sin"*~" ¢y dgy
0
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B
< f ulgl~" dey
1]

B n—1
<k [ (Iul+lgradulp I sin¢,~) o1 dox
0

j=kt1

Bx n-1
< K3/ (lul + |grad ujp l—[ sinq)j) sin** ¢ dey.
0

Jj=k+1

@37

Note that K5, and hence K3, depends on 8; but may be chosen independent of i,
and hence of v, under the conditions of the lemma. If 8, = 7, we obtain (37) by

writing fon = 0”/ *4 f; 2 and using the inequalities

singy < ¢ < (/2)singy if 0<¢=<m/2
singy <7 — ¢y < (w/2)singy,  if w/2 < <.

We now obtain, using (37) and the induction hypothesis,

k=1 n—1
/ lu| 1_1 sin®/ ¢; 1_[ sin“i ! ¢; """ 2 dpd¢
¢ j=1 j=k
a k—1 ﬂ/-
S/ pv+n—2 dpl_[/ sin® ¢j d¢j
0 j=1 0

n—1 B B
x ]_[f sin“f'1¢jd¢jx/ |u| sin ! oy dey
j=k+170 0

n—1

< K?,f |grad u| l_[sin“f ¢ip" ™ ' dpdg
c

j=1
k n—1
+K3/ ul [ [sin ¢; [] sin~' ¢;0"*" 2 dpdg
¢ =1 j=k+1

1

1 o
< Kf (—lul + |gradu|> ]—[sin“f ¢jp”+"‘1 dodg.
c \ad

j=1

This completes the induction establishing (35) and hence the lemma. 1

(38)

The following lemma provides a weighted imbedding inequality for the L¢-norm
of a function defined on a conical domain of the type (33) in terms of the W™7-
norm, both norms being weighted with a power of distance r; from a coordinate

(n — k)-plane. It provides the core of the proof of Theorem 4.51.

4.62 LEMMA Let C be as specified by (33) and let p > l and 1 < k < n.
Suppose that max{l — k, p — n} < v; < vy < oo. Then there exists a constant
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K = K(k,n, p,vi,v2, 81, ..., Ba—1), independent of a,_such that for every v
satisfying v; < v < v, and every function u € C!(C) N C(C) we have

l/q
(/C | ()| [ric (x)]" dX>

1 1/p
<K (f <—|u(x)|p + |gfadu(x)|p) [rk(x)]”dx) ,
c \af

whereg = (v+n)p/(v+n — p).

Proof. Letd = (v+n—1l)p/(v+n—p),lets = (v+n—1)/v, and let
s = (w+n—1)/(n — 1). We have by Holder’s inequality and Lemma 4.61 (the
casem = k)

/s 1/s'
/ O (01" dx < |u|5r,:“dx) ( / |u|"5/‘"‘”r£”/‘”‘”dx>
C c C

1 1/s
< K (/ lul~1 <—|u| + |gradu|) ry dx)
I a
1/s'
x </C |u|"5/("—”r,f”/<"‘”dx> : (40)

In order to estimate the last integral above we adopt the notation

39

:(¢17--"¢n—1)1 ¢;=(p’¢1’"'3¢j’¢j+1w”’¢n—l)r 15.]5”_1’
where the caret denotes omission of a component. Let

={p*: (p,p*) eCfor0 < p <a)
Ci=1{e]:(p,¢) € Cfor0 < ¢; < p;}.

C; and C;, (1 < j <n—1),are domains in R*~!. We define functions F on Cs
and F; on C; as follows:

(Foo™)"™ = sup (jul’p**"~") ]"[sm 5 TTsin" 4,

O<p<a i=2
(Fj((p-;k))nfl _ ( sup (|u|6 Sinv+n—l ¢j)> pv+n—2
0<¢;<p;

X nsm d),l—[sm’ Lo l_[ sin' =2 ¢;.

i=j+1
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Then we have
n—1 ) n-l
|uln6/(n—1)r1:'”/("_1)p"_l H sin' =t ¢; < Fo(p*) 1_[ Fj(@7).

Applying the combinatorial lemma 4.23 with k = n — 1 = A we obtain

‘/Iul"‘s/(”‘“r,ﬁ'”/("‘”dx
C

n—1
< fc Foto*) [ Fi61) dpde
j=1

(1

Now by Lemma 4.59, and since [du/dp| < |gradu],

nel 1/(n—1)
(Foe™)" s [ ] fc (Fyop) " dp d%) SN
=176

*
0

a 1
sup [ul’ o < Ky f ™! (;|u|+|gradu|) p" " dp,
0

O<p<a

where K is independentof vfor 1 —n < vy <v < v <oo. It follows that

f (Fo(,o*))"‘1 do < K2/ lu)?~! (élul + Igradul) rl dx. 42)
Cc* C

0

Similarly, by making use of (36) or (38) as in Lemma 4.61, we obtain from Lemma
4.59

sup |ul®sin”t =1 g
0<¢j<@

b du
< Ky |2 lu| + 3
0 j

n—1

B - .
<Koy [l (|u|+|gradu|p I sin¢,~> sin“*i=1 ¢, dgy,
0

i=j+1

) sin"t ! ¢; dp;

since |du/¢;| < p ]—[::;H sin ¢;. Hence

f (F@))" dpdd;

J

< szj/ |gradu||ul‘s_lr,fdx+K2yjf |u|‘sr,frj_+11 dx
c c

1
< K3,jf ul?~! (EIMI + Igradu|> ry dx, (43)
¢
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where we have used Lemma 4.61 again to obtain the last inequality. Note that
the constants K ; and K3 ; can be chosen independent of v for the values of v
allowed. Substitution of (42) and (43) into (41) and then into (40) leads to

1 1/s+n/((n=1)s")
/ [l r] dx < K4 <f |2e)?71 (~|u| + |gradu|) ry dx)
c C a
(p=D/p
<K ([/ Iul"rk“dX}
c

1 1/p
X [21’—1/ (—plul"—i—lgradul”) r,:dx} )
c \a

Since (v +n — 1)/(v +n) — (p — 1)/p = 1/q, inequality (39) follows by
cancellation for, since u is boundedon C and v > 1 — n, fc lu|?r} dx is finite. 1

(v4n)/(v+n—1)

4.63 REMARKS

1. The assumption that u € C (C) was made only to ensure that the above
cancellation was justified. In fact, the lemma holds forany u € C L©O).

2.1 —k<vi <vy <ooand vy <v < vy, where p > v + n, then (39)
holds for any ¢ satisfying 1 < ¢ < oo. It is sufficient to prove this for
large g. If g > (v+n)/(v+n—1),theng = (v + n)s/(v +n — s) for
some s satisfying 1 < s < p. Thus

s/q 1
(/ |u|qr,:dx) <k [ (—|u|f+|gradu|f) rds
c c\a*
| s/p (p—s)/p
< K<2(p2)/5/ (_|u|P+lgradu|p) r;dx) </ r,de)
c \af ¢

which yields (39) since the last factor is finite.

3. If v = m, a positive integer, then (39) can be obtained very simply as
follows. Let y = (x,2) = (X1, ..., Xn, 21, - - - » Z;m) denote a point in R*+"
and define u*(y) = u(x) forx € C. If

Cr={yeR™ :y=(x,2),x€C 0<z <r(x), 1< j<m},

then C* satisfies the cone condition in R"*™ whence by Theorem 4.12 we
have, putting g = (n + m)p/(n + m — p),

1/q l/q
(furrpax) "= ([ oy )
¢ c
1 l/p
<k ([ (Gmrow +iemdicor) a)
C* a
1 1/p
=K (/ <—|u|” + |gradu|”) ry dx)
c\a’
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since |grad u*(y)| = |grad u(x)|, u* being independent of z.
4. Suppose that u € Cg°(R"), or, more generally, that

/ [u(xX)|? [re(x)]" dx < o0
Rﬂ

with v as in the above lemma. I[f wetake 8; = 7,1 <i <n — 1, and let
a — o0 in (39), we obtain

l/q 1/p
(/ u(x)|? [rk(X)]“dX) <K (/ lgrad u(x)|? [rk(x)]”dx) .
R R

This generalizes (the case m = 1 of) Sobolev’s inequality, Theorem 4.31.

As final preparations for the proofs of Theorems 4.51-4.53 we need to obtain
weighted analogs of the L*> and Holder imbedding inequalities provided by The-
orem 4.12. It is convenient here to deal with arbitrary domains satisfying the cone
condition rather than the special case C considered in the lemmas above. The
following elementary result will be needed.

4.64 LEMMA Letz € R and let Q be a domain of finite volume in R*. If
0 <v <k, then

/ [x —z|Vdx < K (vol(Q))! /%,
Q k —V

where the constant K depends on v and k, but not on z or 2.

Proof. Let B be the ball in R¥ having centre z and the same volume as Q. It is
easily seen that the left side of the above inequality does not exceed || g 1Xx—z|7"dx,
and that the inequality holds for @ = B. 1

4.65 LEMMA Let Q2 C R" satisfy the cone condition. Let 1 < k < n and let
P be an (n — k)-dimensional plane in R*. Denote by r(x) the distance from x to
P. If0<v<p-—n,thenforallu e C1(2) we have

1/p
sup ju(x)| < K (/ (lu(x)|? 4 |grad u|?) [r(X)]”dx> , (44)
Q

x€Q

where the constant K may depend on v, n, p, k, and the cone C determining the
cone condition for £2, but not on u.

Proof. Throughoutthis proof A; and K; will denote various constants depending
on one or more of the parameters on which K is allowed to depend above. It is
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sufficient to prove that if C is a finite cone contained in £ having vertex at, say,
the origin, then

1/p
lu(@)] < K (/ (lu(x)|? + |grad u|”) [r(x)]“dx) . (45)
C

For0 < j < n,let A; denote the supremum of the Lebesgue j-dimensional mea-
sure of the projection of C onto R/, taken over all j-dimensional subspaces R/ of
R*. Writing x = (x', x”) where x’ = (x1, ..., xy—) and x”" = (Xp—pt1s - - - » Xn)>
we may assume, without loss of generality, that P is orthogonal to the coordinate
axes corresponding to the components of x”. Define
S={x"eR*: &, x") e C for some x” € R},
R(x)={x"eR: (x',x") e C} foreachx’ €.
For0 <t < 1 wedenote by C, thecone {rx : x € C}sothat C, CCand C, =C

if + = 1. For C, we define the quantities A, ;, S;, and R;(x") analogously to the
similar quantities defined for C. Clearly A, ; =t/ A;. If x € C, we have

1
d
u(x) = u(0) -|-/(; Eu(tx)dt,

so that 1
[ (0)| < |u(x)|+ IxI/ |grad u(rx)| dt.
0

Setting V = vol(C) and a = sup, . |x|, and integrating the above inequality over
C, we obtain

1
Vlu(o)lfflu(x)ldx+a// |grad u(tx)| dt dx
c cJo
1
-—_/ |u(x)|dx+a/ t_"dt/ |grad u(x)|dx. (46)
c 0 c

Let z denote the orthogonal projection of x onto P. Thenr(x) = |x” — z”|. Since
0 <v < p—n,wehave p > 1, and so by the previous lemma

[r()]™/ PP ax = / dx’/ [x” = "7V P gy
G S (x7)

< K, [Ar’k]l—v/(k(lf—m dx'
S,

< Ki[A ) TP A ] = Kort D,
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It follows that
/ |grad u(x)| dx
G

1/p 1/p
= (/ lgradu(X)l”[r(x)]”dx> ( [r(x)]“’/(!’—”dx)
G c

1/p
< Kst" /e ( |gradu(x)|1’[r(x)]"dx> ) 47
C
Hence, since v < p —n,
1 l/p
/ t " dr lgradu(x)| dx < K4 (/ |grad u(x)|?[r (x)1" dx) . (48)
0 C, C
Similarly,
1/p 1/p'
f lu(x)|dx < ( / |u(x)|"[r(x)]“dx) ( f [r(x)]‘”/""”dx)
C C C
1/p
< Ks ( / |u<x)|"[r(x)]”dx) . (49)
C

Inequality (45) now follows from (46), (48), and (49). 1

4.66 LEMMA Suppose all the conditions of the previous lemma are satisfied
and, in addition, §2 satisfies the strong local Lipschitz condition. Then for all
u € C1() we have

. 1/p
Ju) ZuG} _ g ( / (uGP + |gradu<x)|")[r(x)]“dx) . (50)
v ST——Tn o

X#y

where i = 1 — (v +n)/p satisfies 0 < ¢ < 1, and K is independent of u.

Proof. The proof is the same as that given for inequality (15) in Lemma 4.28
except that the inequality

/ lgrad u(z)| dz < K"~ mip (Igradu(z)l”[r(z)]”dz)l/p (51)

1o

is used in (16) in place of the special case v = 0 actually used there. Inequality
(51) is obtained in the same way as (47) above. 1
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Proofs of Theorems 4.51-4.53

467 LEMMA Letv>0.Ifv>p—n,letl <g<@®+n)/(v+n-—p),
otherwise, let 1 < g < oo. There exists a constant K = K (n, p, v) such that for
every standard cusp Oy, (see Paragraph 4.50) for which (A — 1)k = v < v, and
every u € C'(Qy.,), we have

Nellog. 00, < K llully p.o,, - (52)

Proof. Since each O, has the segment property, it suffices to prove (52) for
uecC 1(Qk.,\). We first do so for given k and A and then show that K may be
chosen to be independent of these parameters.

First suppose v > p — n. It suffices to prove (52) for
g=@Ww+n)/(v+n-—p).

Foru € C'(Qr,) define u(y) = u(x), where y is related to x by (27) and (28).
Thus iz € C'(Cy) N C(Cy), where Cy is the standard cone associated with Qy ;. By
Lemma 4.62, and since g < (v +n)p/(v + n — p), we have

1/q
lullo.g. o0, = (/\/C |ft(y)|q[rk(y)]”dy>

1/q
<K (/C (lft(y)l”+lgradﬁ(y)l”)[rk(Y)]”dy) . (53)

Now x; = r} 'y if |l < j < kandx; = y;ifk+1 < j < n. Since

ri =yl +-- 4y} wehave
3xj _ {aijrg-‘ + o= DrfPyy ifl<ij<k
dy; 8ij otherwise,
where 8;; = 1 and é;; = 0if i # j. Since r¢(y) < 1 on Cy it follows that
lgrad u(y)| < K,|gradu(x)|.

Hence (52) follows from (53) in this case. For v < p —n and arbitrary g the proof
is similar, being based on Remark 2 of Paragraph 4.63.

In order to show that the constant K in (52) can be chosen independent of k and
A provided v = (A — 1)k < ¥, we note that it is sufficient to prove that there is a
constant K such that for any such k, A and all v € C'(C;) N C(Cy) we have

1/q
(/C Iv(y)l"[rk(y)]”dy)

U (54)
<Kk (fc (Iv(y)l”+|gradv(y)l")[rk(y)]”dy> :
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In fact, it is sufficient to establish (54) with K depending on k as we can then use
the maximum of K (k) over the finitely many values of k allowed. We distinguish
three cases.

Casel v < p—n,1<gq < o0o. By Lemma 4.65 we have for) < v < v,

1/p
sup [v(y)| < K(v) (/C (lvn1? + Igradv(y)l”)[rk(y)]”dy> . (55)

yeCi

Since the integral on the right decreases as v increases, we have K(v) < K(¥)
and (54) now follows from (55) and the boundedness of C;.

Casell Vv > p—n. Againitis sufficient to deal withg = (V+n)p/(v+n — p).
From Lemma 4.62 we obtain

1/s l/p
(/ lvl*ry dy) < K, (f (IvI? + |grad v|P)ry dy) , (56)
Ck Ck

wheres = (v+n)p/(v+n—p) > g and K isindependent of vfor p—n < vy < V.
By Holder’s inequality, and since r¢(y) < 1 on C;, we have

1/q 1/s
( ol?rg dy) < ( Iy dy) (vol(Cy)) "
Ck Ck

so that if vy < v < v, then (54) follows from (56).

If p —n < 0, we can take vy = 0 and be done. Otherwise, p > n > 2. Fixing
vo=(—n+p)/2,wecanfind v, suchthat0) < v; < p—n(orv; =0if p =n)
such that for v; < v < vy we have

_ +n)(+np .
@+ +E—vp T 1+e

where ¢y > 0 and depends only on v, n, and p. Because of the latter inequality
we may also assume  — n < v;. Since (v + n)t/(v +n — r) = g we have, again
by Lemma 4.62 and Holder’s inequality,

1/q 1/t
(f [vlr) dy) < K, </ (Ivf + |grad v|‘)r} dy)
Ck Ck
(p—t)/pt P p\,.v P (p—t)/pt
2 K (Ivl? + |gradv|?)ry dy (vol(C)) , (57)
Ci

where K is independent of v for v; < v < vy

In the case v; > 0 we can obtain a similar (uniform) estimate for 0 < v < v; by
the method of Case I.  Combining this with (56) and (57), we prove (54) for this
case.
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CaseIll v =p—n, 1 <qg < oo. Fixs > max{g,n/(n — 1)} and let
t = (v+n)s/(v+n+s),sos = (v+n)t/(v+n—t). Thenl <t < ps/(p+s) < p
for < v < v. Hence we can select v; > Osuchthatt —n < v; < p —n. The
rest of the proofis similar to Case II.  This completes the proof of the lemma. I

4.68 (Proof of Theorem 4.51) It is sufficient to prove only the special case
m = 1, for the general case then follows by induction on m. Let g satisfy
p<qg=@w+np/(v+n—p)ifv4+n> p,or p <q < oo otherwise. Clearly
qg < np/(n — p)if n > p soin either case we have by Theorem 4.12

lullog.c < Kiliully o6

for every u € C!(2) and that element G of I' that satisfies the cone condition
(if such a G exists). If G € T does not satisfy the cone condition, and if
W : G — Q.,, where (A — D)k < v, is the 1-smooth mapping specified in the
statement of the theorem. Then by Theorem 3.41 and Lemma 4.67

lullo.g.c < K2 |uow™ < Ksfuow™|, o < Kailul,c.

Toson,

where K4 is independent of G. Thus, since g/p > 1,

q/p
el g < D2 Ml g6 = Ks Y (117

Gell Gerll

q/p
<Ks (Z uunf,,,,c) < KsN? |lull? , o,

Gel

where we have used the finite intersection property of I" to obtain the final in-
equality. The required imbedding inequality now follows by completion.

If v < mp — n, we require that W"?(Q) — L9(£2) also holds for ¢ = oo. This
is a consequence of Theorem 4.52 proved below. 1

469 LEMMA Let 0 < v < mp — n. Then there exists a constant
K = K(m, p,n,v) such that if O, is any standard cusp domain for which
(A—Dk=v<vandifu € C"(Qy.,), then

sup |u(x)| < K ([l p.g,, - (58)

xeQii

Proof. Again it is sufficient to prove the lemma for the case m = 1. If u belongs
to C'(Qx.1) where (A — 1)k = v < b, then we have by Lemma 4.65 and via the
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method of the second paragraph of the proof of Lemma 4.67,

sup |u(x)| = sup |u(y)|
x€Q0ka yeCy

l/p
<K ( / (a1 + lgrada<y)|")[rk(y)]“dy)
Ci
1/p
<K, ( f (1(O)I? + |grad u(x)|?) dx) . (59)
Qe
Since ry(y) < 1 for y € C it is evident that K, and hence K5, can be chosen

independent of k and A provided0 <v=(QA -1k <v. §
4.70 (Proof of Theorem 4.52) It is sufficient to prove that

WP (Q) — CY ().

Letu € C*(R). If x € @, then x € G C Q for some domain G for which there
exists a 1-smooth transformation ¥ : G — Qi , (A — 1)k < v, as specified in
the statement of the theorem. Thus

lu(x)| < suplu(x)| = sup |uo W '(y)l
xeG Y€ Qi
-1
S Kl ||u oW "m,p,QM 5 K2 ”u“m,p,G

=< K2 ”u"m,p,Q s (60)

where K; and K are independent of G. The rest of the proof is similar to the
second paragraph of the proof in Paragraph 4.16. 1

4.71 (Proof of Theorem 4.53) Asin Lemma 4.28 it is sufficient to prove that

WhP (@) > COH @) if 0O<pu<1-"FY
p

that is, that

sup IO gy, (61)
wen X — y|#

X#EY
holds whenv+n < pand 0 < u <1 — (v 4 n)/p. For x,y € Q satisfying
|x — y| = 8, (61) holds by virtue of (60). If [x — y| < §, then there exists G C Q2
with x, y € G, and a 1-smooth transformation ¥ from G onto a standard cusp
Q. with (A — 1)k < v, satistying the conditions of the theorem. Inequality (61)
can then be derived from Lemma 4.66 by the same method used in the proof of
Lemma 4.69. The details are left to the reader. I
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INTERPOLATION, EXTENSION,
AND APPROXIMATION THEOREMS

Interpolation on Order of Smoothness

5.1 We consider the problem of determining upper bounds for L? norms of
derivatives Dfu, 0 < |B| < m, of functions in W™P() in terms of the L?
norms of # and its partial derivatives of order m. Such estimates are conveniently
expressed in terms of the seminorms |-, , defined in Paragraph 4.29. Theorem
5.2 below provides such an estimate for the seminorm |u|; , in terms of |u/,, , and
[ull,, as well as some elementary consequences of this estimate. Such estimates
arose in the work of of Ehrling [E], Nirenberg {Nr1, Nr2], Gagliardo [Gal, Ga2],
and Browder [Brl1, Br2], and were frequently proved under the assumption that
€2 satisfies the uniform cone condition, at least if € is unbounded. However, we
will prove Theorem 5.2 assuming only the cone condition. In fact, even the weak
cone condition is sufficient for the proof, as is shown in [AF1].

5.2 THEOREM Let £ be a domain in R* satisfying the cone condition. For
each €y > 0 there exist finite constants K and K’, each depending on n, m, p, €
and the dimensions of the cone C providing the cone condition for  such that if
0<e<e€,0<j<mandu € W"P(Q), then

luljp < K(€luly,, + €7/ full,), ()
el < K'(€ Nl + € ul], ), )
leellj p < 2K Null g/ Nl =7 3)
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5.3 Inequality (2) follows from repeated applications of (1), and (3) by setting
€0 = 1in (2) and choosing € in (2) so that the two terms on the right side are equal.
Furthermore, (1) holds when € < ¢ if it holds for € < ¢; for any specific positive
€1; to see this just replace € by €€ /€y and suitably adjust K. Thus we need only
prove (1), and that for just one value of «.

We carry out the proof in three lemmas. The first develops a one-dimensional
version for the case m = 2, j = 1. The second establishes (1) form = 2, j =1
for general Q satisfying the cone condition. The third shows that (1) is valid for
generalm > 2 and I < j < m — 1 whenever the case m = 2, j = 1 is known to
hold.

54 LEMMA Ifp>0,1<p <oo, K, =2P"197 and g € C*([0, p]), then
K P o
O < 22 (p" / & O dr + p-7 / |g(r>r"dt>. @
0 0

Proof. Let f € C%([0, 1]), let x € [0, 1/3], and let y € [2/3,1]. By the
mean-value theorem there exists z € (x, y) such that

’f(y)—f(X)‘
y—x

f'@l= =3 f+ 31 f DI

Thus
|f'(0)] =

'@ —fo fr(0ydr

1
<371+ [ 1@l
0
Integration of x over [0, 1/3] and y over [2/3, 1] yields

1 1/3 1 1 1
—|f’<0>|s[ |f<x)|dx+/ |f(y)|dy+—f 0] dt.
9 0 2/3 9Jo

For p > 1 we therefore have (using Hélder’s inequality if p > 1)

1 1
L' <K, (/0 If”(t)l”dt+/0 If(t)I”dt>-

where K, = 277197,

Inequality (4) now follows by substituting f(¢) = g(pt). 1

55 LEMMA If1l < p < oo and the domain @ C R” satisfies the cone
condition, then there exists a constant X depending on n, p, and the height py and
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aperture angle « of the cone C providing the cone condition for € such that for
alle, 0 < € < ppand all ¥ € W27 () we have

luly , < K(€ [uly, + € " Hlull,). (5)
Proof. Let ¥ = {0 € R" : || = 1} be the unit sphere in R" with volume
element do and (n — 1)-volume Ky = Ko(n) = fz do. If x € Qlet o, be the unit

vector in the direction of the axis of a cone C, C € congruent to C and having
vertex atx,and let X, = {0 € ¥ : /(0,0,) < k/2}.

Letu € C*(Q). Ifx € 2,0 € ,,and 0 < p < py, then
K,
lo - gradu(x)|” < —I(p, p,u,x,0),
0
where
P p
I(p,p,u,x,0)= pp/ |Dt2u(x +to)|P dt + p"’/ lu(x + to)|F dt.
0 0
There exists a constant K; = K (n, p, ) such that
f lo - gradu(x)|? do > / lo - gradu(x)|? do > K;|gradu(x)|”.
b %,
Accordingly,

K
flgradu(x)“’dxg —pfdo / I(p, p,u,x,0)dx.
Q Kip Jx Q

In order to estimate the inner integral on the right, regard u and its derivatives as
extended to all of R so as to be identically zero outside €. For simplicity, we
suppose 0 = e, = (0,...,0, 1) and write x = (x', x,,) with x’ € R*~!. We have

/I(p,p,u,x,e,,)dx
Q
oo p
=f dx’f dxn/ (0P 1DFu ', xn + DIP + p7Plu (¥, X, + DIP) dt
Rr-! —o0 0
P 0
=/ dx’/ dt/ (PP I DZu()|? + p~ P |u(x)|) dx,
R#-! 0 —00

< P/;Z(,OplD,zlu(x)Ip—|—,0_p|u(x)|p) dx,

In general, foro € ©

/ I(p, p,u,x,0)dx < p/(ﬂ” i3, + 077 lull}) dx,
Q Q



138 Interpolation, Extension, and Approximation Theorems

and since |D;(#)| < |grad | and the measure of ¥ is K,

nkK K() _
ul? < == (7 il + o7 ).

Inequality (5) now follows by taking pth roots, replacing p with ¢, and noting that
C>®(Q) is dense in W27 (). 1

5.6 LEMMA Letm > 2,let0 < §y < o0, and let €9 = min{Jy, 6(2), R 66”_1}.
Suppose that for given p, 1 < p < oo, and given Q@ C R" there exists a
constant K = K (8, p, 2) such that for every § satisfying 0 < § < &y and every
u € WhP (Q), we have

luly, < K8 |uly, + K8 " |uly, . 6)

Then there exists a constant K = K (g, m, p, 2) such that for every ¢ satisfying
0 < € < ¢p, every integer j satisfying 0 < j < m — 1, and every u € W™7(Q2),
we have

lul;p < Keluly p, + Ke 7D uly . (7

Proof. Since (7) is trivial for j = 0, we consider only thecase 1 < j <m — 1.
The proof is accomplished by a double induction on m and j. The constants
Ky, K5, ... appearing in the argument may depend on 8y (or ), m, p, and Q.
First we prove (7) for j = m — 1 by induction on m, so that (6) is the special case
m = 2. Assume, therefore, that for some k,2 <k <m — 1,

lulerp < K18 luly p + K187%D [uly, (8)

holds for all §, 0 < & < 8, and all u € WrP (Q). If u € W*t!-? (Q), we prove
(8) with k 4 1 replacing k (and a different constant K ). If |a| = k — 1 we obtain
from (6)

|D%ul; , < K28 |D%uly , + K287 |D"uly , -

Combining this inequality with (8) we obtain, for 0 < n < 8y,
Iulk,p = K3 Z IDau|1,p
la|=k—1

< KaSlulyrr p + Ko™ ulyy

< Kab lulyys , + KaK18 ' luly , + KaK187'n' ¥ |uly, -
We may assume without prejudice that 2K, K4 > 1. Therefore, we may take
n = 68/(2K;K4) and so obtain

—k
lule,p < 2Kad lulipr,p + (6/(2K1K8)) ™ lulg,

< K56 lulgqr, + Ks87* lul,p -
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This completes the induction establishing (8) for 0 < § < §y and hence (7) for
j=m—1land0 < € < dg.

We now prove by downward induction on j that
|u|]p S K66m7j |u|m‘p+K687j |uI0,p (9)

holds for 1 < j <m —1and 0 < § < &. Note that (8) with k = m is the
special case j = m — 1 of (9). Assume, therefore, that (9) holds for some j,
2 < j < m — 1. We prove that it also holds with j replaced by j — 1 (and a
different constant K¢). From (8) and (9) we obtain

lulj 1., < K28 lul; , + K78' 77 ulg,
< K78(Ke8™ 7 |l , + Ke877 |uly ) + K28'7 |ulo

< Ks8" YV ul,, , + Ks8' T |uly, -

Thus (9) holds, and (7) follows by setting § = €/*=/) in (7) and noting that
€ <¢gif § <. |

This completes the proof of Theorem 5.2

5.7 REMARK Careful consideration of the proofs of the previous two lemmas
shows that if the height of the cone providing the cone condition for €2 is infinite,
then inequalities (5) and (7) (and therefore (1) and (2)) hold for all € > 0, the
corresponding constants K being independent of €. This is the case, for example,
if 2 = R" or a half-space like R, .

Interpolation on Degree of Summability

The following two interpolation theorems provide sharp estimates for L7 norms of
functions in W™ ?(2). Some of these estimates follow from Theorem 4.12 while
others have traditionally been obtained for regular domains from imbeddings of
Sobolev spaces of fractional order. (See Chapter 7.) We obtain them here assuming
only that the domain satisfies the cone condition. Again, the weak cone condition
would do as well; see [AF1].

5.8 THEOREM Let Q be a domain in R* satisfying the cone condition.
If mp > n,let p < g < o0;ifmp=nmn,let p <gq < oo, if mp < n, let
p < q < p* = np/(n —mp). Then there exists a constant K depending on
m, n, p, q and the dimensions of the cone C providing the cone condition for €2,
such that for all u € W™ (2),

lully, < K llullf,, Nl (10)

where 6 = (n/mp) — (n/mq).
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Proof. Thecase mp < n, p < q < p* follows directly from Theorems 2.11 and
4.12:

loelly < el Nl ™ < K laell], , Haell, ™
where 1/q = (6/p*)+(1—0)/p from whichitfollows that9 = (n/mp)—(n/mgq).

For the cases mp =n, p < g < oo, and mp > n, p < g < oo we use the local
bound obtained in Lemma 4.15. If 0 < r < p (the height of the cone C), then

W@NSKH(EZrM”m*WWWW+XHmMJHUM@»,(H)

lo]<m—1 la|=m

where ¥, is the characteristic function of the ball of radius r centred at the origin in
R*, and w,, (x) = |x|™". We estimate the L? norms of both terms on the right side
of (11) using Young’s inequality from Corollary 2.25. If (1/p)+(1/s) = 1+(1/g),
then
lxr * 1Dullly < llxlls 1D%ull, = Kor™=®/P+0/@ | Doyl
IOt @m) * IDullly < Il xromlls |1 D%ull, = Kz =P+ | Dy,

(Note that m — (n/p) + (n/q) > 0 if g satisfies the above restrictions.) Hence

m—1
”u”q <K, (Z pi=n/py+n/p |u|j,p + pm=(/P)+0/q) |ulm,p) .
i=0

By Theorem 5.2,

lul; p < Ks(r™ ™7 il p + 177 ull,),

SO

||u||q < K6(rm—(n/p)+(n/q) ”u“m,p 4y /p)1tn/q) ||M||p)-
Adjusting K¢ if necessary, we can assume this inequality holds for all » < 1.
Choosing r to make the two terms on the right side equal, we obtain (10). 1

A special case of the above Theorem asserts that if mp > n, then

lulloo < K Naelly/"nP faell,~ ™2 (12)

A similar inequality with |lu|, replaced by a more general [u]l, is sometimes
useful.

5.9 THEOREM Let Q be a domain in R" satisfying the cone condition.
Let p > 1 and mp > n. Suppose that either 1 < g < p or both g > p and
mp — p < n. Then there exists a constant K depending on m, n, p, g and the
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dimensions of the cone C providing the cone condition for €2, such that for all
u e Wr(Q),
liello < K Nl , N},

where 6 = np/[np + (mp — n)q].
Proof. It is sufficient to show that the inequality

()l < K llully, , lul,™, 6 =np/lnp+(mp—m4ql  (13)

holds for all x € Q and all u € W™P(2) N C®(Q).

First we observe that (13) is a straightforward consequence of Theorems 5.8 and
2.111if 1 < g < p; since (12) holds we can substitute

q/p 1-(q/p)
leell, < HoellZ7 Hluell o

and obtain (13) by cancellation.

Now suppose g > p, and, for the moment, thatm = 1 and p > n. We reuse the
local bound (11); in this case it says

()| < Ki(r™ xr % lul(x) + Z(erx) * | D"u|(x)),

lal=1
for 0 < r < p, the height of the cone C. By Holder’s inequality,
Xr % |1l (x) < Kor"= " |lull,
and, for |a] = 1,
(Xr@1) % | D*u|(x) < Kar'=™P | D%ul|, . (14)

Since |lull; < K5 [lull,,, (by Part I Case A of Theorem 4.12), and since inequality
(14) may be assumed to hold for all r such that 0 < r!="/P+®/9) < K provided
K4 is suitably adjusted, we can choose r to make the two upper bounds above
equal. This choice yields (13) withm = 1.

For general m, we have W™ (Q) — W'7 (Q), where r = np/(n — mp + p)
satisfiesn < r < oosince (m—1)p < n < mp. Hence,ifu € WP (Q)NC®(Q),
we have

()] < Ko lullf, Nl < Kol , laelll

where 0 = nr/[nr + (r —n)ql =np/lnp + (mp — n)ql. 1

The following theorem makes use of the above result to provide an alternate direct
proof of Part I Case C of the Sobolev imbedding theorem 4.12 as well as a hybrid
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imbedding inequality that will prove useful for establishing compactness of some
of these imbeddings in the next chapter.

510 THEOREM Let 2 be a domain in R* satisfying the cone condition.
Let m and k be positive integers and let p > 1. Suppose that mp < n and
n—mp < k < n. Let v be the largest integer less than mp, so thatn — v < k. Let
Q2 be the intersection of 2 with a k-dimensional plane in R”. Then there exists a
constant K such that the inequality

lotllo kq/ma < K luellg, g luelly, , o (15)
holds for all u € W™ P(2), where

n
qg=p*= P and 0= id

n—mp vp + (mp —v)q’

Note that 0 < 6 < 1.

Proof. Again it is sufficient to establish the inequality for functions in
WP (2) N C*(82). Without loss of generality we assume that H is a coor-
dinate k-plane R* in R, and, as we did in Lemma 4.24, that  is a union of
coordinate cubes of fixed edge length, say 2.

Let u = ( n f U), and let £/, 1 < i < p, denote the various coordinate planes in
R* having dimension n — v. Let ' be the projection of £, onto E', and for each
x € Q' let Q! denote the intersection of Q with the v-dimensional plane through
x perpendicular to E'. Then Q2 contains a v dimensional cube of unit edge length
having a vertex at x, so it satisfies a cone condition with parameters independent
of i and x. By Theorem 5.9

Nl oy < Ko lully P, Nl g -

Lets = (n — v)p/(n — mp), and let dx' and dx’ denote the volume elements in
E' and its orthogonal complement (in K" ) respectively. Since

gmp—v) 4 =2
mp m

s(1—-6)=

’

we have

f sup [u(y)I° dx’
Q

! yeQ

Y (mp—v)/mp v/mp
<k [ [ |u(x>|qu;] | ¥ rucor s
Lo @ =

(1-60)
< Ky Nl el g
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the last line being an application of Holder’s inequality.

Let dx* denote the k-dimensional volume element in H. We apply the averaging
Lemma 4.23 to the family of u subspaces E' of R. The parameter A for this

application of the lemmais A = (nf;L) = (n—v)u/k. Since (kg/n)(A/pn) = s,
we obtain

m
ki
el 0, < Ko fQ [T sup 1o/ axt

k=1 YEQ
1/x
u
<K [] / sup |u(y)[’ dx’
i=1 /9 yeq!

n
kq(1—0)/un kq®/un
< Ks [ ] Iuligh g™ " el 2o
i=1

so that

1-6 o
letllorg/ne = K llutllg o el pe

as required. 1

5.11 REMARK If we take k = rn in inequality (15), then the imbedding
wmP(Q) — L1(82) follows for ¢ = np/(n — mp) by cancellation. The corre-
sponding imbedding inequality [lully ;.o < K ll#|l., .o can then be used to further
estimate the right side of (15), yielding the trace imbedding W™ 7 (2) — L"(S2)
forr = kp/(n — mp).

Interpolation Involving Compact Subdomains

Sometimes it is useful to have bounds for intermediate derivatives Dfu, of a
functionu € W™ (), where 1 < [B| < m — 1, in terms of the seminorm |ul,, , o
and the L”-norm of u over a compact subdomain Q' € Q. Such inequalities
are typically not possible unless €2 is bounded, but for bounded €2 they can be
established under the assumption that 2 satisfies either the segment condition or
the cone condition. (A bounded domain 2 satisfying the cone condition can be
decomposed into a finite union of subdomains each of which satisfies the strong
local Lipschitz condition, and therefore the segment condition. See LLemma 4.22.)
We will prove the following hybrid interpolation theorem. (See Agmon [Ag].)

5.12 THEOREM Let Q2 be a bounded domain in R" satisfying the segment
condition. Let 0 < ¢y < oo, let 1 < p < oo, and let j and m be integers with
0 < j < m — 1. There exists a constant K = K (¢y, m, p, 2) and for each €
satisfying 0 < € < ¢y a domain £, € 2 such that for every u € W™ ()

|ulj.p.Q = Ke |u|m.p.Q + Ke_j/(m_]) “u"p,Q6 . (16)
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Note that this theorem implies Theorem 5.2 extends to bounded domains satisfying
the segment condition.

As in the proof of Theorem 5.12, we begin with a one-dimensional inequality.

513 LEMMA Letl < p <ooandletO < [, < I3 < oo. Then there
exists a constant K = K (p, [1, ) and, for every € > 0, anumber § = (¢, !y, »)
satisfying 0 < 2§ < [; such thatif (a, b) is a finite open interval in R whose length
b — a satisfies |y < b —a < I, and g € C'(a, b), then

b b b—48
f lgM)1”dr < Ké/ lg'®O1” dr + Kf lg(0)|? dt. 7)

+3

Proof. If f € C'(0,1),0<t<1,and 1/3 < 7 < 2/3, then

s 1
If(S)|=‘f(f)+f f(&)dg| < If(T|+/0 |f'(§)] d§.

Integrating = over (1/3, 2/3), applying Holder’s inequality if p > 1, and finally
integrating s over (0, 1) gives

1 2/3 1
flf(s)l”st/ If(s)IPdS+Kpf 1/ (s)IP ds,
0 13 0

where K, = 3 - 27~!. Now substitute f(s) = g(a + s(b — a)) = g(¢) to obtain

(a+2b)/3

b b
f 18)” < Kb — )P / €O di + K, f g7 dr.
a a (

2a+b)/3

For given € > 0 pick a positive integer ksuchthatk™? < €. Leta; = a+(b—a)j/k
for j =0,1,...,k and pick § so that 0 < 8 < (b —a)/3k. Then

b k a;
[swra=3 [ isora
a j=1Yai-
d b—a\’ 9 aj—=8
SKPZ ( p )f Ig’(t)l”dr+/ lg(O1” dt
j=1 aj- aj_1+8

' i
b—§

b
stmax{l,w—a)"}[e f g1 di + / |g<t>|"dt]

+3

which is the desired inequality (17). 1
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5.14 LEMMA Let Q2 be a bounded domain in R” that satisfies the segment
condition. Then there exists a constant K = K (p, §2) and, for any positive number
€, a domain . € €2, such that

lulo.po < Keluly po—+ K lulo p.o, (18)

holds for every u € W'7 ().

Proof. Since Q is bounded, and its boundary is therefore compact, the open
cover {U;} of bdry € and corresponding set {y;} of nonzero vectors referred to
in the definition of the segment condition (Paragraph 3.21) are both finite sets.
Therefore open sets V; € U; can be found such that bdry @ C (J ; Vi and even,
for sufficiently small §, 5 = {x € € : dist(x, bdry2) < 8} C Uj V;. Thus

Q= Uj(Vj NHuU Q, where Q €@ Q. Itis thus sufficient to prove that for each j
lulo,p.v,ner < Ki€” |”|f,p‘sz + K |”|g.p,§ze_/-
for some §2, ; € 2. For simplicity, we now drop the subscripts j.
Consider the sets Q, 0,,0 < n < 1, defined by
O={x+ty:xelUN,0<t <1},
p=x+ty:xeVNQn<t<lh

If 5 > 0, then Q, € Q, and by the segment condition, Q C £2. Any line £ parallel
to y and passing through a point in V N €2 intersects Qg in one or more intervals
each having length between |y| and diam 2. By 5.13 there exists > 0 and a
constant K such that for every u € C*°(2) and any such line £

/ lu(x)|Pds < KIGP/ IDyu(x)l”ds+K1/ lu(x)|? ds,
nQq £NQy mne,

D, denoting differentiation in the direction of y and ds being the length element
in that direction. We integrate this inequality over the projection of Qg on a
hyperplane perpendicular to y and so obtain

P P P P
|u‘0.p.vmg = |’/‘|(),,,‘Q0 < Kie? |u|1~l7.Qu + K, |M|O~P~Qn
< Kie?Julf , o+ Kilulg , 0.

where Q. = 2, € Q. By density, this inequality holds for every u € W17 (Q).

5.15 (Completion of the Proof of Theorem 5.12) We apply Lemma 5.14 to
derivatives Dfu, |8] = m — 1 to obtain

|u|m71,p,§2 =< Ke lulm.p.Q + Kl |u|m~1,p,Q€ ) (19)
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where Q2. € Q. Since Q. is a compact subset of €2, there exists a constant § > 0
such that dist(2,, bdry Q) > 8. The union €' of open balls of radius § about
points in §, clearly satisfies the cone condition and also ' € Q. We can use '
in place of Q. in (19), and so we can assume €2, satisfies the cone condition. By
Theorem 5.2, for given €y > O the inequality

—(m—1
ot p0. < K2€ ltlp po + Koe™" D ulg , 0

Combining this with inequality (19) we obtain the case j = m — 1 of (16).

The rest of the proof is by downward induction on j. Assuming that (16) holds
for some j satisfying 1 < j < m — 1, and replacing € with €~/ (with consequent
alterations to K and €2.), we obtain

ulj po < K3€™ ™ luly po + Kz ulo pq,, -
Also, by the case already proved,
lulj_1,p0 < Kaelul; , 0+ Kse 7P lulo, .., -
Combining these we get
lulj_1po < Ks€™ 9 ul, o+ Kse ™V uly 0,

where K5 = K4(K3 + 1) and Q. = Q.1 U Q.. Replacing € by €!/™"=/+D we
complete the induction. 1

5.16 REMARK The conclusion of Theorem 5.12 is also valid for bounded
domains satisfying the cone condition. Although the cone condition does not
imply the segment condition, the decomposition of a domain €2 satisfying the cone
condition into a finite union of subdomains each of which is a union of parallel
translates of a parallelepiped (see Lemma 4.22) can be refined, for bounded €2,
so that each of the subdomains satisfies a strong local Lipschitz condition and
therefore also the segment condition.

Extension Theorems

5.17 (Extension Operators) Let 2 be a domain in R*. For given m and p
a linear operator E mapping W7 (L2) into W™P(IR") is called a simple (m, p)-
extension operator for Q2 if there exists a constant K = K (m, p) such that for
every u € W™P(Q) the following conditions hold:

(i) Fu(x) = u(x)ae.in L,

(i) [Eullmpre < Kl p.o-
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E is called a strong m-extension operator for Q if E is a linear operator mapping
functions defined a.e. in €2 to functions defined a.e. in R" and if, for every p,
1 < p < 00, and every integer k, 0 < k < m, the restriction of E to wk.p (Q)isa
simple (k, p)-extension operator for 2.

Finally, E is called a total extension operator for Q if E is a strong m-extension
operator for 2 for every m. Such a total extension operator necessarily extends
functions in C™(£2) to lie in C"(R").

5.18 The existence of even a simple (m, p)-extension operator for 2 guarantees
that W™-7 (2) inherits many properties possessed by W7 (IR"). For instance, if
an imbedding W™ P(R") — L4 (R") is known to hold, so that

lally e < Killell p e s
then the imbedding W™ ?(Q2) — L9 (2) must also hold, forif u € W7 (), then
lullogo < 1Eullogre < Ky lEullpy pre < KiK [[ttlln p.g2 -

The reason we did not use this technique to prove the Sobolev imbedding theorem
4.12 is that extension theorems cannot be obtained for some domains satisfying
such weak conditions as the cone condition or even the weak cone condition.

We will construct extension operators of each of the three types defined above.
First we will use successive reflections in smooth boundaries to construct strong
and total extension operators for half spaces, and strong extension operators for
domains with suitably smooth boundaries. The method is attributed to Whitney
[W] and later Hestenes [He] and Seeley [Se]. Stein [St] obtained a total extension
operator under the minimal assumption that 2 satisfies the strong local Lipschitz
condition. He used integral averaging instead of reflections. We will give only
an outline of his proof here, leaving the interested reader to consult [St] for the
details. See also [Ry]. The third construction, due to Calderén [Cal] involves the
use of the Calderén-Zygmund theory of singular integrals. It is less transparent
than the reflection or averaging methods, and only works when 1 < p < oo,
but requires only that the domain §2 satisfies the uniform cone condition. Unlike
the other methods, it has the property that if the trivial extension & belongs to
W™ P(IR"), then # is the extension produced by the method. By Theorem 5.29
below, this happens if and only if u € W(;" 'P(Q). The paper [Jn] provides an
extension method that works under a geometric hypothesis that is necessary and
sufficient in R?, and is nearly optimal in higher dimensions.

Except for very simple domains all of our constructions require the use of partitions
of unity subordinate to open covers of bdry £ chosen in such a way that the
functions in the partition have uniformly bounded derivatives.

To illustrate the reflection technique we begin by constructing a strong m-extension
operator and a total extension operator for a half-space. Then we extend these to
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apply to domains that satisfy the uniform C™-regularity condition and also have a
bounded boundary.

519 THEOREM Let  be the half-space R}, = {x € R" : x, > 0}. Then
there exists a strong m-extension operator E for 2. Moreover, for every multi-
index « satisfying |¢| < m there exists a strong (m — |«|)-extension operator E,
for €2, such that

D°Eu(x) = E,D%u(x).

Proof. For functions u defined a.e. on R}, we define Eu and Equ, l¢| < m a.e.

on R via
u(x) ifx, >0
Eu(x)={ _mti o
Dot MU, o xemy, —jxn) i x, <0,
u(x) ifx, >0
Equ(x) = m+1 . . .
Zj:l (_J)ankju(xly cees Xp—1s _.]xn) ifx, <0,
where the coefficients A1, . . ., A1 are the unique solutions of the (m+-1) x (m+1)

system of linear equations

m+1
Y=y =1, k=0,....m.
j=1

If u € C™(RY), it is readily checked that Ex € C™(R") and
D*Eu(x) = E,D%u(x), la| < m.

Thus

f |D*Eu(x)|? dx

=/ |D"‘u(x)|”dx+/
R’ R"

+

m+1 p
Z(—j)"")»ju(xl,...,x,,_l,—jx,,) dx
j=1

< K(m,p,a)/ |D“u(x)|? dx.
R,

By Theorem 3.22, the above inequality extends to functions u € W7 (R7),
m > k > |a|. Hence, E is a strong m-extension operator for ]Ri. Since
DPE,u(x) = Eq+pu(x), asimilar calculations shows that E,, is a strong (m —|«|)-
extension.
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The reflection technique used in the above proof can be modified to yield a total
extension operator. The proof, due to Seeley [Se], is based on the following
lemma.

520 LEMMA There exists a sequence {ax};2, such that for every nonnegative
integer n we have

Z 2% g = (=", (20)
k=0
and
ZZ"kIakl < 00. 21
k=0

Proof. For fixed N, let a; y, k = 0,1, ..., N be the solution of the system of
linear equations

N
ZZ”kak'N=(—1)", n=0,1,...,N. (22)
k=0

In terms of the Vandermonde determinant

1 1 - 1
X(z) 'xé RS x[2V N
Vixp,x1,...,xy) =% X1 Iy =]—[(xj_xi),
: : : i.j=0
xON x{v .o xﬁ
ag,n as given by Cramer’s rule is
V(1,2,..., 20 —1, 2k 2N
o v =
v v({,2,...,2")
-1
=|[T@-O[[1-2 [T@+v|-|[[@-2)
ij=h i=0 Jj=k+1 i.j=0
i i<j
= AxBi.n
where
k=l 4 9i N2

Ak:U——Zi—Zk’ Bk,N=J—[ EYRTE
i=1 =kt
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it being understood that []~, P; = 1 if I > m. Now

k—1 9i
Al < [] 5 =207
i=1
Also N
+2’<
log By.n = Z < )
=k+1
N +2
k
<Z2 (1+2)22/1<’
J=k+1 J=k+1

where we have used the inequality log(1 + x) < x valid for x > 0. It follows that
the increasing sequence { By n } 5o converges to a limit By, < e*. Leta, = Ay By,
so that

2
Iakl S e4 . 2(5k—k )/2

Then for any n

00 o0 ,
Z 2nk|ak| < €4 Z 2(2nk+5k*k )/2 < 00.
k=0 k=0

Letting n — o0 in (22) completes the proof. 1

521 THEOREM Let € be a half-space in R”. Then there exists a total
extension operator E for 2.

Proof. TherestrictionstoR". of functions¢ € C$°(R") being densein W™ (R, )
for any m and p, we need only define the extension operator for such functions.
Let f be a real-valued function, infinitely differentiable on [0, oo) and satisfying
fO=1if0<tr=<1/2and f(z) =0ifr > 1, If ¢ € C°(R"), let

b (x) ifx, >0,
E¢p(x) = Ed(x', xy) = { Zk_O ar f (=2 x)p(x', —2%x,) ifx, <O,

where {a;} is the sequence constructed in the previous lemma. E¢ is well-defined
on R* since the sum above has only finitely many nonvanishing terms for any
particular x € R” = {x € R" : x, < 0}. Moreover, E¢ has compact support and

belongs to C*° (@;) NC®(RY). If x € R*, we have

D E¢(x) = ZZ( )( 24 fe=D (=24 x,) DI DY $(x', ~2xn)
k=0 j=0
Vi (x).

k=0
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Since ¥ (x) = 0 when —x,, > 1/2*~! it follows from (21) that the above series
converges absolutely and uniformly as x, — 0—. Hence by (20)

o0
lim D*E¢(x) = > (=29 aD*¢(x', 04)
X, —>U— k:O

=D%(x',0+) = lin(}+ DYE¢(x) = D*E¢(0).
Thus E¢ € C(R"). Moreover, if |a| < m,

eI < KD lax|P25? Y IDPo(x', =231,

[Bl<m

where K| depends only on m, p, n, and f. Thus

1/p
1¥llo.p e < Kilax]2"" (Z f |DPo(x', —2"xn)|"dx)
\Bi=m JRL

1/p
1
= Kilag|2*" (ﬁ > / |Dﬁ¢(y>|"dy)
-
[Bl=m ¥ B+
< Kilag|2*" Plm prer -

It follows from (21) that

o0
ID*Ellg pre < Ki @l prr D 2" il < K21l p -
k=0

Combining this with a similar (trivial) estimate for | D* E¢ ||, pR7» WE obtain

“E¢“m,p,R” = K3 “¢”mpR’i
with K3 = Ki(m, p, n). This completes the proof. I

522 THEOREM Let Q be a domain in R" satisfying the uniform C™-
regularity condition and having a bounded boundary. Then there exists a strong
m-extension operator E for Q. Moreover, if « and y are multi-indices with
ly| < |a| < m, then there exists a linear operator E,, continuous from Wir(Q)
into W/P (R") for 1 < j <m —|a], | < p < oo, such that if u € Wil-? (Q),
then

D*(Eu)(x) = Y EayD"u(x). (23)

lyl<lel
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Proof. Since € is uniformly C™-regular and has a bounded boundary the open
cover {U;} of bdry 2 and the corresponding m-smooth maps ®; from U; onto
B referred to in Paragraph 4.10 are finite collections, say 1 < j < N. Let
Q={y=(" y) €R : |y < 1/2, |yal < +/3/2}). Then

{yeR :yl<1/2}cQCB={yeR |yl <1}

By condition (ii) of Paragraph 4.10 the open sets V; = W;(Q), 1 < j < N, form
an open cover of Qs = {x € Q : dist(x, bdry ) < 5} for some § > 0. There
exists an open set Vy C €2, bounded away from bdry €2, such that Q C UJI-VZO V;.
By Theorem 3.15 we can find infinitely differentiable functions wp, w1, ..., on
such that the support of w; is a subset of V; and Z]N:o w;(x) = 1forall x € Q.
(Note that the support of wgy need not be compact if €2 is unbounded.)

Since €2 is uniformly C™-regular it satisfies the segment condition and so restric-
tions to Q of functions in C3°(R") are dense in Wkr(Q). If ¢ € Cy°(R"), then

for x € Q, ¢(x) = L iy ¢, (x), where ¢; = w; - ¢.

For j > land y € B let ¥;(y) = ¢;(¥;(¥)). Then ¥; € CF°(Q). We extend v;
to be identically zero outside Q. With E and E, defined as in Theorem 5.19, we
have Evy; € C5(Q), EYj =Y;on Q. ={y € Q:y, > 0},and

1E¥i o < Kil¥iliyo,. O<k=m,

where K depends on k, m, and p. If 6;(x) = Ev;(®;(x)), then 6; € CF(V))
and 6, (x) = ¢;(x) if x € Q. It may be checked by induction that if || < m, then

D)= Y. > ajap)[Ep(bypy - (DY ¢y 0 ¥))](0;(x)),

[Bl<lol Jy|<|e|

where a;.,5 € C"71/(U;) and bj,5, € C™1#1(B) depend on the transformations
®;and ¥; = <I>j_1 and satisfy

1 ify =«
Z @jiap ()b (®5(3) = 0 otl)l/erwise
|Bl<]al )

By Theorem 3.41 we have for k < m,
100 p e < K2 NEVi |, o < KiK2 | W5l 0. < K3 Wil 0

where K3 may be chosen to be independent of j. The operator E defined by

N
Ep(x) = go(x) + ) 6;(x)

j=1
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clearly satisfies Eqb(x) =¢(x)ifx € £, and

N
| B0, .. =< WollpatKs 2o Wlipn = Kl £ NKD 8 O

where
K4 = max max sup |D%w;(x)| < oo.
0<j<N |a|<m

Thus E is a strong m-extension operator for 2. Also

D*E¢(x) = Y (Eoy D" $) (%),

lyi<lal
where

N

Eayv(x) =Y > aj.up0[Ep(bjpy - (v - @) 0 W))](@;(x))

j=1|Bl=lal|

ifa # y, and

N
E ov(x) = (v - wp){x) + Z Z aj;aﬁ(x)[Eﬁ(bj;ﬁy {v-wj)o \llj)](QDj(x)).

j=11B|<]al

We note that if x € €2, then E,v(x) = 0fora # y and E4ev(x) = v(x). Clearly
E,, is a linear operator. By the differentiability properties of a;.qp and b;;5,, Eoy
is continuous on W/P (§2) into W77 (R*) for | < j < m — |a|. This completes
the proof. 1

5.23 REMARKS

1. If Q is uniformly C™-regular for all m, and has a bounded boundary, then
we can use the total extension operator of Theorem 5.21 in place of that of
Theorem 5.19 in the above proof to obtain a total extension operator for .

2. The restriction that bdry £ be bounded was imposed in Theorem 5.22 so
that the open cover {V;} would be finite. This finiteness was used in two
places in the proof, first in asserting the existence of the constant K4, and
secondly in obtaining the last inequality in (24). This latter use is, however,
not essential for the proof because (24) could still be obtained from the finite
intersection property (condition (i) in Paragraph 4.10) even if the cover { V;}
were not finite. Theorem 5.22 extends to any suitably regular domain for
which there exists a partition of unity {e;} subordinate to {V;} with D%w;
bounded on R” uniformly in j for any given ow. The reader may find it
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interesting to construct, by the above techniques, extension operators for
domains not covered by the above theorems, for example, quadrants, strips,
rectangular boxes, and smooth images of these.

3. The previous remark also applies to the Calderén Extension Theorem 5.28
given below. Although it is proved by methods quite different from the
reflection methods used above, the proof still makes use of a partition
of unity in the same way as does that of Theorem 5.22. Accordingly,
the above considerations also apply to it. The theorem is proved under
a strengthened uniform cone condition that reduces to the uniform cone
condition of Paragraph 4.8 if Q2 has a bounded boundary.

Clearly subsuming the extension theorems obtained above is the following theorem
of Stein [St].

5.24 THEOREM (The Stein Extension Theorem) If Q2 is a domain in R”
satisfying the strong local Lipschitz condition, then there exists a total extension
operator for 2.

We will provide here only an outline of the proof. The details can be found in
Chapter 6 of [St].

5.25 (Outline of the Proof of the Stein Extension Theorem)

1. Let 2, = B" —Qbethe open exterior of 2. The function § (x) = dist(x, Q)
is Lipschitz continuous on €2, since

6(x) =W < lx—yl  for x,y €,
but might not be smooth there. However, there exists a function A in
C*(£2,) and positive constants ¢;, ¢z, and C, for all multiindices o such

that for all x € €.,

c18(x) < A(x) < ré(x), and
ID*AW)| < Ca(5(x))' .

2. There exists a continuous function ¢ on [1, oo) for which
(@) lim *o@) =0fork=0,1,2,...,
—00

) /ooqb(r)dr:l
1

(©) foot"(p(t) =0fork=12,....
1

14 1/4 . . .
In fact, ¢(t) = —tIm (e_w('_l) ! ), where w = ¢~"/4, is such a function.
T
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3. For the special case @ = {(x,y) : x e R !,y € R,y > f(x) where f
satisfies a Lipschitz condition |¢(x) — ¢ (x")| < M|x — x’|, there exists a
constant ¢ such that if (x, y) € Q,, then ¢(x) — y < cA(x, y).

4. For 2 as specified in 3, A*(x,y) = 2cA(x,y), and u € Ci°(R"), the
operator E defined by

u(x,y) ify > f(x)

E »Y) = 00
(u)(x y) fl u(x’y +[A*(X,y))¢(t) dt lfy < f(x)

satisfies, foreverym > 0and 1 < p < oo,

WEGO | prr < K Nttlln g2 (25)

where K = K(m, p,n, M). Since 2 satisfies the strong local Lipschitz
condition it also satisfies the segment condition and so, by Theorem 3.22
the restrictions to 2 of functions in C§°(R") are dense in W7 (2) and so
(25) holds for all u € W™-P(2). Thus Stein’s theorem holds for this €2.

5. The case of general 2 satisfying the strong local Lipschitz condition now
follows via a partition of unity subordinate to an open cover of bdry €2 by
open sets in each of which (a rotated version of) the special case 4 can be
applied. 1

5.26 The proof of the Calderén extension theorem is based on a special case,
suitable for our purposes, of a well-known inequality of Calderén and Zygmund
[CZ] for convolutions involving kernels with nonintegrable singularities. The
proof of this inequality is rather lengthy and can be found in many sources (e.g.
Stein and Weiss [SW]). It will be omitted here. Neither the inequality nor the
extension theorem itself will be required hereafter in this monograph.

Let B ={x e R" : |[x]| < R},let Xz = {x € R” : |x| = R}, and let dog be the
area element (Lebesgue (n — 1)-volume element) on X z. A function g is said to
be homogeneous of degree ;L on Bg — {0} if g(tx) = t* g(x) forall x € Bz — {0}
and0 <t < 1.

5.27 THEOREM (The Calderén Zygmund Inequality) Let

g(x) = G)Ix|™,

where
(i) G is bounded on R" — {0} and has compact support,
(i) G is homogeneous of degree 0 on B — {0} for some R > 0, and
(iii) sz G(x)dog =0.
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Ifl < p <ooandu € L? (R"), then the principal-value convolution integral

uxg(x)= lim / u(x — y)g(y)dy
R"—B,

e—~>0+

exists for almost all x € R?, and there exists a constant K = K (G, p) such that
for all such u
Nuxgll, < K |lull,.

Conversely, if G satisfies (i) and (ii) and if u * g exists for all ¥ € C§°(R"), then
G satisfies (iii).

5.28 THEOREM (The Calderon Extension Theorem) Let 2 be adomain
in R” satisfying the uniform cone condition (Paragraph 4.8) modified as follows:
(i) the open cover {U;} of bdry € is required to be finite, and
(ii) the sets U; are not required to be bounded.
Then for any m € {1,2,...} and any p satisfying 1 < p < oo, there exists a
simple (m, p)-extension operator E = E(m, p) for Q.

Proof. Let {U;,...,Un} be the open cover of bdry 2 given by the uniform
cone condition, and let Uy be an open subset of €2 bounded away from bdry
such that Q C UJI.V:O U;. (Such a Uy exists by condition (ii) of Paragraph 4.8.)
Let wy, w1, ..., wy be a C* partition of unity for Q with supp (w); C Uj;.
For 1 < j < N we shall define operators E; so that if u € W™7(Q), then
Eju € W™P(IR") and satisfies

Eju=u in UjﬁQ,

RTINS ARy

The desired extension operator is then clearly given by

Eu = wou +

N
ijju.

j=1

We shall write x € R” in the polar coordinate form x = po where p > 0 and o
is a unit vector. Let C;, the the cone associated with U; in the description of the
uniform cone condition, have vertex at 0. Let ¢; be a nontrivial function defined
in R* — {0} satisfying
(1) ¢j(x) = 0forall x # 0,
(i) supp (¢;) € —C; U {0},
(ii)) ¢; € C*(R" — {0}), and
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(iv) for some € > 0, ¢; is homogeneous of degree m — n in B, — {0}.

Now ,o"‘lqu is homogeneous of degree m — 1 > 0 on B, — {0} and so the function
¥;(x) = (8/3p)™ (p" ', (x)) vanishes on B, — {0}. Hence v;, extended to be
zero at x = 0, belongs to C;°(—C;). Define

o0 a m
Eju(y) =K, ((—1)’"/ / $;(po)p"! (a_> u(y — po)dpdo
= Jo 0

[ wj<po)ﬁ<y—pa)dpda) (26)

where u is the zero extension of u outside 2 and where the constant K; will
be determined shortly. If y € U; N €, then, assuming for the moment that
u € C*(Q2), we have, for po € supp (¢j), by condition (iii) of Paragraph 4.8, that
u(y — po) = u(y — po) is infinitely differentiable. Now integration by parts m
times yields

[0 0] a m
(—1)m/ p""'¢;(po) (8_) u(y — po)dp
0 P

m—k—1 p=00

_m_l lm—k i ¢ n—1 4. d
—;(—) (ap) (0" (00)) (%) u(y — po)

e a " n—1
+/ (a_) ("' ¢j(pa))uly — po)dp
0 (Y

p=0

3 m—1 [ee)
- (a_) (pn_l¢j(pa))| u(y) +/ Vi(po)u(y — po)dp.
14 =0 0

Hence

5 m—1
Eju(y) = Kju(y) L <%> (p”‘1¢j(p6))|p:0 do.
Since (3/9p)™ ! (0" '¢;(po)) is homogeneous of degree zero near 0, the above
integral does not vanish if ¢; is not identically zero. Hence K; can be chosen so
that Eju(y) = u(y) fory € U; N Q2 and all u € C™(£2). Since C*(R) is dense
in W™P(Q) we have E;u(y) = u(y) a.e. in U; N Q for every u € W™ ?(Q). The
same argument shows that if # € W™ ?(R"), then E;u(y) = u(y) a.e. in R".

It remains, therefore, to show that
|D“Ejuly , go < Ko ltlln p.0

holds for any « with (o] < m and all u € C*(2) N W™?(Q). The last integral in
(26) is of the form 6; * ii(y), where 6;(x) = 1//j(x)|x|1_". Since §; € LY(R") and
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has compact support, we obtain via Young’s inequality for convolution (Corollary
2.25),

” D*(9; * ﬁ)llo,p,R" = ”91' * (D,E/“)"o,p,mn = “91' ”(),1,]12/x 1D%ullo p. -

It now remains to be shown that the first integral in (26) defines a bounded map
from W™ ?(2) into W™P(R"). Since (9/3p)" = Z|a|=m (m!/alyo® D* we obtain

o0 8 m
/ / ¢ (pa)p™ ! (—a‘—) w(y — po)dpdo
zJo 0

= Z m_' ¢j(x)15§u(y—x)aadx

!
lo=m ol JRrn
= E Ey % D%u,
lat|=m

where &, = (—1)"’"(m!/a!)a°‘¢j is homogeneous of degree m — n in B, — {0}
and belongs to C*(R* — {0}). It is now clearly sufficient to show that for any B8
satisfying |B] < m

|DP €+ ), 5o < Kap 10l p 10 - 27)

If |8} < m—1, then D¢, is homogeneous of degree not exceeding 1 —n in B, — {0}
and so belongs to LY(R™). Inequality (27) now follows by Young’s inequality for
convolution. Thus we need consider only the case || = m, in which we write
D? = (3/dx;) D" forsomei, 1 < i < n, and some y with |y| = m — 1. Suppose,
for the moment, that v € Cg°(R"). Then we may write

Xi

P
DP (&, x v)(x) = (D" &y) * [(5—) v} (x) = fR Div(x — y)D¥&,(y)dy

= lim Div(x — y)DYE,(y) dy.
§—>0+ R"—B;

We now integrate by parts in the last integral to free v and obtain Df£, under the
integral. The integrated term is a surface integral over the spherical boundary s
of Bj; of the product of v(x — ) and a function homogeneous of degree 1 — n near
zero. This surface integral must therefore tend to Kv(x) as § — 0+, for some
constant K. Noting that D;v(x — y) = —(3/0y;)v(x — y), we now have

DP (£, x v)(x) = lim / v(x — ) DPE,(y) dy + Kv(x).
§—>0+ R”

Now D?§, is homogeneous of degree —n near the origin and so, by the last
assertion of Theorem 5.27, Dﬂéa satisfies all the conditions for the singular kernel
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g of that theorem. Since 1 < p < oo, we have for any v € L?(Q2) (regarded as
being identically zero outside £2)

| D2 % v, r < Keus I0llo pome -

This completes the proof. 1

As observed in the proof of the above theorem, the Calderén extension of a function
u € W™ (Q) coincides with the zero extension u of u if # belongs to W™ P(R").
The following theorem (which could have been proved in Chapter 3) shows that
in this case # must belong to Wy"” ().

5.29 THEOREM (Characterization of W, "’(£2) by Exterior Extension)
Let  have the segment property. Then a function u on €2 belongs to Wy ¥ (Q) if
and only if the zero extension u of u belongs to W7 (R").

Proof. Lemma 3.27 shows, with no hypotheses on £, thatif u € W37 (2), then
u e WmP(R").

Conversely, suppose that € has the segment property and that u € W™ ?(R").
Proceed as in the proof of Theorem 3.22, first multiplying u by a suitable smooth
cutoff function f, to approximate u in W™-?(£2) by a function in that space with a
bounded support. Replace u by that approximation; then # is replaced by f. &, and
so still belongs to W™ 7 (IR"). Now split this u into finitely-many pieces u;, where
0 <i <k, with u; supported in a set V; and the union of the sets V; covering the
support of u. In the context of that theorem, ug already belongs to W;"” ().

For the other values of j, use a translate u; , of i; mapping x to i;(x — ty) rather
than to u;(x + ty) as we did in the proof of Theorem 3.22. For small enough
positive values of ¢, using x — ty shifts the support of i strictly inside the domain
Q. Then u;, belongs to W™ 7 (R") since i; does. Since u;, vanishes outside a
compact subset of 2, the restriction of u;, to  belongs to W;"* (Q). Ast — 0+,
these restrictions converge to #; in W™7(Q). Thus each piece u; belongs to
W,"" (), and so does u. B

5.30 Thereis aclose connection between the existence of extension operators and
imbeddings into spaces of Holder continuous functions. For example, it is shown
in [Ko] that the imbedding W™-?(Q) — C%1=®/P(Q) implies the existence of a
simple (1, g)-extension operator for €2 provided ¢ > p.

A short survey of extension theorems for Sobolev spaces can be found in [Bu2].

An Approximation Theorem

5.31 (The Approximation Property) The following question is involved in
the matter of interpolation of Sobolev spaces on order of smoothness that will play
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a central role in the development of Besov spaces and Sobolev spaces of fractional
order in Chapter 7:

If 0 < k < m does there exist a constant C such that forevery u € WhP(Q)
and every sufficiently small € there exists u, € W™ P () satisfying

k k—
lu —ucll, <Ce®llully,,  and  fucllyp, < Ce™™ Nullgp?

If the answer is “yes,” we will say that the domain 2 has the approximation
property. Combined with the interpolation Theorem 5.2, this property will show
that W5 (Q) is suitably intermediate between L?($2) and W™ (2) for purposes
of interpolation. In Theorem 5.33 we prove that R" itself has the approximation
property. It will therefore follow that any domain §2 admitting a total extension
operator will have the approximation property for any choice of k and m with
0 < k < m. In particular, therefore, a domain satisfying the strong local Lipschitz
condition has the approximation property.

There are domains with the approximation property that do not satisfy the strong
local Lipschitz condition. The approximation property does not prevent a domain
from lying on both sides of a boundary hypersurface. In [AF4] the authors obtain
the property under the assumption that €2 satisfies the “smooth cone condition,”
which is essentially a cone condition with the added restriction that the cone must
vary smoothly from point to point. Our proof of Theorem 5.33 is a simplified
version of the proof in [AF4].

We begin by stating an elementary lemma.

5.32 LEMMA Ifu € LP(R") and B.(x) is the ball of radius € about x, then

14
/(/ |u<y)|dy) dx < K2 [l e
" B (x)

where K, is the volume of the unit ball B (0).
Proof. The proof is immediate using Holder’s inequality and a change or order
of integration. 1

533 THEOREM (An Approximation Theorem for R*) If0 <k < m,
there exists a constant C such that for » € W*?(R") and 0 < € < 1 there exists
u. in C*(R") such that the following seminorm inequalities hold:
lu—ucll, <Ce*lul;,,  and
Cllully,p ifj<k—1

Iuel‘, < :
P e ul, ik

In particular, R" has the approximation property.
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Proof. Itis sufficient to establish the inequalities for u € C§°(IR") which is dense
in W%P (R"). We apply Taylor’s formula

kll

—
fy= :ol'f (0)+(k o

f (1 ="' 9@ dt

—.

to the function f (1) = u(rx + (1 — )y) to obtain

1
u@ =y DU —y"

|a|<k—1

1
+ Z —(x —y)“f (1 —O'Du(rx + (1 — 1)y) dt

ler|=

Now let ¢ € C(‘)’O(Bl(O)) satisfy 0 < ¢(x) < Ko for all x and fR,,qb(x)dx =1.
We multiply the above Taylor formula by € "¢((x — y)/€) and integrate y over
R" to obtain u(x) = u.(x) + R(x) where

1 —
w(y=e" Y —,/“qs(x f)(x—y)“D“u(y)dy

lel=k—1 &

R(x)=¢™" Z f (

lee|=

)(x —y)¥dy
x / (1= ' D*u(tx + (1 —1)y) dt
0

We can estimate |u(x) — uc(x)] = |R(x)| by reversing the order of the double
integral, substituting z = ¢tx + (1 — ¢}y (so that z —x = (1 — )(y — x) and
dz = (1 — )" dy), and reversing the order of integration again:

lux)—ue (x)] < Ko Y —e f (1-n~"" ”dt/ Ix — 2| D*u(2)| dz
Bei—n (%)

lai=k &

—lz—xl/€
< Ko Z f x — 2] |D°‘u(z)|dz/ (0 —n™""dr
B.(x)

<Kod o e fm x — 21 D%u(z)] dz

|a|=

k k—n a
< Ko Z —e /Bm |D%u(z)| dz.

lorj=k
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Estimating the LP-norm of the last integral above by the previous lemma, we
obtain

k
) = ue()ll, < Ko 33 —e* 1D%ul, < Ceuly,, -
la)]=k

On the other hand, we have

Ue(x) = 6‘"/ ¢ (x :y) Pe_1(u; x, y)dy,

where

i
Piuix,y) =Y _ Tiu; x,y),
i=0

1
Tjuw:x, )= ) —D*u()x ="

lee|=J
It is readily verified that
0 ) | T(Dius x,y) ifj>0
a—xin(uyx7y)_{0 lf_]=0
d ) | (D x,y) ifj>0
3xin(u,x’)’)-—{0 11_]___0

d
a—Pj(u;x,y)=Tj(D,'u;x,y) for j=>0.
Yi

: a x—y a x—y\ . . )
Since —¢ = ——¢ | — |}, integration by parts gives
0x; € 3yi €

x —
Diu.(x) = e""f d)( . y) Pr_2(Diu; x,y)dy
X =Yy
+/ ¢ (T) Ti—1(Dju; x, y) dy.
By induction, if || = j <k,
DPu(x) =¢€" f ¢ (x ; y) Py j(DPu; x,y)dy
+je‘"/ 1) (x:—y) Ti_j(DPu; x,y)dy.

When j = k the sums Px_;_; are empty, leaving only the second line above,
which becomes

ke_"/ P (x ;y> To(DPu; x, y)dy = ke‘"/ P (xe;y> DPu(y)dy.
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Write any multi-index y with |y| > k in the form g + § with || = k to get that
v —n—13| s (X =Y pb
DYu.(x) = ke D°¢p | —= | D u(y)dy
n €

in these cases. Apply the previous lemma to the various terms above to get that

Clull, — ifj<k-1
Ul p < ,
eelip = ks ule, ifj >k

In deriving this when j < k, expand the (nonempty) sums P;_i_; to see that

k—1—j
IDPuc(x)] < KOG_"/ [Z |Ti(Df’u;x,y>|+j|Tk_j<Df‘u;x,y>|} dy.
B (x) i=0

This completes the proof. 1

Boundary Traces

5.34 Of importance in the study of boundary value problems for differential
operators defined on a domain € is the determination of spaces of functions
defined on the boundary of 2 that contain the traces ulb iy @ of functions u in

Wm-P (). For example, if W™?(Q) — C°(S), then clearly u|bdryQ belongs to
C (bdry 2). We outline below an L?-imbedding result for such traces which can be
obtained for domains with suitably smooth boundaries as a corollary of Theorem
4.12 via the use of an extension operator.

The more interesting problem of characterizing the image of W™ 7 (2) under the
mapping u — u lb iy Q2 will be dealt with in Chapter 7. See, in particular, Theorem
7.39. The characterization is in terms of Besov spaces which are generalized
Sobolev spaces of fractional order.

535 Let Qbeadomainin R" satisfying the uniform C" -regularity condition of
Paragraph 4.10. Thus there exists a locally finite open cover {U;} of bdry €2, and
corresponding m-smooth transformations W; mapping B = {y € R" : |y| < 1}
onto U, such that U; N bdry Q@ = W;(By), where By = {y € B :y, = 0}. If f'is
a function having support in U;, we may define the integral of f over bdry €2 via

/ f(x) do = f Fydo = [ fow0/.0) 50 dy,
bdry U;Nbdry Q By
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where do is the (n — 1)-volume element on bdry 2, y' = (y1, ..., ya—1), and, if
x = WY;(y), then

TR N1
Xly ooy Xy ooy Xp
J(y [; 3()’1»---»)’n~1) ]

If f is an arbitrary function defined on R”, we may set

do = (x) do,
/bdwf(x) o ;fbmf(x)v, x)do

Ya=0

where {v;} is a partition of unity for bdry §2 subordinate to {U;}.

5.36 THEOREM (A Boundary Trace Imbedding Theorem) Let2bea
domain in R* satisfying the uniform C”™-regularity condition, and suppose there
exists a simple (m, p)-extension operator E for 2. Also suppose thatmp < n and
p<q <p*=(n—1p/(n—mp). Then

W™P () — L7 (bdry Q). 28)

If mp = n, then imbedding (28) holds for p < g < c0.

Proof. Imbedding (28) should be interpreted in the following sense. If
u € WmP(Q), then Eu has a trace on bdry 2 in the sense described in Para-
graph 4.2, and || Eullg g by < K l|4]l;n p, With K independent of u. Note that

since Co(R") is dense in W™ P (), | Eullg 4 bary o 1S independent of the particular
extension operator E used.

We prove the special case mp < n,q = p* = (n — 1) p/(n — mp) of the theorem;
the other cases are similar. We use the notations of the previous Paragraph.

There is a constant K such that for every u € WP (£2),

”Eu“m,p,R” <K ”u”m,p,Q'

By the uniform C™-regularity condition (see Paragraph 4.10) there exists a constant
K such that for each j and every y € B we have x = ¥;(y) € Uj,

a(yls "'7yn)

< K>.
(X1, ..., x,)

;)1 < Ko, and ‘

Noting that 0 < v;(x) < 1 on R", and using imbedding (4) of Theorem 4.12
applied over B, we have, foru € W™P(Q),

/ |Eu(x)|9do < Z/ |Eu(x)|?do
bdry T JUNbdry @
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<Y |Eowll,,

J

<k Y (|Euow 12,)"
J

q/p
< Kq (Z uEuu,',’,,p,,,,.)
J

< KeR | Eull’, , g
< K;s ”u”?npg .

The second last inequality above makes use of the finite intersection property
possessed by the cover {U;}. The constant K4 is independent of j because
|D*W; ;(y)| < constforalli, j, where ¥; = (W1, ..., W; ). This completes the
proof. 1

Finally, we show that functions in W™? (£2) belong to W' () if and only if they
have suitably trivial boundary traces.

537 THEOREM (Trivial Traces) Under the same hypotheses as Theorem
5.36, a function x in W™ (2) belongs to W, ” () if and only the boundary traces
of its derivatives of order less than m all coincide with the O-function.

Proof. Every function in C§°(€2) has trivial boundary trace, and so do all deriva-
tives of such functions. Since the trace mapping is a continuous linear operator
from W™P(S2) to W™~L.7 (bdry ), all functions in Wy * () have trivial boundary
traces, and so do their derivatives of order less than m.

To prove the converse, we suppose that u € W7 () and that u and its deriva-
tives or order less than m have trivial boundary traces. Localization and a suit-
able change of variables reduces matters to the case where €2 is the half-space
{x € R" : x, > 0}. We then show that the zero-extension & must belong to
wm-P(R"), forcing u to belong to W7 (€2) by Theorem 5.29.

In fact, we claim that if u € W™P(Q) has trivial boundary traces for u and its
derivatives of order less than m, then the distributional derivatives D*n of order
at most m coincide with the zero-extensions D?u. To verify this, approximate the
integrals

/ﬁ(x)D“d)(x)dx and (—1)'“'f Dou(x)é(x) dx (29)

by approximating # with functions v; in C (Q), without requiring that these
approximations have trivial traces.

Let ¢, be the unit vector (0,...,0,1). Since v; € C* (R2), integrating by parts
with respect to the other variables and then with respect to x, shows that the
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difference between the integrals
fR” 5;(x)D(x)dx  and (=DM / Dv;(x) (x) dx
is a finite alternating sum of integrals of the form
fR D yi(x1, ooy Xne, VDX (g, o X1, O) Xy - dxysy (30)

with k > 0. Choose the sequence {v;} to converge to u in W™?(£2). For each
multi-index 8 with 8 < «, the trace of D? v; will converge in L?(R"™!) to the
trace of DPu, that is to O in that space. Since the restriction of D¥~1¢ to R"~!
belongs to L” (R*~!), each of the integrals in (30) tends to 0 as j — ooc.

It follows that the two integrals in (29) are equal, and that £ € W™7(R"). This
completes the proof. 0



6

COMPACT IMBEDDINGS
OF SOBOLEV SPACES

The Rellich-Kondrachov Theorem

6.1 (Restricted Imbeddings) Let Q2 be a domain in R” and let € be a
subdomain of €2. Let X (§2) denote any of the possible target spaces for imbeddings
of W™ P (), thatis, X (2) is a space of the form C, (), C/ (), C/*(Q), LI (),
or Wi9(82,), where i, 1 < k < n, is the intersection of  with a k-dimensional
plane in R”. Since the linear restriction operator i, : 1 — u. o, 1s bounded from
X (R2) into X(£20) (in fact ||igu; X (R0)] < |lu: X(2)|}) any imbedding of the
form

W"P(Q) - X(Q) (1)

can be composed with this restriction to yield the imbedding
WP (Q) — X(S20) ()
and (2) has imbedding constant no larger than (1).

6.2 (CompactImbeddings) Recallthataset A inanormed spaceisprecompact
if every sequence of points in A has a subsequence converging in norm to an el-
ement of the space. An operator between normed spaces is called compact if it
maps bounded sets into precompact sets, and is called completely continuous if it
is continuous and compact. (See Paragraph 1.24; for linear operators compactness
and complete continuity are equivalent.) In this chapter we are concerned with the
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compactness of imbedding operators which are continuous whenever they exist,
and so are completely continuous whenever they are compact.

If €2 satisfies the hypotheses of the Sobolev imbedding Theorem 4.12 and if £ is
a bounded subset of €2, then, with the exception of certain extreme cases, all the
restricted imbeddings (1) corresponding to imbeddings asserted in Theorem 4.12
are compact. The most important of these compact imbedding results originated
in a lemma of Rellich [Re] and was proved specifically for Sobolev spaces by
Kondrachov [K]. Such compact imbeddings have many important applications in
analysis, especially to showing that linear elliptic partial differential equations
defined over bounded domains have discrete spectra. See, for example, [EE] and
[ET] for such applications and further refinements.

We summarize the various compact imbeddings of W”-P(2) in the following
theorem

6.3 THEOREM (The Rellich-Kondrachov Theorem) Let Q be a domain
in R*, let Q( be a bounded subdomain of €2, and let 9’5 be the intersection of
Qo with a k-dimensional plane in R”. Let j > 0 and m > 1 be integers, and let
1 <p<oo.

PART I If Q satisfies the cone condition and mp < n, then the following
imbeddings are compact:

WItmP(Q) > W (Qf) if 0<n—mp<k<nand

1 <q <kp/(n—mp), 3)
WItmP(Q) > W (Qf)  if n=mp, 1 <k <nand
1<q<oo0. €]

PART I If Q satisfies the cone condition and mp > n, then the following
imbeddings are compact:

witmr (Q) —» Cé(Qo) )
Witme Q) — Wid (QF) if 1<gqg<o. ©)

PART III If © satisfies the strong local Lipschitz condition, then the following
imbeddings are compact:

WitmP (@) > CI(Q)  if mp>m, 7
WItmP(Q) - C**(Q0)  if mp>n>(m—1)pand
0<A<m—(n/p). (3)

PART IV If Qis an arbitrary domain in R", the imbeddings (3)—(8) are compact
provided W/+™P (Q) is replaced by W ™7 ().
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6.4 REMARKS

1. Note that if Q is bounded, we may have 2o = 2 in the statement of the
theorem.

2. If X, Y, and Z are spaces for which we have the imbeddings X — Y and
Y — Z, and if one of these imbeddings is compact, then the composite
imbedding X — Z is compact. Thus, for example, if ¥ — Z is compact,
then any sequence {u;} bounded in X will be bounded in ¥ and will
therefore have a subsequence {u}} convergentin Z.

3. Since the extension operator 4 — i, where it(x) = u(x) if x € Q and
ii(x) = 0if x ¢ S, defines an imbedding W] ™7 (Q) — W/+mpr(R")
by Lemma 3.27, Part IV of Theorem 6.3 follows from application of Parts
I-1IT to R”.

4. In proving the compactness of any of the imbeddings (3)—(8) it is sufficient
to consider only the case j = 0. Suppose, for example, that (3) has been
proven compact if j = 0. For j > 1 and {u;} a bounded sequence in
WI+mP (Q) itis clear that { D%u;} is bounded in W™ 7 () for each o such
that || < j. Hence { D%u; le} is precompactin L4 (Qg) with ¢ specified as
in (3). Itis possible, thereforé):, to select (by finite induction) a subsequence
{u;} of {u;} for which { D*u; ’Qf,} converges in L9 (9'6) for each « such that

le] < j. Thus {uﬁ[Qk} converges in W({'q (Q’(‘)) and (3) is compact.

5. Since Qo is bounded, CH(Q%) — LI(Qk) for | < g < oo; in fact
lllog.ar < llus CH(QE) I [vol(226)11/9. Thus the compactness of (6) (for
Jj = 0) follows from that of (5).

6. For the purpose of proving Theorem 6.3 the bounded subdomain €2y of Q2
may be assumed to satisfy the cone condition in 2 does. If C is a finite cone
determining the cone condition for €2, let & be the union of all finite cones
congruent to C, contained in §2 and having nonempty intersection with 2.
Then 2 € £ C 2 and  is bounded and satisfies the cone condition.
If WnP(Q) - X() is compact, then so is W"P(Q) — X(fp) by
restriction.

6.5 (Proof of Theorem 6.3, Part III) If mp > n > (m — 1)p and if
0 < A < m — (n/p), then there exists  such that A < u < m — (n/p). Since
Q is bounded, the imbedding C%#(Qy) — C%*(y) is compact by Theorem
1.34. Since W"P(Q) — C**(Q) — C%*(Qp) by Theorem 4.12 and restriction,
imbedding (8) is compact for j = 0 by Remark 6.4(2).

If mp > n, let j* be the nonnegative integer satisfying the inequalities
(m— j*)p > n = (m— j*— 1)p. Then we have the imbedding chain

W™P(Q) — WP (Q) — C™(Q) — C(Q) 9)
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where 0 < u < m— j*—(n/p). The lastimbedding in (9) is compact by Theorem
1.34. Thus (7) is compact for j = 0. 1

6.6 (Proof of Theorem 6.3, Part II)  As noted in Remark 6.4(6), 5 may be
assumed to satisfy the cone condition. Since 24 is bounded it can, by Lemma 4.22
be written as a finite union, Qo = U,i"zl 2, where each Q; satisfies the strong
local Lipschitz condition. If mp > n, then

W™P(Q) — W™P () — C(Q),

the latter imbedding being compact as proved above. If {u;} is a sequence bounded
in W™P(Q), we may select by finite induction on k a subsequence {u;} whose
restriction to €, convergesin C($2;) foreachk, 1 < k < M. But this subsequence
then converges in C % (R0), so proving that (5) is compact for j = 0. Therefore
(6) is also compact by Remark 6.4(5). 1

6.7 LEMMA Let Q be a domain in R", ¢ a subdomain of §2, and Q’a the
intersection of o with a k-dimensional planein R” (1 <k <n). Let]l < g1 < qq
and suppose that

WP (Q) — L% (Qf)

and

WP (Q) - L (QF) compactly.

If g1 < g < qo, then

WP (Q) — L7 () compactly.

Proof. Let A = qi(q0 — ¢)/q(q0 — q1) and i = qo(q — 1)/ (g0 — q1). Then
A > 0and pu > 0. By Holder’s inequality there exists a constant K such that for
allu e W™P(),

A H A Iz
Heello,g. = Mlaellg g, ou el g, ot = K Mitllg g, g el . -

A sequence bounded in W™ ?(2) has a subsequence which converges in L' (Q’é)
and is therefore a Cauchy sequence in that space. Applying the inequality above to
differences between terms of this sequence shows that it is also a Cauchy sequence
in Lq(Qlé), so the imbedding of W™ ?(Q) into L? (Q’é) is compact. 1

6.8 (Proof of Theorem 6.3, Part I) First we deal with (the case j = 0 of)
imbedding (3). Assume for the moment that k = »n and let gy = np/(n — mp). In
order to prove that the imbedding

W"P(Q) - L1(Qo), 1 <q <qo, (10)
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is compact, it sufficed, by Lemma 6.7, to doso only forq = 1. For j = 1,2,3, ...
let
Q; = {x € Q : dist(x, bdry Q) > 2/j}.

Let S be a set of functions bounded in W™ 7 (£2). We show that S (when restricted
to ) is precompact in L!(§2) by showing that S satisfies the conditions of
Theorem 2.32. Accordingly, let € > 0 be given and for each u € W™P(Q2) set

- _fux) ifx e
u(x) = { 0 otherwise.

By Holder’s inequality and since W7 (2) — L% (), we have

1/q0 1-1/q9
/ ju(x)|dx < [ [ (x)]? dx / 1dx
Qu—-9Q; Q- Q-

1-1/q0
< Ky [l g [vOl(R0 — 2] 1%,

with K; independent of u. Since go > 1 and €4 has finite volume, j may be
selected large enough to ensure that for every u € S,

/ lu(x)|dx < ¢
Q-

and also, for every i € R”,
- - €
/ lu(x +h) —a(x)|dx < =.
Qo—82; 2

Now if |h| < 1/j, then x + th € ; provided x € ;and 0 <7 < 1. If
u € C*(), it follows that

1
/ lu(x + h) —u(x)|dx 5/ dxf
4 Y 0

1
< IhI/ dr/ igradu(y)] dy
0 Qg_/-

< |kl lully 1.0, < Kalhl lullp pa-

d
Eu(x + th)' dt

where K is independent of u. Since C*(£2) is dense in W™ P (2), this estimate
holds for any u € W™ P(Q2). Hence if |A| is sufficiently small, we have

lu(x + k) —n(x)|dx < €.
Q()
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Hence S is precompact in L' () by Theorem 2.32 and imbedding (10) is compact.

Next suppose that k < n and p > 1. The Sobolev Imbedding Theorem 4.12
assures us that WP (Q) — L*/=mP)(QK). For any q < kp/(n — mp) we can
chooser suchthatl <r < p,n—mr <k,andq < kr/(n—mr) < kp/(n—mp).
Since 24 is bounded, the imbeddings

W™P(Q) = WP (Qo) > W™ (Q)
exist. By Theorem 5.10 we have

Nl b < Kiltllrsin—mry. 0
1-6 0
= K2 ”u“nr/(n—mr),ﬂ() ”u”m,r.QU

< K3 el 181 2
where K; and 6 are constants (independent of u € W™P(£2)) and 0 satisfies
0 <6 < 1. Since nr/(n —mr) < np/(n —mp), a sequence bounded in W™ 7(£2)
must have a subsequence convergent in L""/"="") (Qq) by the earlier part of this
proof. That sequence is therefore a Cauchy sequence in L™/~ (Qy), and by the
above inequality it is therefore a Cauchy sequence in L? (Q’é), so the imbedding
wWmnP(Q) — Lq(Qlé) is compact and so is W™ P (Q2) — LI(QS).

If p=1and0 < n—m < k < n, then necessarily m > 2. Composing the
continuous imbedding W™! () — W™~17(Q), where r = n/(n — 1) > 1,
with the compact imbedding W™~1" () — L'(25), (which is compact because
k>n—(m—1)> n—(m— 1)r), completes the proof of the compactness of (3).

To prove that imbedding (4) is compact we proceed as follows. If n = mp, p > 1,
and 1 < g < oo, then we may select r sothat 1 <r < p,k > n —mr > 0, and
kr/(n — mr) > g. Assuming again that 2 satisfies the cone condition, we have

WmP(Q) — W™ (Q) — LI(QL).

The latter imbedding is compact by (3). If p = 1 and n = m > 2, then, setting
r=n/(n—1)> lsothatn = (n — 1)r, we have for 1 < g < o0,

wrl(Q) = W (Q) — LI(RQL),

the latter imbedding being compact as shown immediately above. Finally, if
n=m= p =1, then k = 1 also. Letting go > 1 be arbitrarily chosen we prove
the compactness of W1! () — L!(Sp) exactly as in the case k = n considered
at the beginning of this proof. Since W (Q) — L7(Qp) for 1 < g < o0, all
these imbeddings are compact by Lemma 6.7. I
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Two Counterexamples

6.9 (Quasibounded Domains) We say that an unbounded domain Q2 C R” is
quasibounded if

li1§121 dist(x, bdry Q) = 0.

[x|—o0
An unbounded domain is not quasibounded if and only if it contains infinitely
many pairwise disjoint congruent balls.

6.10 Two obvious questions arise from consideration of the statement of the
Rellich-Kondrachov Theorem 6.3. First, can the theorem be extended to cover
unbounded £2¢? Second, can the extreme cases

WP (@) > W (@), 0<n—p<ksn,
q =kp/(n—mp)

and , o
WP (Q) — CI*(Q),  mp>n>(m—1)p,

A=m—(n/p)

ever be compact? The first of these questions will be investigated later in this
chapter. For the moment though we show that the answer is negative if k = n and
o is not quasibounded. However, the situation changes (see [Lp]) for subspaces
of symmetric functions.

6.11 EXAMPLE Let Q be an unbounded domain in R" that is not qua-
sibounded. Then there exists a sequence {B;} of mutually disjoint open balls
contained in € and all having the same positive radius. Let ¢, € C3°(B,) satisfy
¢:ll; ., = Ajp > Oforeach j = 0,1,2,... and each p > 1. Let ¢; be a
translate of ¢, having supportin B;. Then {¢;} is a bounded sequence in W *(£2)
for any fixed m and p. But for any ¢,

190 = el g0 = (106170 5, + 10015 ) =294, > 0
¢l ¢k1],q,9 ¢l j.q.B; ¢k j.q.B; 1.4 >

so that {¢;} cannot have a sequence convergingin W77 (() Q) forany j > 0. Thus
no compact imbedding of the form W TP(Q) — WI(Q) is possible. The
non-compactness of the other imbeddings of Theorem 6.3 is proved similarly. 1

Now we provide an example showing that the answer to the second question raised
in Paragraph 6.10 is always negative.

6.12 EXAMPLE Let integers j, m,n be given with j > 0 and m,n > 1.
Let p > 1. If mp < n, let k be an integer such that n — mp < k < n and
letg = kp/(n —mp). f (Im —1)p <n <mp,let A =m— (n/p). Let Q
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be a domain in R” and let Q( be a nonempty bounded subdomain of  having
nonempty intersection Q’é with a k-dimensional plane H in R* which, without
loss of generality, we can take to be the plane RF spanned by the x1, x2, ..., Xk
coordinate axes. We show that the imbeddings

Wj+m,p(Q) N Wj-Q(Qlé) if mp <n (1
WitmP(Q) - CP*@o)  if (m—Dp<n<mp (12)

cannot be compact.

Let B, (x) be the open ball of radius r in R" centred at x and let ¢ be a nontrivial
function in C$°(B1(0)). Let {a;} be a sequence of distinct points in £, and let
B; = B,.(a;) where the positive radii 7; satisfy r; < 1 and are chosen so that the
balls B; are pairwise disjoint and contained in €29. We define a scaled, translated
dilation ¢; of ¢ with support in B; by

¢i(x) =rI " Pg (), where x =a; +riy.

The functions ¢; have disjoint supports in £ and, since D¥¢; (x) = r D¢ (y)
and dx = r' dy, we have, for |«| < j +m,

/ | D¢y (x)|P dx = r{Hm10P / |2%¢ ()I? dy.
Q Q

Therefore, {¢} is bounded in W/+™P(Q).
On the other hand, dx, - - -dx; = rfdy; - - - dyx, so that if || = j, then

/ |D%¢; (x)[9 dx; - - - dxg = riHAm=/p)] f ID*¢ ()% dy; - - - dyi.
QS Rk

Since k + q[m —(n/ p)] = 0, this shows that
“(bl ”j‘q,Q:") Z |¢l |j,q,Qf‘) = Cl ]¢|j,q,R" > 0

for all i, and {¢;} is bounded away from zero in W/ (Q’(‘)). The disjointness of
the supports of the functions ¢; now implies that {¢} can have no subsequence
converging in W/ (Q’(j), so the imbedding (11) cannot be compact.

Now suppose that (m — 1)p < n < mp. Let a be a point in B;(0) and B be
a particular multiindex satisfying || = j such that |DEp(a)| = C, > 0. Let
b; = a; + r;a and let ¢; be the point on the boundary of B; closest to b;. We have

|D‘B¢,‘(b,')| = rim—(n/p)cz = r?CZ:
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and, since D#¢; (¢c;) = 0,

|D?¢i(Bi) — DP¢ici)
b — cil*

Again, this precludes the existence of a subsequence of of {¢;} convergent in

C/*(S), so the imbedding (12) cannot be compact. I

| €7 (Q0)| = =C, > 0.

6.13 REMARK Observe that the above examples in fact showed that no
imbeddings of WJ™"7(£2), not just of the larger space W/T™7(Q), into the
appropriate target space can be compact. We now examine the possibility of
obtaining compact imbeddings of Wy ¥ (€2) for certain unbounded domains.

Unbounded Domains — Compact Imbeddings of W, ""*(12)

6.14 Let  be an unbounded domain in R*. We shall be concerned below with
determining whether the imbedding

Wy (Q) — LP(Q) (13)

is compact. If it is, then it will follow by Remark 6.4(4), Lemma 6.7, and the
second part of the proof in Paragraph 6.8 that the imbeddings

WP (Q) > W), O<n—mp<k<n, p<gq<kp/(n—mp),
WP (Q) — WIS, n=mp, 1<k<np=<qg<oo

are also compact. See Theorem 6.28 for the corresponding compactness of imbed-
dings into continuous function spaces.

As was shown in Example 6.11, imbedding (13) cannot be compact unless §2
is quasibounded. In Theorem 6.16 we give a geometric condition on € that is
sufficient to guarantee the compactness of (13), and in Theorem 6.19 we give an
analytic condition that is necessary and sufficient for the compactness of (13).
Both theorems are from [A2].

6.15 Let ©, denote the set {x € @ : |x| > r}. In the following discussion
any cube H referred to will have its edges parallel to the coordinate axes. For a
domain €2, a cube H, and an integer v satisfying 1| < v < n, we define the quantity
tn_v(H, ) to be the maximum of the (n — v)-measure of P(H — ) taken over
all projections P onto (n — v)-dimensional faces of H.

6.16 THEOREM Llet v be an integer such that 1 < v <nandmp > v (or
m = p = v = 1). Suppose that for every ¢ > 0 there exist numbers 4 and r
with 0 < h < 1 and r > 0 such that for every cube H C R" having side # and
nonempty intersection with €2, we have
Ha-o(H Q) B
hn—v T e
Then imbedding (13) is compact.
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6.17 REMARKS

1. We will deduce this theorem from Theorem 6.19 later in this section.

2. The above theorem shows that for quasibounded €2 the compactness of (13)
may depend in an essential way on the dimension of bdry 2.

3. For v = n, the condition of Theorem 6.16 places only the minimum
restriction of quasiboundedness on 2; if mp > n then (13) is compact
for any quasibounded 2. It can also be shown that if p > 1 and 2 is
quasibounded with boundary having no finite accumulation points, then
(13) cannot be compact unless mp > n.

4. If v = 1, the condition of Theorem 6.16 places no restrictions on m
and p but requires that bdry 2 be “essentially (n — 1)-dimensional.”
Any quasibounded domain whose boundary consists of reasonably regular
(n — 1)-dimensional surfaces will satisfy that condition. An example of
such a domain is the “spiny urchin” of Figure 4, a domain in R? obtained
by deleting from the plane the union of the sets Si, (k = 1, 2, .. .), specified
in polar coordinates by

Se={0) :r>k 0=nn/2" n=1,2,... 2%}

Note that this domain, though quasibounded, is simply connected and has
empty exterior.

i

Fig. 4

5. More generally, if v is the largest integer less than mp, the condition of
Theorem 6.16 requires in a certain sense that the part of the boundary of
having dimension at least n — v should bound a quasibounded domain.



Unbounded Domains — Compact Imbeddings of W, ¥ () 177

6.18 (A Definition of Capacity) Let H be a cube of edge length & in R" and
let E be a closed subset of H. Given m and p we define a functional I7;” on
C*(H) by

IFrwy = > Wl = h""“’/H|D“u(x)|”dx.

1<j<m 1<|al<m

Let C*°(H, E) denote the set of all nontrivial functions u € C*(H) that vanish
identically in a neighbourhood of E. We define the (m, p)-capacity Q" P(H, E)
of E in H by

Iy (w)

|t “(I))_va

Q’”'P(H,E)zinf{ cueC®(H, E)}.

Clearly Q"™?(H,E) < Q™*'P(H, E) and, whenever E C F C H, we have
Q"™P(H,E) < Q"P(H, F).

The following theorem characterizes those domains for which imbedding (13) is
compact in terms of this capacity.

6.19 THEOREM Imbedding (13) is compact if and only if €2 satisfies the
following condition: For every € > O there exists # < 1 and r > 0 such that the
inequality

Q™P(H,H — Q) = P [e

holds for every n-cube H of edge length ~ having nonempty intersection with €2,.
(This condition clearly implies that €2 is quasibounded.)

Prior to proving this theorem we prepare the following lemma.

6.20 LEMMA There exists a constant K (m, p) such that for any n-cube H
of edge length h, any measurable subset A of H with positive volume, and any
u € C'(H), we have

p—1lpn n+p

P 14
lullg , 4+ K Vol ligradullg ,, 4 -

P <2

lullo.r = Sorcay
Proof. Let y € A and x = (p,¢) € H, where (p,¢) denote spherical
coordinates centred at y, in terms of which the volume element is given by
dx = w(¢) p" 'dpde. Let bdry H be specified by p = f(¢), ¢ € . Clearly
f(¢) < /nh. Since

?d
M(X)=u(y)+/ ——u(r, @) dr,
0 dr
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we have by Lemma 2.2 and Holder’s inequality

/lu(x)l"dx
H
?d
§2P’1h”lu(y)lp+2”_1/ f —u(r, ) dr
H 0 dr

() P
< 227 M u(y)|P + 277 / w($)de / p" P2 dp / lgrad u(r, $)|7 dr
x 0 0

P
dx

|grad u(z)|?

p-lgn p 2F n+p—1
<277 W u(y)|P + ————(/nh) -
n g lz—yl

-1
+p—-1
Integrating y over A and using Lemma 4.64 we obtain
(vol(A)) llullg , r < 277 'H" (ull§ , 4 + Kh"*P |gradullf , 4 ,
as required. il

6.21 (Proof of Theorem 6.19 — Necessity) Suppose that 2 does not satisfy
the condition stated in the theorem. Then there exists a finite constant K; = 1/¢
such that for every h with 0 < h < 1 there exists a sequence {H;} of mutually
disjoint cubes of edge length # which intersect §2 and for which

Qm'p(Hj, Hj — Q) < K]hp.

By the definition of capacity, for each such cube H; there exists a function
u; € C*(H;, H — Q) such that Huj”ng_ = h", gradungpH_ < Kh",
.p.H; P 1

and ”uj"rl;,p,HJ < Ka(h). Let A; = {x € H; : |uj(x)| < 1}. By the previous

Lemma we have

op-lpn VO](AJ') KK,
S Vol(4) 27 " vol(A)

n 2n+p

from which it follows that vol(A;) < K3h"TP. Let us choose & so small that
K3h? < L whence vol(A;) < %vol(Hj). Choose functions w; € C°(H;) such
that w;j(x) = 1 on a subset S; of H; having volume no less than %vol(Hj), and
such that
sup max sup |D%w;(x)| = K4(h) < oo.
jolel=m xeq;

Then v; = ujw; € C(H; N C CF(R) and |v;(x)| = 3 on S; N (H; — A)),
a set of volume not less than 4" /3. Hence ” v ”g,p‘H] > h"/3 .27, On the other
hand

/ D%y ()| - | DPw; (x)|P dx < Ka(h) Ka(h)
H;
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provided ||, |8] < m. Hence {v;} is a bounded sequence in Wy ”(£2). Since
the supports of the functions v; are disjoint, H v — Vj ||gp‘Q > 2h"/3 - 27 so the
imbedding (13) cannot be compact. 1

6.22 (Proof of Theorem 6.19 — Sufficiency) Suppose 2 satisfies the condi-
tion stated in the theorem. Lete > 0 be given and chooser > Oand 4 < 1suchthat
for every cube H of edge h intersecting 2, we have Q™?(H, H — Q) > h? /e”.
Then for every u € Cj°(§2) we obtain

€7 mp P
IIullé’,p.H = W Iy ") <€’ lully, , q-

Since a neighbourhood of €2, can be tessellated by such cubes H we have by
summation

lullo,p.o < €llttllmpq-

That any bounded set S in W(;" "P(Q) is precompact in L?(§2) now follows from
Theorems 2.33 and 6.3. 1

6.23 LEMMA There is a constant K independent of / such that for any cube
H in R" having edge length &, for every g satisfying p < g < np/(n — mp) (or
p<q<ooifmp=n,orp<q <oifmp > n),andforeveryu € C*°(H) we
have

1/p
lullogn < K (Z pllp=n+np/q ||D“u||6’,p.H) :

lee|<m

Proof. We may suppose H to be centred at the origin and let H be the cube
of unit edge concentric with H and having edges parallel to those of H. The
stated inequality holds for z € C ®(H) by the Sobolev imbedding theorem. It
then follows for H via the dilation u(x) = it(x/h). 1

624 LEMMA Ifmp > n(orif m = p = n = 1), there exists a constant
K = K(m, p,n) such that for every cube H of edge length 4 in R* and every
u € C*™(H) that vanishes in a neighbourhood of some point y € H, we have

Wll? o < K 1o ().

Proof. Let (p, ¢) be spherical coordinates centred at y. Then

°d
u(ps(p):\/ok Eu(t9¢)dt'

If n > (m — l)p, then let ¢ = np/(n — mp + p), so that g > n. Otherwise
let ¢ > max{n, p} be an arbitrary and finite. If (p,¢) € H, then by Holder’s
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inequality

q Jnh 9=}
"~ dt f = (=D/a=h gy
0

n—1 dt

n-1 7] d
lu(p, $)190""" < (Vnh) 1/ a—u(f.@
0 t

P
< thq—l/
0

It follows, using the previous lemma with m — 1 in place of m, that

d q
Eu(t,d)) t

Il < Koh [ Igraducol” dx (14)
H

< K2h? ) ID"ulg, 4

lar|=1

q/p
< K3h? Z ( Z plBlp—ntniq "Da+ﬁu”g H) .
lel=1 \|Bl<m—1 P,

If p > n (or p = n = 1) the desired result follows directly from (14) with g = p:
leellf , 5 < K 157 () < K 1P ().
Otherwise, a further application of Holder’s inequality yields

lully . < Nullf, y (vOL(H )P/

<K WD,y =K I ).

I<ly|<m

6.25 (Proof of Theorem 6.16) Letmp > v(orm = p =v = 1)andlet H be
a cube in R for which u,_,(H, ) > h? /e. Let P be the maximal projection of
H — Q onto an (n — v)-dimensional face of H and let £ = P(H — ). Without
loss of generality we may assume that the face F of H containing E is parallel
to the x,41, ..., x, coordinate plane. For each point x = (x’, x”) in E, where
x' = (x1,...,x,) and x” = (x,41,...,x,) let Hy be the v-dimensional cube
of edge length % in which H intersects the v-plane through x normal to F. By
the definition of P there exists y € Hy — Q. If u € C*(H, H — ), then
u(-, x”) € C*(H,», v). Applying the previous lemma to u(-, x”’) we obtain

/ (', x")|Pdx' < Ky Y B f |D%u(x’, x")|P dx',
H.» H.»

1<|a|<m
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where K, is independent of H, x”, and u. Integrating this inequality over E and
denoting H' = {x' : x = (x, x”) € H for some x"}, we obtain

||M||g HxE = KII;.In;QE(M) =< KII]n;.p(u)'
D

Now we apply Lemma 6.20 with A = H’ x E so that vol(A) = h"u,—,(H, ).
This yields

n—y
p m,p
Hu”()yp‘y <K, M—n—u(-H, Q_) IH (u),
where K is independent of H. It follows that

p
tnv(H, ) h

™P(H,H—Q) > .
o™ )z Kb T €K,

Hence 2 satisfies the hypothesis of Theorem 6.19 if it satisfies that of Theorem
6.16. 1

The following two interpolation lemmas enable us to extend Theorem 6.16 to
cover imbeddings into spaces of continuous functions.

626 LEMMA Letl < p < ocand 0 < p < 1. There exists a constant
K = K (n, p, u) such that for every u € Cg°(R") we have

1-2
|oe(x) — u(y)]
sup Ju(x)] < K llullg prr | s0p ————=—1] (15)
EEN

where A = pu/(n+ pu).
Proof. We may assume

sup [u(x)| =N >0 and M=M<oo.

xcR7 cvein jx — y|/t

Ay

Let € satisfy 0 < € < N/2. Then there exists a point xo in R" such that we have
lu(xg)| = N —e€ > N/2. Now |u(xg — u(x)|/|xo — x|* < M for all x, so

1
(Ol > lu(xo)l — Mlxo — x|* > Elu(xo)l

provided |x — xo| < (N/4M)'/* = r. Hence

p _ p n/p
()P dx zf ('”(x")') dx > K, (N 6) (i) .
i \ 2 2 aM

R®
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Since this holds for arbitrarily small € we have

K" 1+n/up) pg—n/
+(n/up) pg—n/up
helo,pr 2 | 57 | N M
from which (15) follows at once. I

6.27 LEMMA LetQ be an arbitrary domain in R*, and let 0 < A < u < 1.
For every function u € C%#(§2) we have

Proof. lLetp=pu/Aand p’=p/(p—1). Let

u; C* @] <37 Jus e @) T Jus @M. o)

v — l/p
Ar=luc@|” . Bi=sw (LHL)I) ,
A2= ”u;c(ﬁ)lll/l’/ , Bz: Sug |u(x)_u(y)|1/p/‘

xFEY

Clearly AY+ B! = ||u; C**(Q)| and Bf/ < 2 |u; C(Q)|. By Hélder’s inequality
for sums we have

[e(x) — u(y)l
lx — y|*

u; COM Q)| = |u; C@| + sup

<AA+ BB

< (a7 +B))"7 (a5 + B)""

< i ORI 3 s @)
as required. 1l

6.28 THEOREM Let Q satisfy the hypotheses of Theorem 6.16. Then the
following imbeddings are compact:

W({+m.p(Q) — CI () if mp>n an
W@ > M@ if mp>nz(m—1Dp and
0<A<m—(n/p). (18)

Proof. It is sufficient to deal with the case j = 0. If mp > n, let j* be the
nonnegative integer satisfying (m — j*)p > n > (m — j* — 1) p. Then we have
the chain of imbeddings

WP Q) - Wi TP () - COH Q) — C(Q),
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where 0 < u < m — j* — (n/p). If {u;} is a bounded sequence in Wy " (),
then it is also bounded in C%# (). By Theorem 6.16, {1;} has a subsequence {u;}
converging in L?(£2). By (15), which applies by completion to the functions u;,
this subsequence is a Cauchy sequence in C(§2) and so converges there. Hence
(17) is compact for j = 0. Furthermore,if mp > n > (m — 1) p (that s, if j* = 0)
and 0 < A < u, then by (16) {u;} is also a Cauchy sequence in C%* () whence
(18) is also compact. 1

An Equivalent Norm for W,"""(2)

6.29 (Domains of Finite Width) Consider the problem of determining for
what domains £2 in R" is the seminorm

1/p
Ul pcr = (Z nD“un{;v,,,g)

le|=m

actually a norm on W(')" 'P(Q) equivalent to the standard norm

1/p
Nl po2 = (Z |1D“ullé’,,,.g> :

Jer|<m

This problem is closely related to the problem of determining for which unbounded
domains €2 the imbedding W(;" P(Q) — LP(R) is compact because both problems
depend on estimates for the L? norm of a function in terms of L? estimates for its
derivatives.

We can easily show the equivalence of the above seminorm and norm for a domain
of finite width, that is, a domain in R” that lies between two parallel planes of
dimension (n — 1). In particular, this is true for any bounded domain.

6.30 THEOREM (Poincaré’s Inequality) If domain @ C R” has finite
width, then there exists a constant K = K (p) such that for all ¢ € C3°(£2)

iollopo < Klplpa- (19)

This inequality is known as Poincare’s Inequality.

Proof. Without loss of generality we can assume that 2 lies between the hyper-
planesx, = Oandx, = ¢ > 0. Denoting x = (x/, x,), where x’ = (x1, ..., xy_1),
we have for any ¢ € C3°(82),

Xy d ,
() =/0 Sow.ndi
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so that, by Holder’s inequality,
(o
1612, 6 = f dx’ f 617 dx,
Rr-1 0

c c
sf dx’f x,f‘ldxnf |Dap(x', )|7 dt
Rn-1 0 0

Cp
<—lolf ,q-
p WPy

Inequality (19) follows with K = ¢/p'/?. I

6.31 COROLLARY If Q has finite width, |-|,, , o is a norm on W;"”()
equivalent to the standard norm |||, p q-

Proof. If ¢ € C§°(2) then any derivative of ¢ also belongs to C§°(£2). Now
(19) implies

161 0 < 1617 0 = 1615 0+ 1810 o < A+ KD B, q,

and successive iterations of this inequality to derivatives D*¢, (Jo| < m — 1) leads
to

b
Bl o < l¢lh o <Kildlh o

By completion, this holds for all u in W37 (2). I

6.32 (Quasicylindrical Domains) An unbounded domain €2 in R" is called
quasicylindrical if
limsup dist(x, bdry 2) < cc.
x€Q, |x|—>00

Every quasibounded domain is quasicylindrical, as is every (unbounded) domain
of finite width. The seminorm |[-|,, , ¢, is not equivalent to the norm [, , o on
W(;" "P(Q) for unbounded <2 if € is not quasicylindrical. We leave it to the reader
to construct a suitable counterexample.

The following theorem is clearly analogous to Theorem 6.16.

6.33 THEOREM Suppose there exist an integer v and constants K, R, and 4
suchthatl <v <n,0< K <1,0<R <o00,and 0 < & < co. Suppose also
that either v < p or v = p = 1, and that for every cube H in R* having edge
length A and nonempty intersection with Qg = {x € Q : |x]| > R} we have

Nn—v(Hy Q) >

hn—v > kK,

where pu,_,(H, Q) is as defined prior to the statement of Theorem 6.16. Then
|*|n, p.c2 18 @ nOrm on Wé"'p(SZ) equivalent to the standard norm ||-|[, , -
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Proof. As observed in the previous Corollary, it is again sufficient to prove that
lullo.p.o < Kiluly .o holds forall u € C§°(€2). Let H be a cube of edge length
h having nonempty intersection with Q. Since v < p (or v = p = 1) the proof
of Theorem 6.16 shows that

pn-o(H, Q)

K
YPY(H,H - Q) > —
Q" "H, )z Kohn=> T K,

for all u € C§°(Q), K being independent of u. Hence
N}, 5 < Ko/ K" = K3 lulf , .

By summing this inequality over the cubes comprising a tessellation of some
neighbourhood of Qg, we obtain

lullg 0, < K3 lulf , - (20)
It remains to be proven that

p
||M||g,p.3,e <Kj3 |u|1~PVQ ,

where B = {x € R" : |x] < R}. Let (p, ¢) denote the spherical coordinates
of the point x € R" (p > 0, ¢ € X) so that dx = p" 'w(¢)dpd¢. For any
u € C°(IR") we have

R+p

d
u(p,¢>)=u(,0+R,¢)—f Eu(t,qﬁ)dt
o

so that (by Lemma 2.2)

R+p
lu(p, $)IP <277 u(p + R, $)|” +2P"RP‘1p1‘"/ lgradu(z, ¢)|Pr" " dt.
0

Hence
R
1.0, = [ 0@ d8 [ iuto. 0175 dp
x 0
R
<2r! f (@) dp f lu(p + R, $)I (0 + R dp
X 0

2R
+2”_1R"/ w(d))dd)/ lgradu(z, ¢)|P1" "' dt.
z 0
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Therefore, we have for u € C{°(2)
4 p—1 14 p—1pp P
”ullO,p,Bk <2 IIMIIO,,,,BZR_BR +2 R |u|1,p‘3”
-1 -1
<2° IIuIIg,,,,QR +2P7'RP Iulf‘p,g <Ky Iulf,,,,g

by (20). 1

Unbounded Domains — Decay at Infinity

6.34 The fact that elements of W, ”(2) vanish in a generalized sense on the
boundary of 2 played a critical role in our showing that the imbedding

WP (Q) - LP(RQ) 1)

is compact for certain unbounded domains 2. Since elements of W7 (£2) do not
have this property, there remains a question of whether an imbedding of the form

WmP(Q) — LP(Q) (22)

can ever be compact for unbounded €2, or even for bounded €2 which are sufficiently
irregular that no imbedding of the form

WP (Q) — LI(Q) (23)

can exist for any ¢ > p. Note that if © has finite volume, the existence of
imbedding (23) for some ¢ > p implies the compactness of imbedding (22) by
the method of the first part of the proof in Paragraph 6.8. By Theorem 4.46
imbedding (23) cannot, however, exist if ¢ > p and €2 is unbounded but has finite
volume.

6.35 EXAMPLE _Eor ]_ = 1,2, ...let B; be an open ball in R having radius
rj, and suppose that B; N B; is empty whenever j # i. Let Q = Ufil B;. Note
that £ may be bounded or unbounded. The sequence {u,} defined by

oy | vol(B))TVP ifx € B;

”f(x)_{o if x ¢ B,

is bounded in W™ () for every integer m > 0, but is not precompact in L?(2)
no matter how fast r; — 0 as j — o0o. (Of course, imbedding (21) is compact by
Theorem 6.16 provided lim;_, o, r; = 0.) Even if Q is bounded, imbedding (23)
cannot exist for any ¢ > p.

6.36 Let us state at once that there do exist unbounded domains €2 for which the
imbedding (22) is compact. See Example 6.53. An example of such a domain
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was given by the authors in [AF2] and it provided a basis for an investigation of
the general problem in [AF3]. The approach of this latter paper is used in the
following discussion.

First we concern ourselves with necessary conditions for the compactness of (23)
for ¢ > p. These conditions involve rapid decay at infinity for any unbounded
domain (see Theorem 6.45). The techniques involved in the proof also yield a
strengthened version of Theorem 4.46, namely Theorem 6.41, and a converse of
the assertion {see Remark 4.13(3)] that W"-#(Q) — LI(Q) forl < g < pif Q
has finite volume.

A sufficient condition for the compactness of (22) is given in Theorem 6.52. It
applies to many domains, bounded and unbounded, to which neither the Rellich-
Kondrachov theorem nor any generalization of that theorem obtained by the same
methods can be applied. (e.g. exponential cusps — see Example 6.54).

6.37 (Tessellations and \-fat Cubes) Let T be a tessellation of R” by closed
n-cubes of edge length k. If H is one of the cubes in T, let N(H) denote the cube
of edge length 3/ concentric with H and therefore consisting of the 3" elements
of T that intersect H. We call N(H) the neighbourhood of H. By the fringe of
H we shall mean the shell F(H) = N(H) — H.

Let 2 be a given domain in R" and T a given tessellation as above. Let A > 0. A
cube H € T will be called A-fat (with respect to €2) if

n(H N Q) > A pu(F(H)N L),

where u denotes the n-dimensional Lebesgue measure in R". (We use u instead
of “vol” for notational simplicity in the following discussion where the symbol
must be used many times.) If H is not A-fat then we will say it is A-thin.

6.33 THEOREM Suppose there exists a compact imbedding of the form
Wm™P(Q) —» LI(Q)

for some ¢ > p. Then for every A > 0 and every tessellation T of R* by cubes of
fixed size, T can have only finitely many A-fat cubes.

Proof. Suppose, to the contrary, that for some A > 0 there exists a tessellation
T of R* by cubes of edge length 4 containing a sequence {H;};2, of A-fat cubes.
Passing to a subsequence if necessary we may assume that N(H;) N N(H;) is

empty whenever j # i. For each j there exists ¢; € Cg°(N(H;)) such that
@) lp;j(x)| < 1forallx e R*,
(i1) ¢;(x) =1forx € H;, and
(iii) |D*¢;(x)| < M forall j,all x € R*, and all « satisfying 0 < |a| < m.
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In fact, all the ¢; can be taken to be translates of one of them. Let v; = c;¢;,
where the positive constants ¢; are chosen so that

|1¢,||0q9_ j/ | ()7 dx = I u(H;N Q) = 1.
HnQ
But then

P 'y p
lvilhso=c 2 ]N(Hmw ¢;(0)1” dx

0<|(x|<m

<M”cl u(N(H)NQ)

1 1
— pP—q
< M? (H,-msz)(1+x)_MP(1+X)cj ;

since H; is A-fat. Now wu(H; N Q) < u(H;) = h" so ¢; > h™"9. Since
p —q < 0, {¢;} is bounded in W™?(Q). But the functions ¥; have disjoint
supports, so {t;} cannot be precompact in L?(£2), contradicting the assumption
that W™P(Q) — L9(K2) is compact. Thus every T can possess at most finitely
many A-fat cubes. 1§

6.39 COROLLARY Suppose that W™ (Q2) — L9(Q2) forsomeqg > p. If T
is a tessellation of R by cubes of fixed edge-length, and if A > 0 is given, then
there exists € > 0 such that u(H N Q) > ¢ forevery A-fat H € T.

Proof. Suppose, to the contrary, that there exists a sequence { H;} of A-fat cubes
with lim;_, . w(H; N Q) = 0. If ¢; is defined as in the above proof, we have
lim;_, o ¢; = co. But then lim;_, “l//j "m,p,Q = O since p < q. Since {y;}
is bounded away from 0 in L9(£2), we have contradicted the continuity of the
imbedding W™ ?(Q) — LI(2). 1

6.40 REMARK It follows from the above corollary that if there exists an
imbedding
W™P(Q) - LI(2) (24)

for some g > p then one of the following alternatives must hold:

(a) There exists € > 0 and a tessellation T of R” consisting of cubes of fixed
size such that w(H N ) > € for infinitely many cubes H € T.

(b) For every A > 0, every tessellation T of R* consisting of cubes of fixed
size contains only finitely many A-fat cubes.

We will show in Theorem 6.42 that (b) implies that © has finite volume. By
Theorem 4.46, (b) is therefore inconsistent with the existence of (24) for g > p.
On the other hand, (a) implies that u({x eQ:N<|x| <N+ 1}) does not
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approach zero as N tends to infinity. We have therefore proved the following
strengthening of Theorem 4.46.

6.41 THEOREM Let 2 be an unbounded domain in R* satisfying

limsupvol(fx e 2 : N <|x|<N+1}) =0.

N—ooo

Then there can be no imbedding of the form (24) for any g > p.

6.42 THEOREM Suppose that imbedding (24) is compact for some g > p.
Then €2 has finite volume.

Proof. Let T be a tessellation of R" by cubes of unit edge length, and let
A = 1/[2(3" — 1)]. Let P be the union of the finitely many A-fat cubes in 7.
Clearly u(P N Q) < u(P) < oo.

Let H be a A-thin cube in T'. Let H; be one of the 3* — 1 cubes in T constituting
the fringe of H selected so that u(H N €2) is maximal. Thus

w(HNQ) < Ap(FHYNQ) < 23" — Du(H, N Q) = %M(Hl n Q).

If H; is also A-thin, then we may select a cube Hy € T with H, C F(H)) such
that w(H, N Q) < Ju(H, N Q).

Suppose an infinite chain { H;, H>, ...} of A-thin cubes can be constructed in the
above manner. Then

1 1 1
u(HﬂQ)SEu(HmSZ)S--SEM(HjﬂQ)S5

for each j since p(H; N Q) < pu(H;) = 1. Hence u(H N Q) = 0. Denoting
by P the union of A-thin cubes H € T for which such an infinite chain can be
constructed, we have (P N 2) = 0.

Let P; denote the union of A-thin cubes H € T for which some such chain ends
on the jth step; that is, H; is A-fat. Any particular A-fat cube H’ can occur as the
end H; of a chain beginning at H only if H is contained in the cube of edge 2j + 1
centred on H'. Hence there are at most (2j + 1) such cubes H C P; having H'
as chain endpoint. Thus

WPNQ =) uwHNR
HCP;

1
<55 ) wHNQ

2 HCP;
2j+ D" / _@ji+n"
< = > WHNQ) = T HENQ),

H'CP
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so that u(2) = u(P N Q) + u(Pec N + 372, u(P N Q) < 00. I
Suppose 1 < g < p. If vol(2) < oo, then the imbedding
WP (Q) - LI(Q)
exists because W™P(Q2) — LP () trivially and L?(§2) — L7(S2) by Theorem
2.14.

We are now in a position to prove the converse.

6.43 THEOREM If the imbedding W™?(Q2) — L7(2) exists for some p
and g satisfying 1 < g < p, then 2 has finite volume.

Proof. Let 7, A, and again let P denote the union of the A-fat cubes in 7. If we
can show that u(P N Q) is finite, it will follow by the same argument used in that
theorem that 1 ($2) is finite.

Accordingly, suppose that (P N €2) is not finite. Then there exists a sequence
{H,} of A-fat cubes in T such that Z;'il w(H; N Q) = oo. If L is the lattice of
centres of cubes in 7', we may break up L into 3" mutually disjoint sublattices
{L;}¥", each having period 3 in each coordinate direction. For each i let T; be
the set of all cubes in T that have centres in L;. For some i we must have
Y faH er, #(H N §2) = oo. Thus we may assume that the cubes of the sequence
{H;} all belong to T; for some i, so that N(H;) N N(Hy) is empty if j # k.

Choose integer j; so that

J
2gzu(ﬂjm9) < 4.
j=1

Let ¢; be as in the proof of Theorem 6.38, and let
Ji
Y1) =277 )" ().
j=1

Since the supports of the functions ¢; are mutually disjoint and since the cubes
H; are A-fat, for |a| < m we have

1 jl
ID*Y1ll§ 0 = | D%, (x)|” dx
P 24 g
]:

1 jl
—_ p .
<M ;u(N(H,) N Q)

1 1\ & 1
SM” <1+X)Zu(ﬂjng) < 2MP (HX)‘

A

j=1
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On the other hand,

g
191llg 4.0 = 2797 )" w(H; N Q) > 2'-@/P,
j=1
Having so defined j, and ;, we can now define j,, js, ... and ¥, v, ... induc-
tively so that

i
2k < Z W(H; N Q) < 2k+!
J=Jk-1+1
and

J
Yelx) =279k N ().

J=jk-1+1
As above, we have for |¢| < m,

2 1
o P
1DVl < 51" (1 + X)
and

Ka/p) 1\2/»r
I¥ellf ;. = 2570/7 MP(k) :

Thus ¢ = Z,fil Yy belongs to W”7(£2) but not to L7(£2) contradicting the
imbedding W™-?(Q2) — L9(2). Hence (P N Q) < oo as required. 1

6.44 If there exists a compact imbedding of the form W™?(Q) — L4() for
some g > p, then, as we have shown, 2 has finite volume. In fact, considerably
more is true; w({x € £ : |x| = R}) must approach zero very rapidly as R — oo,
as we show in Theorem 6.45 below.

If Q is a union of cubes H in some tessellation T of R by cubes of fixed edge
length, we extend the notions of neighbourhood and fringe to Q in an obvious
manner:

N(Q) = | | N(H), F(Q)=N(Q) - 0.
Iléz

Givend > 0,let A = 8/[3"(1 + 8)]. If all the cubes H € T satisfying H C Q are
A-thin, then Q is itself §-thin in the sense that
w@NQ) < 8u(F(Q)NQ).

To see this note that as H runs through the cubes comprising Q, F(H) covers
N(Q) at most 3" times. Hence

n(QNQ) = Zu(fmsz)<xz (F(H)NQ)

HcCQ HcCQ
< 3 (N(Q) N Q) = 3"A[1(Q NQ) + u(F(Q) N Q)]
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and the fact that Q is 5-thin follows by transposition (permissible since p(2) < 00)
and since 3"A/(1 — 3"A) = 4.

For any measurable set S C R” let O be the union of all cubes in T whose interiors
intersect S, and define F(S) = f(Q). If § is at a positive distance from the finitely
many A-fat cubes in 7, then Q consists of A-thin cubes and we obtain

n(SNQ) < u(@NQ) <su(FE)NQ). (25)

6.45 THEOREM (Rapid Decay) Suppose there exists a compact imbed-
ding of the form
WP (Q) — LI(2) (26)

forsome g > p. Foreachr > 01letQ, = {x € Q: |x| > r}, let S, ={x € Q:
|x] = r}, and let A, denote the surface area (Lebesgue (n — 1)-measure) of S,.
Then

(a) For given ¢, § > 0 there exists R such that if r > R, then
w(2,) §8u({x e r—e<|x| Sr}).

(b) If A, is positive and ultimately nonincreasing as r — 00, then for each
€>0 A
lim —*<

r—oo A,

=0.

Proof. Givene > 0and § > 0, let A = §/[3"(1 4+ §)] and let T be a tessellation
of R" by cubes of edge length €/(2/n). Let R be large enough that the finitely
many A-fat cubes in T lie in the ball of radius R — €/2 about the origin. If » > R
and S = §,, then any H € T whose interior intersects S is A-thin. Moreover, any
cube in the fringe of S can only intersect Q2 at points x satisfyingr —€/2 < |x| < r.
By (25),

w@Q) =N <su(FONQ)=su(fxeQ:r—e=<xl<r}),

which proves (a).

For (b) choose Ry so that A, is nonincreasing for r > Ry. Fix €/, 8 > 0 and let
€ =¢€'/2. Let Rbe asin (a). If r > max{R, Ry + €'}, then

1 r+2e 1
Arye < _/ Asds < (1)
€ Jrte €

b 5 r+e
5;#({xe$2:r§|x|§r+e})=g/ Asds < 5A,.
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Since €’ and § are arbitrary, (b) follows. 1

6.46 COROLLARY If there exists a compact imbedding of the form (26) for
some g > p, then for every k > 0 we have

lim e u($2,) = 0. (27)
r—>00

Proof, Fix k and let § = ¢ **D. From conclusion (a) of Theorem 6.45 there
exists R such that r > R implies pu(2,4+1) < du(2,). Thus if j is a positive
integer and 0 < ¢ < 1, we have

KR+ K(R+j+1
HFRHD 1 (Qpyje) < D (Qpy))

< MV M 8T p(Qp) = D p(Qp) e
The last term approaches zero as j tends to infinity. 1

6.47 REMARKS

1. We work with Sobolev spaces defined intrinsically in domains. If instead,
we had defined W™ ?(Q2) to consist of all restrictions to © of functions in
w™-P(R"), then the outcome for Corollary 6.46 would have been different.
With that definition, it is shown in [BSc] that W™-7(Q2) imbeds compactly
in L?() if and only if the volume of the intersection of € with cubes of
fixed edge-length tends to O as the centres of those cubes tend to 0o. There
are many domains 2 satisfying the latter condition but not satisfying (27).
None of these domains can have any Sobolev extension property.

2. The argument used in the proof of Theorem 6.45(a) works for any norm p
on R in place of the usual Euclidean norm p(x) = |x|. The same holds for
Theorem 6.45(b) provided A, is well defined (with respect to the norm p)
and provided

r+e
,u({er:rgp(x)fr-i—e}):/ Asds.

This is true, for example, if p(x) = maxj<j<y |Xil.

3. For the proof of Theorem 6.45(b) it is sufficient that A, have an equivalent
nonincreasing majorant, that is, there should exist a positive, nonincreasing
function f(r) and a constant M > 0 such that for sufficiently large r

A, < f(r) = MA,.

4. Theorem 6.38 is sharper than Theorem 6.45, because the conclusions of
the latter theorem are global whereas the compactness of (26) depends on
local properties of 2. We illustrate this by means of two examples.



194 Compact Imbeddings of Sobolev Spaces

6.48 EXAMPLE Let f € C'([0, 00)) be positive and nonincreasing with
bounded derivative f’. We consider the planar domain (Figure 5)

Q:{(x,y)eIR2 :x>0,0<y<f(x)}.

With respect to the supremum norm on R?, that is p(x, y) = max{|x|, ||}, we
have A; = f(s) for sufficiently large s. Hence € satisfies conclusion (b) of
Theorem 6.45 (and, since f is monotonic, conclusion (a) as well) if and only if

f6+0) _

lim =0 (28)

=00 f(s)

holds for every € > 0. For example, f (x) = exp(—x?) satisfies this condition but
f(x) = exp(—x) does not. We shall show in Example 6.53 that the imbedding

Wm™P(Q) — LP(R2) (29)

is compact if (28) holds. Thus (28) is necessary and sufficient for compactness of
the above imbedding for domains of this type. I

y

Fig. 5

6.49 EXAMPLE Let f be as in the previous example, and assume also that
£'(0) = 0. Let g be a positive, nonincreasing function in C' ([0, oo)) satisfying
(i) g(0) = 3/(0),and g'(0) = 0,
(i) g(x) < f(x) forall x > 0,
(iii) g(x) is constant on infinitely many disjoint intervals of unit length.
Let 2(x) = f(x) — g(x) and consider the domain (Figure 6)

Q={0y) eR :0<y<gifx>0,0<y<h(-x)ifx <0},
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Again we have A; = f(s) for sufficiently large s, so € satisfies the conclusions
of Theorem 6.45 if (28) holds.
If, however, T is a tessellation of R? by squares of edge length i having edges
parallel to the coordinate axes, and if one of the squares in T has centre at the
origin, then T has infinitely many %—fat squares with centres on the positive x-axis.
By Theorem 6.38 the imbedding (29) cannot be compact for the domain Q.1

Y

Fig. 6

Unbounded Domains — Compact Imbeddings of W™ P((2)

6.50 (Flows) The above examples suggest that any sufficient condition for the
compactness of the imbedding

W™P(Q) — LP(S)

for unbounded domains £ must involve the rapid decay of volume locally in each
branch of €2, as r tends to infinity. A convenient way to express such local decay
is in terms of flows on Q.

By a flow on Q we mean a continuously differentiable map ® : U — 2 where
U is an open set in £ x R containing  x {0}, and where ®(x, 0) = x for every
x € Q.

For fixed x € Q the curve t — ®(x, t) is called a streamline of the flow. For fixed

t the map @, : x — D(x, r) sends a subset of €2 into 2. We shall be concerned
with the Jacobian of this map:

(P, .... Py

det ! (x) = 30, )

(x.1)
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It is sometimes required of a flow @ that ®,;, = &, o P, but we do not need this
property and so do not assume it.

6.51 EXAMPLE Let Q2 be the domain of Example 6.48. Define the flow

f=n)

O(x,y, 1) = (x —t, 700

y), O0<t<ux.

The direction of the flow is towards the line x = 0 and the streamlines (some
of which are shown in Figure 7) diverge as the domain widens. ®, is a local
magnification for ¢ > 0:

fe-1

det®;(x,y) = o

Note that lim,_, » det ®;(x, ¥) = oo if f satisfies (28).

For N =1,2,...1et Q% = {(x,y) € 2:0 < x < N}. Since Q} is bounded and
satisfies the cone condition, the imbedding

whr(Qy) - LP(Q%)
is compact. This compactness, together with properties of the flow ® are sufficient

to force the compactness of W™ ?(2) — LP(£2) as we now show.
y
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6.52 THEOREM Let  be an open setin R having the following properties:

(a) There exists an infinite sequence {Q2%}%_; of open subsets of §2 such that
Q% C %, and such that for each N the imbedding

whr (%) > L7}
is compact.
(b) There exists a flow ® : U — Q such thatif Qy = Q — Q}, then
(1) @y x[0,1] c U foreach N,
(i) @, is one-to-one for all 7,
(iii) [(3/31)®(x,t)] < M (constant) for all (x, ) € U.
(c) The functions dy(t) = sup,.q, |det <I>;()c)|_l satisfy
(i) limyooody(l) =0,
(i) limy-o0 f; dy(t)dt = 0.
Then the imbedding W™ ? (2) — L?(2) is compact.

Proof. Since we have W™?(Q) — WP (Q) — LP() it is sufficient to prove
that the latter imbedding is compact. Let u € C'(£2). For each x € Qy we have

'
u(x):u(<1>1(x))—f —u(®,(x))dr.

o Ot
Now
|u(®1(x))]dx < dN(l)/ |u(D1(x))||det @ (x)| dx
Qun Qy
=d~<1)f ()| dy
@ (Qy)

EdN(l)/Qlu()’)ld)’-

Also

dt

1 1
/ iu(CIJ,(x)) dt| dx ff dx/ |gradu(<l>,(x))‘ .id%(x)
o Ot Qn 0 at

J.

1
< M/ dN(t)dtf |grad u(®, (x))| |det @;(x)| dx
0 Qy

1
<M (f dy(0) dt) (/ |gradu<y)|dy>.
0 Q

Putting §y = max [dN(l), M fol dn(®) dt}, we have

/ lu(x)|dx < én /Q(lu()’)l + lgradu(y))dy <8y llull; 10 (30)
Qv
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and limpy_, o 6y = 0.

Now suppose u is real-valued and belongs to C'(Q) N W!'P(Q2). By Holder’s
inequality, the distributional derivatives of |u|?P

-1
Dj|u|”:p-|u|p -sgnu-Dju,

satisfy

[ Do dx < p 1Djuly 0 Wl < p1uk?

Thus |u|? € W!1(Q) and by Theorem 3.17 there is a sequence {¢;} of functions
in C1(Q) N W' () such that lim; o |¢; — 4|7 ||, | , = 0. Thus, by (30)

/ |u(x)|de=jlinolof ¢;(x)dx < limsupdy ||&;], , o
o a ; 1,

Jj—>0o0

where K = K (n, p). This inequality holds for arbitrary complex-valued function
u € CH(Q) N WLP(Q) by virtue of its separate applications to the real and
imaginary parts of u.

If S is a bounded set in W!-P(Q2) and € > 0, we may, by the above inequality,
select N so that forallu € S

f le(x)|? dx < e.
Qy

Since WIP(Q2 — Qy) — LP(S2 — Qp) is compact, the precompactness of S in
L?(S2) follows by Theorem 2.33. Hence W' (Q) — LP(2) is compact. I

6.53 EXAMPLE Consider again the domain of Examples 6.48 and 6.51 and
the flow & given in the latter example. We have

dy(t) = sup — fx) <1 if 0<t<l1

x>Nf(x_t) -

and by (28)
Nlim dy() =0 if ¢>0.

Thus by dominated convergence

1
lim / dy(t)dt = 0.

N—oo fg
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The assumption that f’ is bounded guarantees that the speed |(9/37)®(x, y, 1)|
is bounded on U. Thus 2 satisfies the hypotheses of Theorem 6.52 and the
imbedding W™ (Q2) — LP?(2) is compact for this domain. il

6.54 EXAMPLE Theorem 6.52 can also be used to show the compactness
of W™?(Q) — L?(R2) for some bounded domains to which neither the Rellich-
Kondrachov theorem nor the techniques used in its proof can be applied. For
example, we consider

Q:{(x,y)eR2 :0<x<2,0<y<f(x)},

where f € C L0, 2D is positive, nondecreasing, has bounded derivative f7, and
satisfies lim,_, o+ f(x) = 0. Let

U:{(x,y,t)e]K3 C (L) €eQ, —x <t <2—x}
and define the flow ® : U — Q by

_ fx+1
q)(-xvy’t)—<x+t, ——_f(x) y)
Thendet®)(x,y) = f(x +1)/f(x). Q3 ={(x,y) € Q:x > 1/N}, then
fx)
d = _
wi) 0<;Sclg1)/N fx+1)

satisfies dy(t) < 1 for0 <t < 1, and limy_,oo dy(t) = 0 if t > 0. Hence also
limpy o0 fol dn(t) dt = 0 by dominated convergence. Since 2}, is bounded and
satisfies the cone condition, and since the boundedness of d® /3¢ is assured by
that of f’, we have, by Theorem 6.52 the compactness of

W™ P(Q) — LP(RQ). 3D

However, suppose that lim,_o; f(x)/x* = 0 for every k. (For example, this
is true if f(x) = e~!/*.) Then £ has an exponential cusp at the origin and by
Theorem 4.48 there exists no imbedding of the form W™ ?(Q2) — L9(K) for any
q > p so the method of proof of the Rellich-Kondrachov theorem cannot be used
to show the compactness of (31).

6.55 REMARKS

1. It is easy to imagine domains more general than those in the above exam-
ples to which Theorem 6.52 applies, although it may be difficult to specify
an appropriate flow. A domain with many (perhaps infinitely many) un-
bounded branches can, if connected, admit a suitable flow provided volume
decays sufficiently rapidly in each branch, a condition not fulfilled by the
domain € in Example 6.49. For unbounded domains in which volume
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decays monotonically in each branch Theorem 6.45 is essentially a con-
verse of Theorem 6.52 in that the proof of Theorem 6.45 can be applied
separately to show that the volume decays in each branch in the required
way.

2. Since the only unbounded domains for which W2 (£2) imbeds compactly
into L?{£2) have finite volume there can be no extensions of Theorem 6.52
to give compact imbeddings into L9(§2) (where g > p), or C3(Q) etc.;
there do not exist such imbeddings.

Hilbert-Schmidt Imbeddings

6.56 (Complete Orthonormal Systems) A complete orthonormal system in
a separable Hilbert space X is a sequence {e;}{2, of elements of X satisfying

1 ifi=j
(ei,ej)x—[o it J,

(where (-, -)x is the inner product on X), and such that for each x € X we have

k
x =) (xe)xe; X| =0. (32)
i=l1

lim
k— o0

Thus x = Z;’il(x, e;)e;, the series converging with respect to the norm in X.
It is well known that every separable Hilbert space possesses such a complete
orthonormal system. There follows from (32) the Parseval identity

o0
s X1 =) 1Cx, exl®.
i=1

6.57 (Hilbert-Schmidt Operators) Let X and Y be two separable Hilbert
spaces and let {¢;}7°, and {f;}32, be given complete orthornomal systems in X
and Y respectively. Let A be a bounded linear operator with domain X taking
values in Y, and let A* be the adjoint of A taking Y into X and defined by

(x, A*y)x = (Ax, )y, xeX, yeY.

Define

o0 o
AN =" lAe s YI2, A2 =" |a*f: X]|*.
i=1 i=1
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If Al is finite, A is called a Hilbert-Schmidt operator and we call |||A||| its
Hilbert-Schmidt norm. Recall that the operator norm of A is given by

Al = sup{llAx; Y - llx; X < 1}.
We must justify the definition of the Hilbert-Schmidt norm.

6.58 LEMMA The norms |||A||| and || A*||| are independent of the particular
orthonormal systems {e;} and { f;} used to define them. Moreover

AN =A™ = Al

Proof. By Parseval’s identity

|||A|||2—Z||Ae,,Yu2 ZZI(Aei,ﬂ>y|2

i i=1 j=1

8

[\”18
gk

|(er, A* f)x|? —ZHA £ X)) = mari.

1 i=l j=1

Al
Il

Hence each expression is independent of {e;} and { f;}. For any x € X we have

|Ax; Y|? =

2 0 2
Y s(Zl(x,ei)ﬂnAe,-;Yu)

i=1
o0 o0 2

< (Zux,e,»)xf) (Z JAe; Y| ) = llx; XU AN
i=l j=1

Hence [|A|| < |||All| as required. U

6.59 REMARK Consider the scalars (Ae;, f;) for 1 <i, j < oo; they are the
entries in an infinite matrix representing the operator A. The lemma above shows
that the Hilbert-Schmidt norm of A is the sum of the squares of the absolute values
of the elements of this matrix. Similarly, the numbers (A* f;, e;) are the entries
in a matrix representing A*. Since these matrices are adjoints of each other, the
equality of the corresponding Hilbert-Schmidt norms of the operators is assured.

6.60 We leave to the reader the task of verifying the following assertions.

(a) If X, Y, and Z are separable Hilbert spaces and A and B are bounded linear
operators from X into Y and Y into Z, respectively, then B o A, which
maps X into Z, is a Hilbert-Schmidt operator if either A or B is. If A is
Hilbert-Schmidt, then ||| B o All} < |B|| || A]ll.



202 Compact Imbeddings of Sobolev Spaces

(b) Every Hilbert-Schmidt operator is compact.

The following Theorem, due to Maurin [Mr] has far-reaching implications for
eigenfunction expansions corresponding to differential operators.

6.61 THEOREM (Maurin’s Theorem) Let Q2 be a bounded domain in R”
satisfying the cone condition. Let m and k be nonnegative integers with k > n/2.
Then the imbedding map

W (Q) > W2 (Q) (33)
is a Hilbert-Schmidt operator. Similarly the imbedding map
Wyt (@) — W) (34)

is a Hilbert-Schmidt operator for any bounded domain €2.
Proof. Given y €  and « with |«¢| < m we define a linear functional Ty“ on
Wm+k,2 (Q) by

Tf () = D*u(y).

Since 2k > m, the Sobolev Imbedding Theorem 4.12 implies that Ty" is bounded
on W™+k2 (Q) and has norm bounded by a constant K independent of y and o

|7y ()| <= max sup |D*u(x)| < K lullyir2.q -
O<lalsm yc

=" xe
By the Riesz representation theorem for Hilbert spaces there exists v§ € wmtk2 ()
such that

Du(y) =Ty (u) = (u, ), ., -

where (-, -)n1x is the inner product on W™+%2 (Q). Moreover

T;x : [Wm+k.2 (Q)]/

o5 ”r2n+k,2.Q - ‘ =K.

If {¢;}>°, is a complete orthonormal system in W2 (Q), then
i=1 p

a2 _ > o z _ = o 2
”vy ||m+k,2,§2 = Z (e:. v)’)m+k = Z'D eI
) i

Consequently,

e 0]
Solelzan = X [ 15100 4= 2 Kvol@ < .
i=1

la|<m la|<m
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Hence imbedding (33) is Hilbert-Schmidt. The corresponding imbedding (34) is
also Hilbert-Schmidt without the cone-condition requirement as it is not needed
for the application of Theorem 4.12 in this case. 1

The following generalization of Maurin’s theorem is due to Clark [CK].

6.62 THEOREM Let i be a nonnegative, measurable function defined on the
domain © in R*. Let W' 21 (Q) be the Hilbert space obtained by completing
C§°(2) with respect to the weighted norm

172
el 2., = (Z /Q ID“u(x)IZM(X)dx> :
ler|<m

For y € Q let T(y) = dist(y, bdry Q). Suppose that

(r())* u(y)dy < o0 (35)
Q

for some nonnegative integer v. If k > v + /2, then the imbedding
W) - Wi B () (36)

(exists and) is Hilbert-Schmidt.

Proof. The argument is parallel to that given in the proof of Maurin’s theorem
above. Let {e;}, T}, and vy be defined as there. If y € Q, let yg be chosen in
bdry € such that t(y) = |y — yol- If v is a positive integer and u € C§°(£2), we
have by Taylor’s formula with remainder

1
Du(y)= ) ED”*"u(yﬂ)(y -y’
[Bl=v 7"

for some points yg satisfying |y — yg| < ©(y). If |¢| <mandk > v +n/2, we
obtain from Theorem 4.12

ID*u(y)| < K Mtllmsrza (tO))"-

By completion this inequality holds for any u € W' t2(Q). As in the proof of
Maurin’s theorem, it follows that

o5 ”m+k.2,Q = sup  [Du( < K(1()",

Nl pr2.0=1
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and hence also that

x>
S e, < 3 /Q [ 2,00 HO)dy
i=1

lel<m

<Kk*y fQ ()" w(»dy < 00

laj<m

by (35). Hence imbedding (36) is Hilbert-Schmidt. 1

6.63 REMARK Various choices of 4 and vlead to generalizations of Maurin’s
theorem for imbeddings of the sort (34). If u(x) = 1 and v = 0 we obtain the
obvious generalization to unbounded domains of finite volume. If u(x) = 1
and v > 0, Q may be unbounded and even have infinite volume, but it must
be quasibounded by (35). Of course quasiboundedness may not be sufficient to
guarantee (35). If u is the characteristic function of a bounded subdomain £ of
Q, and v = 0, we obtain the Hilbert-Schmidt imbedding

Wrth2(@) — Wm2(Qp), k> n/2.



7
FRACTIONAL ORDER SPACES

Introduction

7.1 This chapter is concerned with extending the notion of the standard Sobolev
space W™?(Q2) to include spaces where m need not be an integer. There are
various ways to define such fractional order spaces; many of them depend on
using interpolation to construct scales of spaces suitably intermediate between
two extreme spaces, say L7 (§2) and W™P(2).

Interpolation methods themselves come in two flavours: real methods and com-
plex methods. We have already seen an example of the real method in the
Marcinkiewicz theorem of Paragraph 2.58. Although the details of the real
method can be found in several sources, for example, [BB], [BL], and [BSh],
we shall provide a treatment here in sufficient detail to make clear its application
to the development of the Besov spaces, one of the scales of fractional order
Sobolev spaces that particularly lends itself to characterizing the spaces of traces
of functions in W™-? (£2) on the boundaries of smoothly bounded domains 2; such
characterizations are useful in the study of boundary-value problems. Several
older interpolation methods are known [BL, pp. 70-75] to be equivalent to the
now-standard real interpolation method that we use here. In the the corresponding
chapter of the previous edition [A] of this book, the older method of traces was
used rather than the method presented in this edition. Later in this Chapter, we
prove a trace theorem (Theorem 7.39) giving an instance of that equivalence.
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After that we shall describe more briefly other scales of fractional order Sobolev
spaces, some obtained by complex methods and some by Fourier decompositions.

The Bochner Integral

7.2 In developing the real interpolation method below we will use the concept
of the integral of a Banach-space-valued function defined on an interval on the
real line R. (For the complex method we will use the concept of analytic Banach-
space-valued functions of a complex variable.) We present here a brief description
of the Bochner integral, referring the reader to [Y] or [BB] for more details.

Let X be a Banach space with norm |-||x and let f be a function defined on an
interval (a, b) in R (which may be infinite) and having values in X. In addition,
let « be a measure on (a, b) given by du(t) = w(t) dr where w is continuous and
positive on (a, b). Of special concern to us later will be the case where a = 0,
b = 00, and w(t) = 1/¢. In this case p is the Haar measure on (0, 00), which is
invariant under scaling in the multiplicative group (0, oo): if (¢, d) C (0, 00) and
A > 0, then p(ic, Ad) = u(c, d).

We want to define the integral of f over (a, b).

7.3 (Definition of the Bochner Integral) If {A;, ..., A} is a finite collec-
tion of mutually disjoint subsets of (a, b) each having finite p-measure, and if
{x1, ..., xx}is acorresponding set of elements of X, we call the function f defined
by

k
f(t)ZZXA,»(t)xi, a<t<b,
i=

a simple function on (a, b) into X . For such simple functions we define, obviously,

b k k
/ f@)du(r) = ZM(Ai)xi = Z (fA w(t) dt) X
a i=1 i

i=1

Of course, a different representation of the simple function f using a different
collection of subsets of (a, b) will yield the same value for the integral; the subsets
in the collections need not be mutually disjoint, and given two such collections we
can always form an equivalent mutually disjoint collection consisting of pairwise
intersections of the elements of the two collections.

Now let f an arbitrary function defined on (a, b) into X. We say that f is
(strongly) measurable on (a, b) if there exists a sequence { f;} of simple functions
with supports in (a, b) such that

Jlim lfiy—fw|,  aein(a,b). (1)
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It can be shown that f is measurable if its range is separable and if, for each x’ in
the dual of X, the scalar-valued function x/( f (-)) is measurable on (a, b).

Suppose that a sequence of simple functions { f;} satisfying (1) can be chosen in
such a way that

b
Jlim / | £ = F@)] du@ =0.

Then we say that f is Bochner integrable on (a, b) and we define

b b
ff(t)du(t)=j1_i)rgo/ fi @) dp ().

Again we observe that the limit does not depend on the choice of the approximating
simple functions.

A measurable function f is integrable on (a, b) if and only if the scalar-valued
function || f(-)|ly is integrable on (a,b). In fact, there holds the “triangle
inequality”

b b
f FOdu®| < f £l o).
a X a

7.4 (The Spaces L%(a,b;du, X)) If1 < g < oo, we say that f €
Li(a,b;du, X) provided | f ; LY(a, b; du, X)|| < oo, where

b 1/q9
If: L%, b: dp, X)| = (/ If % du(t)> ifl<g<oo
esssup, ., U F Oy} if g = o0.

In particular, if X = R or X = C, we will denote L9(a, b; du, X) simply by
Li(a, b;du).

7.5 (The spaces L?) Of much importance below is the special case where
X =RorC, (a,b) = (0,00), and du = dt/t; we will further abbreviate
the notation for this , denoting L9(a, b; du, X) simply LI. Note that L is
equivalent to L?(R) with Lebesgue measure via a change of variable: if r = ¢°
and f(t) = f(e*) = F(s), then ||f; L! || = ||Fll;r- Most of the properties of
L7(R) transfer to properties of L. In particular Holder’s and Young’s inequalities
hold; we will need both of them below. It should be noted that the convolution of
two functions f and g defined on (0, co) and integrated with respect to the Haar
measure dt/t is given by

oo d
g =/ f (5) g(s) =,
0 S 5
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and Young’s inequality proclaims || f xg; L.| < | f: LY ||g;: L] provided
p.q,r = 1land1+(1/r) = (1/p)+(1/q).

Intermediate Spaces and Interpolation — The Real Method

7.6 In this Section we will be discussing the construction of Banach spaces X
that are suitably intermediate between two Banach spaces Xo and X, each of
which is (continuously) imbedded in a Hausdorff topological vector space X, and
whose intersection is nontrivial. (Such a pair of spaces {Xo, X} is called an
interpolation pair and X is called an intermediate space of the pair. In some of
our later applications, we will have X; — Xy (for example, Xo = L?(£2) and
X; = W™P(Q)), in which case we can clearly take X = X,. We shall, in fact, be
constructing families of such intermediate spaces Xy , between X and X1, such
that if Y , is the corresponding intermediate space for another such interpolation
pair {Yy, Y} with Yy and Y¥; imbedded in )V, and if T is a linear operator from X
into ) (for example an imbedding operator) such that T is bounded from X; into
Y;,i =0, 1, then T will also be bounded from Xy , into Yy 4.

There are many different ways of constructing such intermediate spaces, mostly
leading to the same spaces with equivalent norms. We examine here two such
methods, the J-method and the K -method, (together called the real method) due
to Lions and Peetre. The theory is developed in several texts, in particular [BB]
and [BL]. Our approach follows [BB] and we will omit some aspects of the theory
for which we have no future need.

7.7 (Intermediate Spaces) Let |-||x, denote the norm in X;, i = 0, 1. The
intersection Xo N X and the algebraic sum X + X = {u = uo + u; : ug € Xo,
u; € X} are themselves Banach spaces with respect to the norms

lullx,nx, = max{llullx, , lullx,}
lullx,sx, = inf{lluollx, + lluillx, : u =uo+ui, uo € Xo,u1 € X1}

and XoN X; = X; - Xo+ X fori =0, 1.

In general, we say that a Banach space X is intermediate between X, and X if
there exist the imbeddings

XoNX, = X = Xo+ X

7.8 (The J and K norms) For each fixed 7 > O the following functionals
define norms on Xg N X; and Xy + X respectively, equivalent to the norms
defined above:

J(t; w) = max{llullx, , t lully,}
K(t;u) :inf{lluollxo +t||u1]|Xl Tu=ug+u,u € Xo, U1 € X1}.
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Evidently J(1; u) = |lullx,nx,» K(1; u) = [lullx,+x,,and J(t; u) and K (¢; u) are
continuous and monotonically increasing functions of ¢ on (0, 00). Moreover
minf{l, 1} lully,nx, < J(; u) < max{l, t} [ulix,nx, 2

min{1, 1} lullx,+x, < K(t; u) < max{l, 1} lullx,4x, - 3)
J(t; u) is a convex function of ¢ because, if 0 <a < band0 <8 < 1,

J((1 = 0)a +6b; u) = max{llullx,, (1 - O)a lullx, +6blluly,}
< (1 — 0)max{llully, . a lullx, } +6 max{llully, b llully, |
=(1-6)J(a;,u)+06J(b; u).
Also for such a, b, 6 and any uy € Xy and u; € X; for which u = ug + u; we
have
luollx, + ((1 — )a + 6b) |luilly,

= (1 —6)(lluollx, +a lluillx,) +6(luollx, + b lluillx,)
> (1 - 6)K(a;u) + 0K (b; u),

so that K((1 — 6)a + 6b); u) > (1 — 0)K (a; u) + 0K (b; u) and K (t; u) is a
concave function of ¢.

Finally we observe that if ¥ € Xy N X, then for any positive ¢ and s we
have K(t:u) < |ully, < J(s;u) and K(t;u) < tlully, = @/9)sllully, <
(t/s)J(s; u). Accordingly,

K(t;u)smin{l,é} J(s; u). )

7.9 (The K-method) If0 < 0 < 1l and 1 < g < oo we denote by
(X0, X1)6.4;x the space of all u € Xo + X such that the function s — K (t; u)
belongs to LI = L4(0, oo; dt/1).

Of course, the zero element u = 0 of Xo + X, always belongs to (Xo, X1)g.4;x-
The following theorem shows thatif 1 < ¢ < oo and either 8 = 0 or 6 = 1,
then (Xo, X1)s.,4;x contains only this trivial element. Otherwise (Xo, X1)o.4:x I8
an intermediate space between X¢ and X .

7.10 THEOREM If and only if either ]| < g <ocand0 <6 < lorg =00
and 0 < 6 < 1, then the space (Xo, X1)¢.;x is a nontrivial Banach space with

norm
oo dt l/q
([ (K@t u))q 7) ifl<g<oo
0

€SS SUPy., oo it 'K (t; w)}  if g = 0.

lulloqx =
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Furthermore,

Nullo.q: x
= |#¢ min(1, ¢} ; L]

”u”X(H-X] | = "ullX()ﬂX] (5)

so there hold the imbeddings
XoNX1— (Xo, X1)o.qxk = Xo+ X

and (Xo, X1)s.4:x is an intermediate space between Xo and X .
Otherwise (Xo, X1)6.4;x = {0}

Proof. It is easily checked that the function ¢+ — =% min{1, ¢} belongs to L7 if
and only if & and g satisfy the conditions of the theorem. Since (3) shows that

| min{1, 1} : L9 Nullxyex, < [¢70K @ )5 L2] = Null gk

there can be no nonzero elements of (X¢, X1)s,4.x unless those conditions are
satisfied. If so, then the left inequality in (5) holds and (X¢, X1)g,¢.x — Xo+ X1.
Also, by (4) we have K(#; u) < min{l,¢}J(1; ) = min{l, t} {lullx,nx, so the
right inequality in (5) holds and X N X; — (X0, X1)o.4:x-

Verification that [lullg 4. x is a norm and that (Xo, X1).4:x is complete under it are
left as exercises for the reader. il

Note that u € X and @ = 0 implies that ¥ K (t; u) < llullx, Also, u € X; and
6 = 1 implies that = K (t; u) < |lul|x,. Thus we also have

Xo = (Xo, X1)o,00:x and X1~ (Xo, XD1.00:k- 6)
7.11 THEOREM (A Discrete Version of the K-method) For each integer
ilet Ki(u) = K(2';u) . Then u € (Xo, X1)o.4:x if and only if the sequence

{279 K; (u)}2° _ ., belongs to the space £9 (defined in Paragraph 2.27). Moreover,
the £9-norm of that sequence is equivalent to [|ulg ;.-

Proof. First write (for 1 < g < 00)

/oo( K (t; u)"
0

Since K (t; u) increases and r ~? decreases as ¢ increases, we have for 2/ < ¢ < 2i%1,

2l+l

Z f (K (2; w))* a

i=—00

27D gy < 70K (1 u) < 270K (u),
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so that

2i+|

27%m2[27K;w)]" < / (e <GIN %f <2%m2[27 YK ]’

2i
Summing on i and taking gth roots then gives
2772V [ {27 K@)} s €7 < llully gix < 2°02)Y {2 i)} s €]

The proof for ¢ = co is easier and left for the reader. il

7.12 (The J-method) If0 < 6 < land 1 < g < oo we denote by
(Xo, X1)s.4;s the space of all u € Xo + X such that

u=/oof(t)ﬁ
0 t

(Bochner integral) for some f € L'(0, oo; dt/t, Xo+X1) having valuesin X¢NX,
and such that the real-valued function ¢ — t=%J (¢; f) belongs to L.

7.13 THEOREM Ifeither | < ¢ < oocand 0 < 6 < 1 org = 1 and
0 <6 < 1, then (Xo, X1)s.4;s is a nontrivial Banach space with norm

lellyqs = inf [~ ( £ ) L]

00 dr l/q
= inf (/ [t“’](t;f(t))]q—t—) ., (ifg < o0),
0

feSu)
where
| o dr
Su)y=1f€L 0,00;dr/t,Xog+X1) : u= f(t)T .
0
Furthermore,
llgyrn, = (o mint, 01 28 ]) Ml ger < Tl )

so that

XoNX) — (Xo, X1)o.q0 > Xo+ X1

and (Xo, X1)s,4:s is an intermediate space between X and X;.

Proof. Again we leave verification of the norm and completeness properties to
the reader and we concentrate on the imbeddings.
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Let f € S(u). By (3) and (4) witht ='1 and s = 7 we have
) 1
If(Dlx,ex, < K(1, f(1)) < mm{l, ;} J(z, f(0)).
Accordingly, If (1/q) + (1/¢q’) = 1, then by Holder’s inequality
o dt . 1 dr
lxgex, = [ 17 @lex, 5 < [ min { 1 —] I o) E
0 T 0 T T
1 ,
remin{l, —} ; L2
T

<

|3 f0): 2],

The first factor in this product of norms is finite if 6 and ¢ satisfy the conditions
of the theorem, and if we replace T with 1/¢ in it, we can see that it is equal to

”t‘a min{1, ¢}; LY ” Since the above inequality holds for all f € S(u), the left
inequality in (7) is established and (Xo, X1)g.4:0 — Xo + X1.

To verify the right inequality in (7), let u € Xo N X|. Let ¢(t) > O satisfy
|t~ (t); LL|| = 1. Holder’s inequality shows that

footb(r)min{l, 1/7} d—T < 00.
0 14

If .
¢ () min{l, 1/1}

FO) = — o,
f ¢(x) min1, 1/7)
0 T
then f € S(u) and
165 @) = PO )
/ ¢(r)min{l, 1/7} —
0 T
() lullxyox, -

Y . dr
/ ¢(r)ymin{l, 1/7} —
0 T

the latter inequality following from (2) since max{1, ¢} = (min{l, 1 /t})_l. There-
fore,
o0 . dt
([ o mintt, 1761 ) bl
0

* o0 l/q
5(/ "’(’)mi“{“/f}ﬁ) (/ (I f(t))q£>
0 T 0 P

. g dt /g
([Tt o0 ) F) = Wl
0
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By the converse to Holder’s inequality,

sup{foomr)min{l, 1/r}d7r |t LY = 1]
0

- Nr” min{1, 1/7}; LY

= Hf" min{l, t}; Lf{

Thus the right inequality in (7) is established and Xo N X1 — (X0, X1)a,4;s. B

7.14 Observe that if u = f0°° f()dr/r where f(r) € Xo N Xy, then

oo d o d
lullx, s/ ToI 5/ I f0) 2
0 t 0 t

floell x, Sf f®Oly, a 5/ t_lf(t,f(t))—t-
0 ! 0 t

Each of these estimates holds for all such representations of u, so [|ullx, < llullo1;,
and |lullx, < llull;;,,. Combining these with (6) we obtain

(X0, X1)o.1;0 = Xo = (Xo, X1)o.00:k

(8)
(Xo, XD1.1;0 = X1 = (Xo, X1 1,00,k -

There is also a discrete version of the J-method leading to an equivalent norm for
(X0, X1)6.q:7-

7.15 THEOREM (A Discrete Version of the J-method) An element u of
Xo + X belongs to (Xo, X1)s,q:s if and only if u = Zfi_oo u; where the series
converges in Xo + X; and the sequence {279 J(2/, u;) } belongs to £4. In this case

[e 8}
inf[||{2_9i1(2i;ui)};£q|| tu= )y u,»]
is a norm on (Xo, X1)g.q;s equivalent to [[ullg 4. ;-

Proof. Again we will show this for 1 < ¢ < 0o and leave the easier case g = 00
to the reader.

First suppose that u € (Xg, X1)s,4,s and let € > 0. Then there exists a function
f e LY(0, 00; dt/t, Xo + X1) such that

o= [ s0
0 4

and
q dt

]0 [0 FO)) T < 040 g -
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Let the sequence {;}°___ be defined by

i=—00
2i+l d
t

up = f—.
2 t

then Zl__oo u; converges to u in Xo + X, because the integral representation
converges to u there. Moreover,

) ] Qi+l ) dt
2710 (2 ) < f (5 f0)
2i
21+| . d[
=27 / 27D (e £(1)) —

i+l

52"f t“gJ(t;f(t))?
2i+]

1/q
§29(1n2)”q'</_ [t‘gl(t;f(t))]qg;) :

where ¢’ = q/(q — 1) and Holder’s inequality was used in the last line. Thus

o0

3 [27 0@ un]” < 2%(n2)" foo[f"f(t; f(z))]q$

i=—00 0

and, since ¢ is arbitrary,
{27 7@ un}s 0] <2°(102)" lullo gy -

Conversely, if u = Z;’i_oo u; where the series converges in Xo + X;, we can

define a function f € L0, oo; dt/t, Xo + X1) by
1 . )
f@) = —u, for 2P <t <2t —00<i < o0,
In2

and we will have
21+1

f(t)?:u,- and u= f(t)?.

2 0
Moreover,
2i+ i 21 +1

/‘i [t’ej(t; f(t))]da / —10] 21+1 f(t))] dt

2:+1

2 —if i qﬂ
5(?2’) / 277" uy)]

2797 up]’.

q
= (In2)7!
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Summing on i then gives
2 . ;
ullo.qg:r < (W) ||{2 D12} e ” .1

Next we prove that for 0 < 6 < 1 the J- and K-methods generate the same
intermediate spaces with equivalent norms.

7.16 THEOREM (Equivalence Theorem) If0 <8 <landl <gq < oo,
then

(@) (Xo, X1)o,4:0 = (Xos X1)o.q:k- and
(b) (X0, X1)e.q:x = (Xo, X1)0.4:1. Therefore
(©) (X0, X1).4:7 = (X0, X1)6,4; k-~ the two spaces having equivalent norms.

Proof. Conclusion (a) is a consequence of the somewhat stronger result
(X0, XD)o,p:0 — (X0, X1)o.q:k> ifl<p=<g )]
which we now prove. Let u = [~ f(s)ds/s € (Xo, X1)p.p;s- Since K(t; ) isa

norm on Xg + X1, we have by the triangle inequality and (4)

Kty <t7° /oo K(r; f(s))ds—s
0

00 -6

ff (£> min{l, i} s I(s; £(5)) ds
0o \S s s

= [ min{L, t}] = [t T (r: FD))].

By Young’s inequality with 1 + (1/¢) = (1/r) + (1/p) (sor = 1)

lutllg gk = 170K (05 )5 LY

< = min{1, ¢} L7 |0 T (1 FO)) 5 LE|)
= Cﬁ.p.q ”“llé),p;K ,

which confirms (9) and hence (a).

Now we prove (b) by using the discrete versions of the J and K methods. Let
u € (Xo, X1)o.p;x. By the definition of K (¢; u), for each integer i there exist
v; € Xo and w; € X such that

w=v,+w; and  |ullx, +2" lwillx, <2KQ'5u).

Then the sequences {27 ||v;llx,} and {27079 |lw;lly,} both belong to £7 and
each has £9-norm bounded by a constant times ||u|ly ,.x. For each index i let
u; = vy — v;. Since

O=u—u= (U,’+1 + w,-+1) — (v,‘ + w,-) = (U,'_H - Ui) + (wi+l - wi)a
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we have, in fact,
Ui = Vg1 — U = W; — Wiy,

The first of these representations of u; shows that {279 ||u; || x,} belongs to £9; the
second representations shows that {21~ ||u; ||y } also belongs to €9. Therefore
{27 J(2'; u;)} € £9 and has £9-norm bounded by a constant times [lul|, ;. x . Since
£9 C £, the sequence {27779 |w; HXI} is bounded even though 2/~ — oo
as j — oo. Thus ij HXI — Oas j - oo. Since Z{ZO u; = wy — w41, the
half series Z?io converges to wy in X; and hence in Xy + X;. Similarly, the
half-series Z_l u; converges to vg in Xy, and thus in Xo + X;. Thus the full

i=—o00
series Zfi_oo u; converges to vg + wo = u in Xy + X; and we have

llullg.q,s < const. |lullg 4.k -

This completes the proof of (b) and hence (c). I

717 COROLLARY IfO0<f@ <landl < p <g < o0, then
(X0, X1)9,p:x = (Xo, X1)o,4:k - (10

Proof. (Xo, X1)6,p;x = (Xo, X1)a.p;5 = (Xo, X1)6,4;x by part (b) and imbed-
ding (9). 1

7.18 (Classes of Intermediate Spaces) We define three classes of intermedi-
ate spaces X between Xy and X as follows:

(a) X belongs to class £ (0; Xg, X;) ifforallu € X
K(t;u) < Cit? |lullx

where C; is a constant.
(b) X belongs to class _# (6; Xo, Xy) if forallu € XoN X

fully < Cat™0J(t; w),

where C, is a constant.

(c) X belongs to class J#(6; Xy, X;) if X belongs to both ¢ (8; Xg, X,) and
F©; Xo, X1).
The following lemma gives necessary and sufficient conditions for membership in
these classes.

7.19 LEMMA Let0 <68 <1 and let X be an intermediate space between X
and X;.
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(a) X € #(0; Xy, X1) ifand only if X — (X0, X1)6.00:k-
(b) X € #(8; Xo, Xy) if and only if (Xo, X1)o.1:0 = X.
(c) X € #°(0; Xo, X1) if and only if (Xo, X1)9,1,0 =& X = (X0, X1)6,00:k -

Proof. Conclusion (a) is immediate since [|ullg oo x = SUPg—; oot 7k (F; 1)).
Since (c) follows from (a) and (b), only (b) requires proof.

First suppose X € _#Z (0; Xo, X1). Letu € (Xo, X1)g.1,s. If f(2) is any function
on (0, oo) with values in Xo N X; such that u = [~ f(r)dt/t, then

o dt R dt
iy < [Curwix = [t )
0 t 0 t
Since this holds for all such representations of # we have

lully < Ca(Xo, X1)o.1;7, (11

and so (X, X1)s.1.7 = X.

Conversely, suppose that (Xg, X1).1.; — X; therefore (11) holds with some
constant C,. Letu € XgN Xy, let A > Oand ¢ > 0, and let

(1/Mu ifte* <s <t
s
fis) = { otherwise.

[ rt ([ 4)()ems

SinceJ( (1/)\)14 = (1/A)J (s; u) we have

Then

o0 ds 1 [! ds
Nello.rs < / s (s3 fuls) — = —/ sV T (s u) —.
0 N A S s

g
Since s~? J (s; u) is continuous in s and ft;_A ds/s = A, we can let . — 0+ in the
above inequality and obtain |[ully .; < t_eJ(t; u). Hence

lullx < Ca(Xo, X1)o.1.s < Cat * T (85 u)

and the proof of (b) is complete. 1

The following corollary follows immediately, using the equivalence theorem, (10),
and (8).

7.20 COROLLARY If0<# <landl <gq < oo, then

(Xo, X1)o.g.0 = (X0, X1)o.4:x € H(0; Xo, X1)-
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Moreover, X € J2(0; Xo, X1) and X; € 52(1; Xo, X1). 1
Next we examine the result of constructing intermediate spaces between two
intermediate spaces.

7.21 THEOREM (The Reiteration Theorem) Let0 < 63 < 6; <1 and
let Xy, and X, be intermediate spaces between Xg and X;. For0 < A < 1, let
0 = (1 -2+ A6,.
(a) If Xo, € H#(6;; Xp,Xy) for i = 0,1, and if either 0 < A < 1 and
1 <g <ooor0<X<1andg = oo, then

(XGU’ Xgl)).,q;K - (X07 Xl)(»],q;K .

(b) If Xo, € Z(6;; Xo,Xy) fori = 0,1, and if either 0 < A < 1 and
l<g<ooor0<AX<1andgq =1,then

(X0, X)p.g:s = (Xoys Xo,), 4.y -

(c) If Xy, € H#(6;; Xo, X1) fori =0,1,andif 0 < A <land1 < g < o0,
then

(X90’ XGI)A,q:J = (X90’ XGl)x,q;K = (Xo, Xl)“»qlK = (Xo, Xl)e-‘ﬁf :

(d) Moreover,

(Xo, Xl)f)g,l;] - (XGU’ X9|)0_1;J - Xg, > (Xeo’ Xel)o‘oo k> (Xo, X1)9<)»002K

(Xo, X1)g,.1:5 = (XG()’ X91)1‘1;J — Xg, — (X90’ X91)1300;K — (X0, X1)g,00,k -

Proof. The important conclusions here are (c) and (d) and these follow from (a)
and (b) which we must prove. In both proofs we need to distinguish the function
norms K (¢; u) and J(¢; u) used in the construction of the intermediate spaces
between Xy and X from those used for the intermediate spaces between Xy, and
Xp,. We will use K* and J* for the latter.

Proof of (a) If u € (Xg,, Xg,)m;K, then u = ug + u; where u; € X4, Since
Xy € K (6;; Xo, X1), we have

K(t;u) < K(t; ug) + K(t; uy)
< Cot™ ||u0; XQOH + C1t" “u1 ; Xo, ||

< ot Hal + 0 a1
0
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Since this estimate holds for all such representations of #, we have
b px €1 (1=
K(t;u) < Cot™K T u
Co

If6 = (1 — A8y + A6y, then A = (8 — 6y)/(6; — Bp), and (assuming g < 00)

0 C 1 4y 1/q
le? K@ u); L) < Co [/ <t E=0) g* ( L=t u)) —}
0 Co t

T e ]
= —+K* ; —
(91 _ eo)l/q |: 0 (S (s u)) s :I

via the transformation s = (C;/ Co)t"l_"". Hence

1— A

\]
lullg.q:x < m Nl g:x

and so (Xgn, Xg')k,q;K —> (X(), Xl)O,q;K'
Proof of (b) Let u € (Xo, X1)o,4;5. Thenu = f0°° f(s)ds/s for some f taking

values in Xy N X, satisfying s_QJ((s; f(s)) e L. Clearly f(s) € Xg, N Xo,.
Since X4, € _# (6i; Xo, X1) we have

J*(s3 £(s)) = max ||| () 5 X, I}
<max {Cot ™ J(t; f(5)), Cit™"sJ(t; f(9))}

C
= Cot~™ max { 1, C—lt_(e'_g")s] J(t: F(9).
o

This estimate holds for all + > 0 so we can choose ¢ so that ¢t~ —%)s = Cy/C,
and obtain

C —6u/(61—bp) C, 1/(61—60)
J*(s; f(s)) < Cy (C—s> J (——s) s f®) ).
0 Co

If6 = (1 — )6 + A6, then
|s= (s f@®) s L1

1/q
«[rc, —6/(61—6y) C 1/(61—60) q ds
< Cl—lc)» f >~ ~1 ’ as
=Gy "¢ ( A COS J COS fs .

o0 dt 1/q
<G CHB —60)'1 (/ [0 (1 g)]" 7)
0

=Cy " CHO —60) 1 |10 T (1; 8(0)) 5 LY,
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where g(t) = f((Co/C)t" ™) = f(s) € Xo N X;. Since

o0 d 1 e d 1
f g = f fo &=
0 0

= u,
t 91 — 90 S 91 — 90
we have
. ara
Nully g s < @ — 607 letllg g
and 5o (Xo, X1)g 4.7 — (Xap. Xe,),; .- B

7.22 (Interpolation Spaces) Let P = {Xo, X} and Q = {Yp, Y} be two
interpolation pairs of Banach spaces, and let T be a bounded linear operator from
Xo+ X, into Yp + Y7 having the property that T is bounded from X; into ¥;, with
norm at most M;, i = 0, 1; that is,

I Tuilly, < M;lluill,, forallu; € X;), i=12).

If X and Y are intermediate spaces for {Xo, X} and {¥y, Y1}, respectively, we call
X and Y interpolation spaces of type 6 for P and Q, where 0 < 0 < 1, if every
such linear operator 7 maps X into ¥ with norm M satisfying

M <CMy™"M!, (12)

where constant C > 1 is independent of T. We say that the interpolation spaces X
and Y are exact if inequality (12) holds withC = 1. If X =Yy, X; =Y, X =Y
and T = I, the identity operator on Xy + X, then C = 1 forall0 < 8 < 1, sono
smaller C is possible in (12).

7.23 THEOREM (An Exact Interpolation Theorem) Let P = {Xy, X}
and Q = {Yy, Y1} be two interpolation pairs.
(a) Ifeither0 <8 <land1 < g <ocor0 <6 < 1andg = oo, then the
intermediate spaces (Xo, X1)g,4.x and (Yo, Y1)s 4,k are exact interpolation
spaces of type 6 for P and Q

(b) Ifeither0 < 8 < land1 < g <ocor0 <6 < 1andg = 1, then the
intermediate spaces (Xo, X1)g.4;s and (Yp, ¥1)p 4.y are exact interpolation
spaces of type § for P and Q.

Proof. LetT : Xo+ Xy — Yo+ Yy satisfy [[Tu;lly, < M; luilly,, i =0, 1. If
u € Xg+ X, then

K (t; Tuy = inf {| Tuolly, + ¢ 1 Tuslly, : u = uo +ur, u; € X;)

. M,
<M, u:lfolful (||u0||x(, + Mo-t ||u1||x,> = MoK ((M)/Mo)t; u).

ui€Xy
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Ifue (X(), Xl)f),q;Kv then
ITullggx = 7K@ Tuy; Li|| < Mo || K ((My/Mo)t; u); LY

M, —0
= o (32) s~ Kessas L] = MM Nl

which proves (a).
If u € XgN X4, then

J(t; Tu) = max {[| Tully, . ¢ I Tully,}
< Mo max {lully, . (M1/Mo)t ullx, } = MoJ ((My/Mo)t; u).

Ifu=[;° f(t)dt/t, where f(t) € XoN Xy and t=?J(t; f(t)) € LY, then

ITullo,q:s = "t_ej(’; Tf(®); LY|

Mo\ ~°
< Mo |07 (M /Mo)t; f(); LE = Mo [ =2) ||s™0 0 (s; g()): LY,
M,

where g(s) = f ((Mo /M l)s) = f(¢). Since this estimate holds for all representa-
. lo 6]
tions of u = [ g(s) ds/s, we have

1 Tullo.qs < My "M llutllg e

and the proof of (b) is complete. 1

The Lorentz Spaces

7.24 (Equimeasurable Decreasing Rearrangement) Recall that, as defined
in Paragraph 2.53, the distribution function §, corresponding to a measurable
function u finite a.e. in a domain Q C R” is given by

Su() = pix € 2 : |u(x)| >t}

and is nonincreasing on [0, oc). (It is also right continuous there, but that is of no
relevance for integrals involving the distribution function since a nonincreasing
function can have at most countably many points of discontinuity.) Moreover, if
u € LP(2), then

e dt v
7§ — if1 < s
||u||p= (p'/O‘ w(Y) i ) Il=p<o0

inf{r : §,(t) =0} if p=o0.
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The equimeasurable decreasing rearrangement of u is the function u™* defined by
u*(s) =inf {r : 8,(t) <s}.

This definition and the fact that §, is nonincreasing imply that u* is nonincreasing
too. Moreover, u*(s) > t if and only if 8,(¢) > s, and this latter condition is
trivially equivalent to s < §,(t). Therefore,

S () = 1 {s T ut(s) > t} =uf{s: 0<s <8, (N}=un {[O, Su(t))} = 68,(1).

This justifies our calling »* and u equimeasurable; the size of both functions
exceeds any number s on sets having the same measure. Also,

8, (t) = pfs : u*(s) >t} =inf{s : u™(s) <t}

so that
8.(t) = inf{s : u*(s) <t}.

This further illustrates the symmetry between 6, and u*.
Note also that

u*(8.()) = inf{s : 8,(s) < 8,0} <1t.
If u*(8.(t)) = s < t, then 8, is constant on the interval (s, t) in which case u* has
a jump discontinuity of magnitude at least ¢ — s at §,(z).
Similarly, 8, (u*(s)) < s, with equality if 8, is continuous at t = u*(s). The
relationship between &, and u* is illustrated in Figure 8. Except at points where

either function is discontinuous (and the other is constant on an interval), each is
the inverse of the other.

s =8,(t) } t =u*(s)
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IfS; ={x € Q: |u(x)| > t}, then

8, (1)
f |u(x)|dx=/ u*(s)ds, (13)
3 0

and if u € L?(S2), then

00 1/p
el (/0 (u*(s))pdx) ifl<p<oo
ull, =

sup u*(s) if p = o0.
O<s<oo

7.25 (The Lorentz Spaces) For u measurable on €2 let

() = ;/ u*(s)ds,
0

that is, the average value of u* over [0, #]. Since u#* is nonincreasing, we have
u*(t) < u™(r).

For 1 < p < oo we define the functional

l/q

/00 (tl/”u**(t))q ﬂ ifl <g <oo
s oo = 4\ ’

sup £'/Pu* (1) if g = 0.

t>0
The Lorentz space L79(§2) consists of those measurable functions u# on € for
which |lu; LP9(2)|| < oo. Theorem 7.26 below shows thatif 1 < p < oo, then
LP9(L) is, in fact, identical to the intermediate space (L' (), LOO(Q))(p_l)/p oK
and [lu; LP9(R)| = llull(p=1)/p.q;x- Thus LP9(S2) is a Banach space under the
norm ||u; LP9(S2)]. It is also a Banach spaceif p = 1 or p = oc.
The second corollary to Theorem 7.26 shows that if 1 < p < oo, then L79(£2)
coincides with the set of measurable u for which [u; L”"’(Q)] < 00, where

1/q

[ L7 ()] (/000 ey %ﬁ) s
u; L7 =

sup /P u* (1) if g = o0,
>0

and that
[; LP9()] < |Ju: LP9(Q)|| <

b [ Lo @)])
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The index p in LP9() is called the principal index; ¢ is the secondary index.
Unless ¢ = p, the functional [ -y LPd (SZ)] is not a norm since it does not satisfy
the triangle inequality; it, however, is a quasi-norm since

[u+v; LP9(Q)] < 2([u; LP9(RQ)] + [v; LPUD)]).
For 1 < p < oo it is evident that [ LP'I’(Q)] = |-l o, and therefore

LPP(QQ) = LP(2). Moreover, if we recall the definition of the space weak-
LP(Q) given in Paragraph 2.55 and having quasi-norm given (for p < 00) by

l/p
[u]p = [u]p.ﬂ = (Sug tP(SuO)) s

we can show that L”*®(2) = weak-LP(2). This is also clear for p = oo. If
1 < p <ocand K > 0, then for all # > O we have, putting s = K?t7P,

8,(t) <KPt P =5 = u*(s) <t=Ks7V7.
Hence [#], < K if and only if [u; LP'°°(Q)] < K, and these two quasi-norms

are, in fact, equal.
For p = 1 the situation is a little different. Observe that

t o0
”u s L) “ = suptu™(t) = sup/ u*(s)ds = / u*(s)ds = ||ull,
t>0 >0 J0 0

so L1() = L' () (not L'1(2) which contains only the zero function).
For p = 0o we have L (Q2) = L*°() since

1 t
||u ; L%%(Q) H = supu™*(t) = sup —j u*(s)ds = u*(0) = ||lu|| -
>0 >0 I Jo

726 THEOREM Ifu e L1(Q) + L™(Q), then for t > 0 we have

t
K@ u)y= / u*(s)ds = tu™ (). (14)
0
Therefore,if 1 < p <o0,1 <g <oc,andf =1-—(1/p),
LP9(Q) = (L'(Q), L), .«

with equality of norms: ||u ; LP9(Q2)| = ||lullg,g;x-
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Proof. The second conclusion follows immediately from the representation (14)
which we prove as follows.

Since K (¢t; u) = K (z; |u|) we can assume that u is real-valued and nonnegative.
Letu = v+ w where v € L'(Q) and w € L®(8). In order to calculate

K@w = inf (ol +1lwll) (15)

we can also assume that v and w are real-valued functions since, in any event,
u = Rev+Rew and ||[Rev|; < |[v]|;, and |Rew|lo < [lw|l. We can also
assume that v and w are nonnegative, for if

minfv(x), u(x)} ifv(x) >0

v (x) = {0 if u(x) < 0 and wi(x) = u(x) — vy (x),

then 0 < v1(x) < jv(x)|and 0 < w;(x) < |w(x}|. Thus the infimum in (15) does
not change if we restrict to nonnegative functions v and w.

Thus we consider u = v + w, where v > 0, v € L'(Q2), w > 0, and w € L>®(Q).
Let A = |w|, and define u; (x) = min{A, u(x)}. Evidently w(x) < u;,(x) and
u(x) —u; (x) < u(x) —wx) = vix). Now let

g, 1) = llu—uly +12 < vlly + 1 flwllo -

Then K (¢; u) = info.y <00 g(¢, A). We want to show that this infimum is, in fact,
a minimum and is assumed at A = A, = inf{7 : §,(7) < ¢}.

If & > A, then u; (x) — uy, (x) < A — A if u(x) > A, and up (x) — uy, (x) = 0if
u(x) < A,. Since 8,(A;) < t, we have
gt, Ay —g(t,x) = — / (uk(x) —uy, (x)) dx +t(A—Xp)
Q
> (A — }‘-t)(t - su()w)) > 0.

Thus K (¢; u) < g(z, A,).

On the other hand, if g(z, A*) < oo for some A* < A,, then g(¢, A) is a continuous
function of A for A > A* and so for any € > 0 there exists A such that A* < A < A,
and

|g(t’A') —g(f,)w)| < €.

Now u (x) — u;-(x) = A — A* if u(x) > A, and since §, (1) > t we have

g(t, ") —gt, 1) = / (12 (x) = wp(x)) dx — 1 (A = 1)
Q

> (=28, —1) = 0.
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Thus
Since ¢ is arbitrary, g(¢, A*) > g{t, A;) and K (¢; u) > g(¢, A;). Thus

K(t;u) = g(t,A) = |u — u,,

|+ A

Now u(x)—u,, (x) = Oexcept where u(x) > A, and A, = u*(s) fors,(A;) <s < t.
Therefore, by (13),

8u(h) 84(k)
K(t;u) = f (w*(s) = ) ds +th, = / u*(s)ds — ASu(Ae) + th,
0 0

8, (%) t t
:/ u*(s)ds+/ u*(s)ds =/ u*(s)ds
0 8, (Ar) 0

which completes the proof. 1

7.27 COROLLARY Ifl <p, <p<p;, <ocandl/p=(1-0)/pi+6/p>,
then by the Reiteration Theorem 7.21, up to equivalence of norms,

LP9(Q) = (L (Q), L™ (Q))e,q;K'

7.28 COROLLARY Forl < p<o0,1<g<o00,andf =1~ (1/p), we
have

[ L7 9(@)] = Jus L@ = —F—[w; L9 (@)

Proof. Since u* is decreasing, (14) implies that tu*(t) < K (¢; u). Thus

*© dr\ '
[u; Lp’q(Q)] — (/ (tl/pu*(t))q 7)
0
o dt 1/q
< (‘/(; ([_9K(t; u))q 7) = ||u||9,q;1< = ”u : LP(Q) " )
On the other hand,

t
VK (t; u) =/ 1~u*(s) ds
0

00 1-6
=/ e (i) u* (i) 99 _ t e,
1 o o) o
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where

b ke Pk et ife >
f@® =t"7"u" (@) =1t"Pu"(t), and g(t)—{o 0 < 1.

and the convolution is with respect to the measure df/t. Since we have
|f: LY = [w; LP9 ()] and |g: LL| = 1/6 = p/(p — 1), Young’s inequality
(see Paragraph 7.5) gives

p
p—

Ju: P9 = lullg.gix = [ *g5 LE] < ——[w: L79(D)]. B

7.29 REMARK Working with Lorentz spaces and using the real interpolation
method allows us to sharpen the cases of the Sobolev imbedding theorem where
p > 1 and mp < n. In those cases, the proof in Chapter IV used Lemma 4.18,
where convolution with the kernel w,, was first shown to be of weak type (p, p*)
(where p*x = np/(n — mp)) for all such indices p. Then other such indices p;
and p, were chosen with p; < p < p,, and Marcinkiewicz interpolation implied
that this linear convolution operator must be of strong type (p, p*).

We can instead apply the the Exact Interpolation Theorem 7.23 and Lorentz
interpolation as in Corollary 7.27, to deduce, from the weak-type estimates above,
that convolution with w,, maps L”(£2) into LP"-P(2); this target space is strictly
smaller than L?" (), since p < p*. It follows that W™-?(2) imbeds in the smaller
spaces LP"P(2) when p > 1 and mp < n.

Recall too that convolution with w,, is not of strong type (1, 1*) when m < n,
but an averaging argument, in Lemma 4.24, showed that W™ () c L' (Q) in
that case. That argument can be refined as in Fournier [F] to show that in fact
wm1(2) ¢ L' 1() in these cases. This sharper endpoint imbedding had been
proved earlier by Poornima [Po] using another method, and also in a dual form in
Faris [Fal.

An ideal context for applying interpolation is one where there are apt endpoint
estimates from which everything else follows. We illustrate that idea for convo-
lution with @,,. It is easy, via Fubini’s theorem, to verify that if f € L'() then
1 * golles < 11 lgollo and 1f % ill, < 11 lgully for all functions go in
L®(Q) and g; in L'(R). Fixing f and interpolating between the endpoint con-
ditions on the functions g gives that || f x g; LP9(DI < Cp 1 fll; llg s LP9(2)l
for all indices p and ¢ in the intervals (1, co) and [1, co] respectively. Apply this
with g = w,,, which belongs to L"/"~™-2(Q) = L1"*(Q) = weak-L"" () to
deduce that convolution with w,, maps L'(£2) into L'*°(£2). On the other hand,
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if fe L0 1(Q) = LY™1(Q), then
jom * £ < fR omx — NI dy
< /0 o O f* @y dt = fo 0 @t on o )
< |om: L") /0 [ )] ‘—1} <Cu|fir @]

That is, convolution with @, maps L'($2) into L'"*(£2) and L1""() into
L*®(R2). Real interpolation then makes this convolution a bounded mapping of
LP4(S2) into LP™9(2) for all indices p in the interval (1, (1*)') = (1, n/m) and
all indices ¢ in [1, oc].

These conclusions are sharper than those coming from Marcinkiewicz interpola-
tion. On the other hand, the latter applies to mappings of weak-type (1, 1), a case
not covered by the K and J methods for Banach spaces, since weak L! is not a
Banach space. The statement of the Marcinkiewicz Theorem 2.58 also applies to
sublinear operators of weak-type (p, ¢) rather than just linear operators. It is easy,
however, to extend the J and K machinery to cover sublinear operators between
L? spaces and Lorentz spaces. As above, this gives target spaces L9'? that are
strictly smaller than L? when p < ¢g. Marcinkiewicz does not apply when p > g,
but the J and K methods still apply, with target spaces L9-? that are larger than
L7 in these cases.

Besov Spaces

7.30 The real interpolation method also applies to scales of spaces based on
smoothness. For Sobolev spaces on sufficiently smooth domains the resulting
intermediate spaces are called Besov spaces. Before defining them, we first
establish the following theorem which shows that if 0 < k < m, then WhP(Q)
is suitably intermediate between L?(£2) and W™-?(§2) provided 2 is sufficiently
regular. Since the proof requires both Theorem 5.2, for which the cone condition
suffices, and the approximation property of Paragraph 5.31 which we know holds
for R" and by extension for any domain satisfying the strong local Lipschitz
condition, which implies the cone condition, we state the theorem for domains
satisfying the strong local Lipschitz condition even though it holds for some
domains which do not satisfy this condition. (See Paragraph 5.31.)

7.31 THEOREM If Q C R” satisfies the strong local Lipschitz condition and
if0 <k <mand1 < p < oo, then

WP (Q) € S (k/m; LP(Q), W™P(Q)).
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Proof. In this context we deal with the function norms

J (5 u) = max{llull, . ¢ fluf,, ,}
K(t; uy = inf{lluoll, + ¢ w1l p = 4 =uo+ur,u € LP(Q), u1 € W™P(Q)}.

We must show that

lull,, < Ct=%™ J(t; u) (16)
K(t;w) < Ct™ Jully , - (17)

Now Theorem 5.2 asserts that for some constant C and all u € W™-7(£2)

1—(k/m) k/m
lullp < C sl 1=/ gl

The expression on the right side is C times the minimum value of
—k . -k 1-(k
£ g (5 w) = max{e " ull, T ull,, )

which occurs for 1 = [|ull, / lull,, ;. the value of ¢ making both terms in the
maximum equal. This proves (16).

We show that (17) is equivalent to the approximation property. If u € W*P(Q),
then
Kt u) < llull, + 100, = llul, < llulp -

Thus t %™K (¢, u) < lull, when ¢t > 1, and inequality (17) holds in that case. If
t=®/™ K (t;u) < Cllull;, also holds for 0 < r < 1, then since we can choose
ug € LP(Q) and u; € W™P(Q) with u = uo + uy and |lugll, +  lull,, <
2K (t; u), we must have
lu —urll, = luoll, < 2CE*™ flully, and Nt llm,p < 2CE5 ™=,
so that with t = €™, u, = u, is a solution of the approximation problem of
Paragraph 5.31. Conversely, if the approximation problem has a solution, that is,
if for each € < 1 there exists u, € W™ 7 (2) satisfying

lu —ucll, < Ce¥luly,  and  lucll,, < C& fully,,
then, with € = t1/™_ we will have

= MR @) <t (= uell, + t uellm ) < Cllully,

and (17) holds. This completes the proof. §
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7.32 (The Besov Spaces) We begin with a definition of Besov spaces on
general domains by interpolation.

LetO<s <o00,l < p<oo,andl <g < oo. Also let m be the smallest integer

larger than s. We define the Besov space B¥7'9(2) to be the intermediate space
between LP(£2) and W™ P (£2) corresponding to 6 = s/m, specifically:

BS5r(Q) = (L”(SZ), W"‘"’(Q))S/m‘qzj.
It is a Banach space with norm || u; B5P1(Q) H = “ u; (L”(Q), W’"~P(Q))s/m,q;1 ”
and enjoys many other properties inherited from L? (£2) and W™ 7 (2), for example
the density of the subspace {¢p € C*(L) : {u|,, , < oo}. Also, imposing the
strong local Lipschitz property on €2 guarantees the existence of an extension
operator from W™ ?(2) to W™ P (R") and so from B*74(Q2) to B>79(R"). On[R*,
there are many equivalent definitions B*#-7 (see [J]), each leading to a definition
of B*#4(82) by restriction. For domains with good enough extension properties,
these definitions by restriction are equivalent to the definition by real interpolation.
Although somewhat indirect, that definition is intrinsic. As in Remark 6.47(1), the
definitions by restriction can give smaller spaces for domains without extension
properties.

For domains for which the conclusion of Theorem 7.31 holds, that theorem and
the Reiteration Theorem 7.21 show that, up to equivalence of norms, we get the
same space B*7-9(Q2) if we use any integer m > s in the definition above. In fact,
ifs; >sand 1 < g; < oo, then

5ip.q _ 14 sLp.aG
BP9(Q) = (LP(Q), B P (Q), )

More generally, if 0 <k < s < m and s = (1 — 0)k + 6m, then
BSPA(Q) = (WEP(Q), WP (), .

and if 0 < 51 <5 <s3,8= (1 —0)s1 +0s2,and 1 < g, g2 < 00, then

BEPA(Q) = (lezp.ql Q), B”;p'qz(g))o,q;]'

7.33 Theorem 7.31 also implies that for integer m,
B™PH(Q) - W™P(Q) > B™PN(Q).
In Paragraph 7.67 we will see that

B™PP(Q) - WMP(Q) — B"PHQ)  for 1< p<2,
B™PYQ) —» W™P(Q) — B™PP(Q)  for 2<p<oo.
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The indices here are best possible; even in the case 2 = R” it is not true that
B™P4(Q2) = WP (QQ) for any g unless p = g = 2.

The following imbedding theorem for Besov spaces requires only that €2 satisfy
the cone condition (or even the weak cone condition) since it makes no use of
Theorem 7.31.

7.34 THEOREM (An Imbedding Theorem for Besov Spaces) LetS2bea
domain in R" satisfying the cone condition,andlet 1 < p < ocand 1 < g < oo.

(a) If sp < n, then BSP9(Q2) — L™1(Q) forr =np/(n — sp).
(b) If sp = n, then BS71(Q) — C (Q) — L®(Q).
(¢) If sp > n, then BSP9(Q) — C% (Q).

Proof. Observe that part (a) follows from part (b) and the Exact Interpolation
Theorem 7.23 since if 0 < s < sy and s; p = n, then (b) implies

BSP(Q) = (LP(Q), BN (), oy = (LPE), L2, ) = L"),
where r = [1 — (s/s1)1/p = np/(n — sp).

To prove (b) let m be the smallest integer greater than s = n/p. Let u €
BYrrl(Q) = (LP(Q), W"’*P(Q))n/(mp)‘llj. By the discrete version of the J-
method, there exist functions u; in W”#(£2) such that the series Zf’i_ oo Ui CON-
verges to u in B"/7*71(Q) and such that the sequence {27/ J(2; u;)}
belongs to £! and has £' norm no larger than C Hu ; B PP Q) H Since mp > n
and 2 satisfies the cone condition, Theorem 5.8 shows that

o0
i=—00

1,
ol < Cyliwll, ™™ floll/P

forall v € W™P(2). Thus

x
Moo < ) Nilloo

i=—00

o0
1—
<Cr Y0 My g

i=—00

o0
<C Y22 ) < Coflus BV Q)

i=—00

Thus B"/7:P1(Q) — L*®(2). The continuity of u follows as in the proof of Part
I, Case A of Theorem 4.12 given in Paragraph 4.16.

Part (c) follows from part (b) since B*74(Q) — B*:P1(Q) if s > s;. This
imbedding holds because W™?(2) — LP(2).1
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7.35 (The Spaces C#*9(£2)) If § satisfies the strong local Lipschitz con-
dition and sp > n, the Besov space B*74(Q2) also imbeds into an appropriate
space of Holder continuous functions. To formulate that imbedding we begin by
generalizing the Holder space C/*(2) to allow for a third parameter. For this

purpose we consider the modulus of continuity of a function u defined on €2 given
by

o) =sup{lu(x) —u@®)| 1 x,y €Q, x =yl <1}, @ >0).

Observe that w(u; ) = w} (1; t) in the notation of Paragraph 7.46. Also observe
thatif 0 < A < 1l and tw(t,u) < k < oo forall t > 0, then u is uniformly
continuous on §2. Since C/(Q) is a subspace of W/*°(Q) with the same norm,
C/*(Q) consists of those u € W/*°(Q) for which t~*w (¢, D*u) is bounded for
all 0 <t < ooand all & with |a| = .

We now define the general_ized spaces ( C/*4(Q) as follows. If j=0,0<A<l,
and g = oo, then C/**®(Q) = C/*(Q) with norm

w(D%u;t)

Ju: €7@ = |lu; T = lullj 0 + max sup ——
A=)t

For j > 0,0 <X < l,and 1 < g < oo, the space C/*4(Q) consists of those
functions ¥ € W/-*°(Q) for which ||u ; CHAa(Q) || < 00, where

oo /9
Jus cro@ ) = Ju: /@] + ([~ o0 §)
al=j \ Jo

C/*4(R) is a Banach space under the norm |- ; C/*9(Q)|.
736 LEMMA IfO<A<land0 <6 < 1,then
(L=, C**(Q), ., = C*H(Q).

Proof. Letu € C%*(Q)g,4.x. Then there exists v € L®(Q) and w € C**(Q)
such that u = v + w and

Il + £* w: CO*(@)| < 2K(t*;u)  fort > 0.
If || <t, then

s+ h) — (Ol < Jox + 1) + ()] + 2O +|},’1)|{ WO

<2l + w; CO*@)| * < 4K (5 w).
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Thus w(u; t) < 4K (t*; u).

Since [lullo < ||u; CO*(2)|, we have |ullo, < llullg 4.k Thus,if 1 < g < oo,

Nu . CO.XQ,q(ﬁ) N _ ”u” " (/Oo(’_xgw(u. t))q g)l/q
s - o) o 5 P

o0 dr\4
< lullpqx +4 ( / (t K w)’ 7)
0

00 d 1/q
= llullg gk + 41" (/ (t K (z; w)? —T)
0 T

< +4 7 fullg gk -
Similarly, for ¢ = oo, we obtain

Jus CO Q)| < Nullp.oox +4supt ™K (t*5u) < 5 llullg ok -
1

This completes the proof. 1
7.37 THEOREM LetQbeadomainin R” satisfying the strong local Lipschitz
condition. Letm —1 — j <n/p<s<m—jandl <qg <oco.lf u =5 —n/p,
then
BSPI(Q) — CIHI(Q).
Proof. It is sufficient to prove this for j = 0. By Theorem 7.34(b),
BYPP Q) — CF () - L¥(Q).

By Part I of Theorem 4.12,

WP (Q) — CO*(Q),  where A=m — —.
p

Now BSP1(Q) = (B"/PP1(Q), WW(Q))MW where

A -2 4 om=s.
p

Since A0 = p, we have by the Exact Interpolation Theorem and the previous
Lemma,

BSP4(Q) — (L2(Q), C*'(Q)), . = C(Q). 1
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7.38 As shown in the Sobolev imbedding theorem (Theorem 4.12) functions
in WP (R**!) (where mp < n + 1) have traces on R" that belong to L7 (R") for
p <q <np/(n+1—mp). The following theorem asserts that these traces are
exactly the functions that belong to B”~(1/P:P.P(R"). This is an instance of the
phenomenon that passing from functions in W™ 7 (£2) to their traces on surfaces of
codimension 1 results in a loss of smoothness corresponding to 1/ p of a derivative.

In the following we denote points in R**! by (x,t) where x € R” and ¢ € R.
The trace u(x) of a smooth function U (x, t) defined on R**! is therefore given by
u(x) =U(x,0).

7.39 THEOREM (The Trace Theorem) If1 < p < oo, the following
conditions on a measurable function # on R” are equivalent.

(a) There is a function U in WP (R**1) so that u is the trace of U.
(b) u € Bm—W/pirp(Rr). 1

As the proof of this theorem is rather lengthy, we split it into two lemmas; (a)
implies (b) and (b) implies (a).

7.40 LEMMA Letl < p < co. IfU € WP (R™1), then its trace u belongs
to the space B = B™~{1/P:P-P(R*) and

lullg < KNUllm pro+r s (18)

for some constant K independent of U.

Proof. We represent

B = Bm-4/pkpr(RY) = (Wm—lvp(Rn)’ W’"’p(]R"))g bt

where

f=1--=—
p p

and use the discrete version of the J-method; we have u € B™~(I/Pxr.p(R"Y if
and only if there exist functions u; in W"~LP(R") N WP (R") = W™P(R") for
—00 < i < 0o such that the series ) .- u; converges to u in norm in the space
wm-lr(RYy + WmP(R') = W™ LP(R*), and such that the sequences
{277 lillmor,p} and {2777 u;ll,, ,} both belong to £7. We verify (18) by

splitting U into pieces U; with traces u; that satisfy these conditions.
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Let @ be an even function on the real line satisfying the following conditions:
G e =1if-1<r<1,

(i1)) ®@) =0if 7] = 2,

(i) |P(@)| < 1foralls,

(iv) | @) < C; <ooforall j > 1andall .
For each integer i let ®;(t) = d(¢ /2%); then ®; takes the value 1 on the inter-
val [—27, 27] and takes the value O on the intervals [2/!, o0) and (—oc0, —2/11].
Also, |®(1)| < 1and |®(t)| <27'C) forall z.
Let¢; = ®;,; — ®;. Then ¢;(z) vanishes outside the open intervals (2°, 2i+2y and
(=242, 21} in particular it vanishes at the endpoints of these intervals. Also
Ipillo = 1 and ||§}]  <27CI.
Now suppose that U € Cg"(R"+1 ). Then for each ¢t we have

Ux,1) = —f —(x,n)dt = —/ DOV y(x, 7)dr.
t at '

Let o
Ui(x,1) = —f ¢ (1)DOVU(x, 1) d.

Let u(x) = U(x,0) be the trace of U on R", and let u; be the corresponding
trace of U;. Since U has compact support, the functions U; and u; vanish when
i is sufficiently large. Moreover, U;(x,t) = 0 for all i when |x| is sufficiently
large. Therefore the trace u vanishes except on a compact set, on which the series
Z;’ioo u;(x) converges uniformly to u(x). The terms in this series also vanish off
that compact set and taking any partial derivative term-by-term gives a series that
converges uniformly on that compact set to the corresponding partial derivative
of u.

We use two representations of #;(x) = U, (x, 0), namely
2i+2 2!+2
ui(x) = — ¢i(1)DVU(x, 1) dT = $(DUGx, ) dr,  (19)
2 2
where the second expression follows from the first by integration by parts. If
|} < m—1 we obtain from the first representation a corresponding representations
of D“u;(x):

21+2

Du;(x) = — ¢:i (1) DV U (x, 1) dx,
21

so that, by Holder’s inequality,

2i+2

I/p
|D“ui(x)|s(2f+2)‘/"’(/ ID“””U(x,r)l"dr) .
2i
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Each positive number 7 lies in exactly two of the intervals [2/, 2/+1) over which
the integrals above run. Multiplying by 27/7', taking p-th powers on both sides,
summing with respect to i, and integrating x over R” shows that the p-th power
of the £” norm of the sequence {2‘”‘”’ || D%u; ||p};,>i_oo is no larger than

2”2”/”// ]D(‘“)U(x,r)lp drdx.
R1+I

Thus that £” norm is bounded by a constant times |U |, , gr+t-

Using the second representation of ; in (19), our bound on ||¢; ||, and Holder’s
inequality gives us a second estimate

2i+2

i

1/p
|D%u;(x)| < 277 C, 2+ VP (f |D‘“*°)U(x,r)|f’dr> ,

this one valid for any « with |¢| < m. Multiplying by 2//?, taking p-th powers
on both sides, and summing with respect to i shows that the p-th power of the £7

norm of the sequence {27/7|| D*u; |, } - ___is no larger than

2142010 P / IDOU(x, )P dtrdx.
Rg-H
Thus that £” norm is also bounded by a constant times [|U ||, g+1-

Together, these estimates show that the norm of « in B™~(/P:P-P(IR") is bounded
by a constant times the norm of U in W™ (R"*!) whenever U € C{*(R').
Since the latter space is dense in W™ 7 (R**!), the proof is complete. 1l

741 LEMMA Letl < p <ocand B = B"I/Pr.P(R"). Ifu € B, then u
is the trace of a function U € W™P(R"!) satisfying

N0l presr < K Nl (20)

for some constant K independent of u.

Proof. In this proof it is convenient to use a characterization of B different (if
m > 1) from the one used in the previous lemma, namely

B = B"~W/Pipp(RY) = (L"(]R"), Wm’p(Rn))e,p;J’

where 6 = 1 — (1/mp). Again we use the discrete version of the J-method. For
ue€ Bwecanfindu; € LP(R*) N W™P(R*) = W™P(R") (for —o00 < i < o0)
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such that Z;’i_o@ u; converges to u in LP(R") + W™P(R") = LP(R"), and such
that ,
27" il } s €7 < Ko llullg
129 il ) €7 < Ko Nl -

These estimates imply that Y > u; converges to u in B. We will construct an

extension U (x, ) of u(x) defined on R**! such that (20) holds.
It is sufficient to extend the partial sums s, = Zf.;_k u; to S, on R"*+! with control
of the norms:

ISkl p et < K1 |65 B*=PPP@Y
since {Sx} will then be a Cauchy sequence in W7 (R**!) and so will converge
there. Furthermore, we can assume that the functions u and u; are smooth since the
mollifiers Je % u and J, * u; (as considered in Paragraphs 2.28 and 3.16) converge
to u and u; in norm in W™-?(R") as ¢ — 04. Accordingly, therefore, in the
following construction we assume that the functions 1 and u; are smooth and that
all but finitely many of the u; vanish identically on R".

Let ®(t) be as defined in the previous lemma. Here, however, we redefine ®; as
follows:

t .
d’i(f):@(W), —00 < i < 00,

The derivatives of ®; then satisfy |®\7'(1)] < 279/ C;. Also, note that for j > 1,
<I>§” is zero outside the two intervals (—2U+D/m _i/my ang (2i/m 2U+D/my
which have total length not exceeding 2! T¢/™,

We define the extension of u as follows:

Ux,t) = Z Ui(x, 1), where  Ui(x, 1) = ®;()u;(x).

i=—00

Note that the sum is actually a finite one under the current assumptions. In order
to verify (20) it is sufficient to bound by multiples of |||z the L”-norms of U
and all its mth order derivatives; the Ehrling-Nirenberg-Gagliardo interpolation
theorem 5.2 then supplies similar bounds for intermediate derivatives. The mth
order derivatives are of three types: D™ U, D@/U for1 < j <m — 1 and
la| + j = m, and D*OU for |a| = m. We examine each in turn.

Since DO U, (x, 1) = 27 D" (¢ /21/™u; (x), we have

/ |IDO™ U, (x, )|? dx dt
Rn+1

i+L/m

i/m
< (f dt—l—/ dt)/ |DO™ U, (x, 1)|P dx
Ui+ /m Qifm n

1+ /m) =i i
< 2MH M 25 O |2 = 265270 |luy |12
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Since the functions be.m) have non-overlapping supports, we can sum the above
inequality on i to obtain

o0

[DOmU g <2C5 37 @7 lil,)”

i=—00

=2CE {27 luil, ) 5 €7]|" < 2CE fluly

and the required estimate for D®™ U is proved.
Now consider D@D U; (x, t) = 279/m W (¢ /21/™yD*u;(x) for which we obtain
similarly

/ ID@DU;(x, )P dx dt < CP2719P=DIm | Dy, 2.
R+l J p

Since || = m — j, we can replace the LP-norm of D%u; with the seminorm
|t¢;|m—j,p, and again using the non-overlapping of the supports of the CDEJ ) (since
Jj = 1)toget

o0
— i
|DCPUNS g <€D 27RO
i=—00

As remarked in Paragraph 5.7, for 1 < j < m — 1 Theorem 5.2 assures us that
there exists a constant K, such that for any € > 0 and any i

luily,_; , < Ko(€” lulh, , + € "=PP0 lu|?).

Let ¢ = 2///™_ Then we have

00
| DU} g < €/ K2 Y (2™ il + 277170 g | 7)

i=—00

o0
=C7Ks 3 (0P ilh 27 il
i=—00
< 2Ky (120 Wil } 5 €7 + 14270 Dl } s €7]))
<2K{CPK;|lulg

and the bound for DU is proved.

Finally, we consider U and D*9U together. (We allow 0 < |a| < m.) Un-
like their derivatives, the functions ®; have nested rather than non-overlapping
supports. We must proceed differently than in the previous cases. Consider
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D@y (x, 1) on the strip 2/" < ¢t < 20U+D/m jn R*+1, Since |®;(r)| < 1 and
since U;(x, t) = O on this strip if i < j — 1, we have

o0 e8]
ID“OU @, 01 < Y IDOU(x, 0l = Y 27 ay,
i=j-1 i=j—1

where a; = 2V/"P| D%, (x)|. Thus,

2L+D/m 1/p 00
b= (/ ID(“‘O)U(x,t)l”dt) < Y 2fmroaiimr g,
2ifm =
i=j—1
> . .
= Z UM g, = (c % a);,
i=j—1

where ¢; = 2//"? when —o0 < j < L and ¢; = 0 otherwise. Observe that ¢ € £'
(say, [|c; €} H = K3), and so by Young’s inequality for sequences

[b:€7] = Ksla: €] -

Taking pth powers and summing on j now leads to
00 .
/ DU, 1| dr < KT | {2/ |Dui(x)1}; €7]|
0

Integrating x over R* and taking pth roots then gives
a0 i/m o .
| DPU, , g < K3 [{27" 1D uill, )5 €7
< K3 {2 uillp} s €] < KK lullg
A similar estimate holds for | D@OU || ..., so the proof is complete. 1
P

7.42 We can now complete the imbedding picture for Besov spaces by proving
an analog of the trace imbedding part of the Sobolev Imbedding Theorem 4.12

for Besov spaces. We will show in Lemma 7.44 below that the trace operator T
defined for smooth functions U on R**! by

(TU(x)=U(x,0)

is linear and bounded from B'PP-L(R"*!) into LP(R"). Since Theorem 7.39
assures us that T is also bounded from W™-?(R**+!) onto B™~1/PiPiP(R*) for
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every m > 1, by the exact interpolation theorem (Theorem 7.23), it is bounded
from BSP4(R**!) into BS~1/PiPia(R), that is,

Bs:p,q (Rn+1 ) - Bs—l/p;p;q(Rn )’

forevery s > 1/pand 1 < g < oo. (Although Theorem 7.39 does not apply if
p = 1, we already know from the Sobolev Theorem 4.12 that traces of functions
in W™ (R**+1) belong to W11 (R").)

We can now take traces of traces. If n —k < sp < n(sothats — (n —k)/p > 0),
then
BSPA(R') — BS—(n—k)/pipiq (Rk ),

We can combine this imbedding with Theorem 7.34 to obtain forn —k < sp <n
andr = kp/(n — sp),

Bs;p,p(Rn) — Bx—("—k)/PiPZP(Rk) - Lr'p(]Rk) — Lr(Rk).
More generally:

7.43 THEOREM (Trace Imbeddings for Besov Spaces on R*) If kisan
integer satisfying 1 <k <n,n—k <sp <n,andr = kp/(n — sp), then
BSPA(R") —> Bs—(n—k)/p;p;q(Rk) — L (R"), and
BSPARY) — L' (R¥) forg <r.

To establish this theorem, we need only prove the following lemma.

7.44 LEMMA The trace operator T defined by (TU)(x) = U(x, 0) imbeds
B/PPLR*) into LP(R").
Proof. Suppose that U belongs to B = BYPiPI(R"1) and, without loss of

generality, that ||U || < 1. Then there exist functions U; for —oo < i < oo such
that U = ), U; and

Y 2 U g <€ and Y 277U e < €
i

1

for some constant C. As in the proof of Lemma 7.40, we can assume that only
finitely many of the functions U; have nonzero values and that they are smooth
functions. For any of these functions we have, for2' <h < 2i+1

h

\Us(x, 0)] 5/ DOV (x, 1)] dr + |Ustx, b)|
0
2i+l

s/ DOV, (x, )| dt + UsCx. B,
0
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Averaging h over [2¢, 2/7!] then gives the estimate

i+1 i+1
2 2

1
|Ui(x,0>|5/ DDy, 1)| dt+5f \Ui(x. 1) dt.
0 21
By Holder’s inequality,

|Ui(x, 0)] < 20077 ( f
0

’

2i/p i+l 1/p
N (/ |U,»<x,r)|"dr>
27 \Jy

= a;(x) + b;(x), say.

Qi+l

1/p
|DOVU(x, |° dt)

Then ||a; ||, g < 2(2/7") We now

have

U O, e < D NUC, Ol 50

S 2 (Z 2i/p/ || U] lllvp‘RNH + Zz_i/p ” UJ ”[),R”H) S 4C
! I

This completes the proof. 1

‘UJ‘ “1,p,Ru+l and ||bil|, r+ < 27p ” Uj ”p,R”H'

7.45 REMARKS

1. Theorems 7.39 and 7.43 extend to traces on arbitrary planes of sufficiently
high dimension, and, as a consequence of Theorem 3.41, to traces on
sufficiently smooth surfaces of sufficiently high dimension.

2. Both theorems also extend to traces of functions in B*79(£2) on the inter-
section of the domain €2 in R* with planes or smooth surfaces of dimension
k satisfying k > n — sp, provided there exists a suitable extension operator
for . This will be the case if, for example, 2 satisfies a strong local
Lipschitz condition. (See Theorem 5.21.)

3. Before Besov spaces were fully developed, Gagliardo {Ga3] identified the
trace space as a space defined by a version of the intrinsic condition (c) in
the characterization of Besov spaces in Theorem 7.47 below, where ¢ = p
ands =m — (1/p).

Direct Characterizations of Besov Spaces

7.46 The K functional for the pair (LP(Q), wm.p (Q)) measures how closely a
given function u can be approximated in L” norm by functions whose W7 norm
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are not too large. For instance, a splitting u = up + u; with [luoll, + ¢ u1ll,y , <
2K (t; u) provides such an approximation ; to u; then the error u — u; = ug has
L?(£2) norm at most 2K (¢; u) and the approximation 1 has W™? () norm at most
(2/t)K (t; u). So, in principle, the definition of B*79(Q) by real interpolation
characterizes functions in B*'?-(£2) by the way in which they can be approximated
in L?(2) norm by functions in W7 ($2).

Like many other descriptions of Besov spaces, the one above seems indirect,
but it can yield useful upper bounds for Besov norms. On R", more direct
characterizations come from considering the L?-modulus of continuity and higher-
order versions of that modulus. Given a point /4 in R" and a function u in
LP(IR"), let uy be the function mapping x to u(x — h), let Apu = u — uy, let
wp(u; h) = || Apull,, and for positive integers m, let a);)'")(u; ) = 1(A)™ul -
When 1 < p < oo, mollification shows that w,(u; i) tends to 0 as h — 0,
and the same is true for a)g")(u; h); as stated below, when m > s, the rate
of the latter convergence to O determines whether u € B*74(R"). We also
define functions on R, by letting w,(u; 1) = suplwp(u; h); |h] < 1} and letting
w™*(u; 1) = sup{w™ (u; h); |h| < 1}.

747 THEOREM (Intrinsic Characterization of B*?9(R")) Whenever
m>s>0,1<p<oo,and1 < g < o0, the following conditions on a function
u in LP(R") are equivalent. If ¢ = oo condition (a) is equivalent to the versions of
conditions (b) and (c) with the integrals replaced by the suprema of the quantities
inside the square brackets.

(a) u € BSPA(RY).

(b) /oo[t_xw;,’")*(u; t)]q ﬂ < 00.
0 t

(©) / (1A= @l (u; h) ]’ Mo
R i |h|"

Before proving this theorem, we observe a few things. First, the moduli of
continuity in parts (b) and (c) are never larger than 2™ [|u,; so we get conditions
equivalent to (b) and (c) respectively if we use integrals with t < 1 and || < 1.
Next, the equivalence of conditions (b) and (c) with condition (a), where m does
not appear, means that if (b) or (c) holds for some m > s, then both conditions
hold for all m > s.

It follows from our later discussion of Fourier decompositions thatif 1 < p < oo,
then these conditions are equivalent to requiring that the derivatives of # of order k,
where £ is the largest integer less than s, belong to LP(IR") and satisfy the versions
of condition (b) or (c) with m = 1 and s replaced with s — k.

While we assumed 1 < p < 0o in the statement of the theorem, the only part of
the proof that requires this is the part showing that (c) = (a) when m > 1. The
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rest of the proofis valid for 1 < p < oco.

7.48 (The Proof of Theorem 7.47 for . = 1) We assume, for the moment,
that m = 1 and s < 1; in the next Paragraph we will outline with rather less detail
how to modify the argument for the case m > 1. We show that (a) = (b) =
© = (@.

The first part is similar to the proof of Lemma 7.36. Suppose first that condition (a)
holds and consider condition (b) with m = 1. Fix a positive value of the parameter
¢ and split a nontrivial function « as v + w with |Jvl, + tllwll;,, < 2K(#; u).
Then Apu = Apv + Apw, and it suffices to control the L norms of the these two
differences. For the first term, just use the fact that A v, < 2[jull,.

For the second term, we use mollification to replace v and w with smooth functions
satisfying the same estimate on their L” and W!-” norms respectively. We majorize
|w(x —h)—w(x)| by the integral of |grad w| along the line segment joining x — A to
x, and use Holder’s inequality to majorize that by |4|!/7" times the one-dimensional
L? norm of the restriction of |grad w| to that segment. Finally, we take p-th powers,
integrate with respect to x, and take a p-th root to get that | Aywli, < |hllw|1 ,.
When |h| < t we then obtain

[Anull, < 1AV, +1Anwll, < 2lvll, + tlwly p < 4K (5 u),

so condition (a) implies condition (b).

Since 7 decreases and wp(u; t) increases as t increases, condition (b) holds
with m = 1 if and only if the sequence {2 " (u; 2")};-__ belongs to £9. To
deduce condition (¢) with m = 1, we split the integral in (c) into dyadic pieces
with 2/ < |h| < 2/*!. The integral of the measure dh/|k|" over each such piece
is the same. In the i-th piece, w,(u; h) < w(u; 2i+1) by the definition of the
latter quantity. And in that piece, [#|~5 < 25275U+D_ So the integral in (c)
is majorized by a constant time the g-th power of the £ norm of the sequence
{270+ s (£; 2040} and (c) follows from (b).

We now show that (¢) = (a) whenm = 1 > s > 0. Choose a nonnegative smooth
function & vanishing outside the ball of radius 2 centred at 0 and inside the ball
of radius 1, and satisfying

f d(x)dx =1.

For fixed t > 0let ®,(x) = r " ®(x/1); this nonnegative function also integrates
to 1, and it vanishes outside the ball of radius 27 centred at O and inside the ball of
radius ¢.

For u satisfying condition (c), splitu = v+ w where w = u* ®, and v = u — w.
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The fact that the density &, has mass 1 ensures that
v(x) = / O, (Mux) —ulx —h)]dh = / O, (M Au(x)dh
n RVI
=/ D, (W) Ayu(x)dh.
t<|h|<2t

The function v belongs to L?(R"), being the difference of two functions in that
space. To estimate its norm, we use the converse of Hélder’s inequality to linearize
that norm as the supremum of fRn [v(x)|g(x) dx over all nonnegative functions g
in the unit ball of L” (R"). For each such function g, we find that

fu(x)|gx)dx < / d;(h) l:/R g(x)lAhu(x)Idin dh

R» t<|h|<2t

< / S, (W lglyll Apsel, dh
t<|h|<2t
= [ eamisu,dn.
t<|h|<2t
Since || P, |loo < C/t", the last integral above is in turn bounded above by

C dh
- | Anul, dh < c/ Al o
" Jicin< t<lh| <2t [k

dh '
sg(/ [ Anu,) ) :
t<h|<2t 2]

where the last step uses Holder’s inequality and the fact that the coronas {# € R" :
t < |h| < 2t} all have the same measure. Thus we have shown that

g dh t/q
ol < C, (f [ Awl, ] ) . @)
t<|h|<2t Ihl
To bound X (¢; u) for the interpolation pair (L ("), W!-P(R")), we also require
a bound for [lwll; , = |lu* P, ,. Note that [wl, < lullpP: ] = llulip.

Moreover,

grad w(x) = [u * grad (P,)](x) = / u(x — h) grad(®,)(h)dh

r<|h|<2t

=f s [u(x — h) — u(x)] grad (®,)(h) dh
t<|h]<2t

_ f Anu(x) grad (@) (h) dh,
t<|h|<2t
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where we used the fact that the average value of V(®,)(h) is 0 to pass from the
first line above to the second line. Linearizing as we did for v leads to an upper
bound like (21) for || grad w||,, except that || ®, || is replaced by || grad @, ||,
which is bounded by o /"% ! rather than by C/¢". This division by an extra factor
of ¢ leads to the estimate

C* dh l/q
lwh,, < -2 (/ Il Agull, ]! ) .
b=y t<\h|<21[ d lak

Therefore
K(tsu) < |lvllp +tllwlhp

g dh '
< const. (/ [NAgull,] ) + tull,. (22)
t<|hl<2t |h|

We also have the cheap estimate K (¢; #) < |lu||, from the splitting u = u + 0.

We use the discrete version of the K method to describe B*7'9(IR"). The cheap es-
timate suffices to make ) ;o [27* K (2'; u)]4 finite. When i < 0 we use inequality
(22) with + = 2', and we find that distinct indices i lead to disjoint coronas for
the integral appearing in (22). It follows that the part of the £9 norm with i < O is
bounded above by a constant times |[[u]|, plus a constant times the quantity

1/q
(/ (171 wp(u; 1)]* ‘”’) :
<2 {A|"

This completes the proof whenm = 1 and 1 < ¢ < o0o. The proof when m = 1
and ¢ = 0o is similar. 1

7.49 (The Proof of Theorem 7.47 for m > 1) We can easily modify some
parts of the above proof for the case where m = 1 to work when m > 1. In
particular, to prove that condition (b) implies condition (c) when m > 1, simply
take the argument for m = 1 and replace w;, by w"* and w, by w".

To get from (a) to (b) when m > 1, consider B*”9(IR" ) as a real interpolation space
between Xg = L7(R") and X; = W™?(R") with§ = s/m; sincem > s, we have
# < 1. Given a value of ¢, split u as v + w with |Jv|l, + " w1, < 2K(™; u).
Then || A7 vll, < 2™ |vll, < 27w,

Again we can mollify w and then write differences of w as integrals of derivatives
of w. When m = 1 we found that A,w was an integral of a first directional
derivative of w with respect to path length along the line segment from x — 4 to x.
Denote that directional derivative by D,w. Then A? is equal to the integral along
the same line segment of A, (D,w). That integrand is itself equal to an integral
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along a line segment of length || with integrand D7 w. This represents A,zl w(x) as
an iterated double integral of D,Z,w, with both integrations running over intervals
of length |h|. Iteration then represents A}’ w as an m-fold iterated integral of D} w
over intervals of length |A|. Applying Holder’s inequality to that integral and then
integrating p-th powers over R” yields the estimate ||A} wl, < C|h|™|w|n, p. It
follows that w[(,'”)*(u; 1) < CK("; u). Thus

o o0
/ [t ™" w; )] % < @q/ [ k@™ u)]q?

00 o0

éq/ [(tm)—s/mK(tm; u)]‘l ?

L e d
= c/ [t K (: u) 25,
oo T

after the change of variable T = ™. So condition (a) still implies condition (b)
whenm > 1.

We now give an outline of the proof that (c) implies (a). See [BB, pp. 192-194}
for more details on some of what we do. Since condition (c) for any value of m
implies the corresponding condition for larger values of m, we free to assume that
m is even, and we do so.

Given a function u satisfying condition (c) for an even index m > max{1, s}, and
given an integer i < 0, we can split u = v; + w;, where v; is an averaged m-fold
integral of A}'u; each single integral in this nest runs over an interval of length
comparable to t = 2/, and the averaging involves dividing by a multiple of #™. The
outcome is that we can estimate ||v; ||, by the average of |AJu||, over a suitable
h-corona. As in the case where m = 1, this leads to an estimate for the £7 norm
of the sequence {27 ||v; I, }f:_oo in terms of the integral in condition (c).

There is still a cheap estimate to guarantee for the pair Xg = L”(R") and
X, = W™P(R") that the half-sequence {27 K (2™; u)} belongs to £9. This
leaves the problem of suitably controlling the ¢4 norm of the half-sequence
{20 w11, }?=_Oo. We can represent w; as a sum of m terms, each involving
an average, with an m-fold iterated integral, of translates of u in a fixed direction.
We can use this representation to estimate the norms in L” (R") of m-fold direc-
tional derivatives of w; in any fixed direction. In particular, we can do this for the
unmixed partial derivatives D'w;, in each case getting an L? norm that we can
control with the part of (c) corresponding to a suitable corona. It is known that L?
estimates for all unmixed derivatives of even order m imply similar estimate for
all mixed mth-order derivatives derivatives, and thus for |w;|n,,,. (See [St, p. 77];
this is the place where we need m to be evenand 1 < p < 00.)

Finally, for K (2°"; u) we also need estimates for ||w; l,. Since w; comes from
averages of translates of u, these estimates take the form ||w;|l, < Cllu|l,. For
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the half sequence {27 K (2'"; u) }?=_oo we then need to multiply by 2/ and 275
again the outcome is a finite £¢ norm, since i < Qandm > s. 1

Other Scales of Intermediate Spaces

7.50 The Besov spaces are not the only scale of intermediate spaces that can
fill the gap between Sobolev spaces of integer order. Several other such scales
have been constructed, each slightly different from the others and each having
properties making it useful in certain contexts. As we have seen, the Besov spaces
are particularly useful for characterizing traces of functions in Sobolev spaces.
However, except when p = 2, the Sobolev spaces do not actually belong to the
scale of Besov spaces.

Two other scales we will introduce below are:

(a) the scale of fractional order Sobolev spaces (also called spaces of Bessel
potentials), denoted W*-#(£2), which we will define for positive, real s by
a complex interpolation method introduced below. It will turn out that if
s = m, a positive integer and 2 is reasonable, then the space obtained
coincides with the usual Sobolev space W™-?(£2).

(b) the scale of Triebel-Lizorkin spaces, F*79(R"), which we will define
only on R" but which will provide a link between the Sobolev, Bessel
potential, and Besov spaces, containing members of each of those scales
for appropriate choices of the parameters s, p, and g.

‘We will use Fourier transforms to characterize both of the scales listed above, and
will therefore normally work on the whole of R”. Some results can be extended
to more general domains for which suitable extension operators exist.

For the rest of this chapter we will present only descriptive introductions to the
topics considered and will eschew formal proofs, choosing to refer the reader
to the available literature, e.g., [Trl, Tr2, Tr3, Tr4], for more information. We
particularly recommend the first chapter of [Tr4].

We begin by describing another interpolation method for Banach spaces; this one
is based on properties of analytic functions in the complex plane.

7.51 (The Complex Interpolation Method) Let { Xy, X;} be an interpolation
pair of complex Banach spaces defined as in Paragraph 7.7 so that Xy 4+ X; is a
Banach space with norm

llullx,+x, = inf{lluolix, + llurllx, : u = uo+ur, uo € Xo,uy € X1}.

Let & = % (Xo, X)) be the space of all functions f of the complex variable
¢ =0 + it with values in X 4+ X that satisfy the following conditions:

(a) f is continuous and bounded on the strip 0 < 8 < 1 into Xy + X;.
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(b) f isanalytic from0 < 0 < linto Xo+ X (i.e., the derivative f'(¢) exists
in Xo+ X;1f0 <0 =Re¢ < 1).

(c) f is continuous on the line @ = 0 into X and

IfGDy, =0  as  |t] - oo

(d) f is continuous on the line # = 1 into X; and

If(A+it)lly, — O as |T] = oo.

7.52 % is a Banach space with norm
If; Z1 = max{sup | f(i)lx, ,sup | f (1 +iD)llx,}.
T T

Given a real number 9 in the interval (0, 1), we define
Xo=[Xo.X1lo={ueXo+ X :u= f(@) forsome f¢ Z}.

Xy is called a complex interpolation space between X, and X;; it is a Banach
space with norm

lullx, = lullx,.x,), = inf{lf; Zl : £6) =u}.

It follows from the above definitions that an analog of the Exact Interpolation
Theorem (Theorem 7.23) holds for the complex interpolation method too. (See
Calder6n [Ca2, p. 115] and [BL, chapter 4].) If {X,, X;} and {Yy, Y;} are two
interpolation pairs and T is a bounded linear operator from X + X into Yy + Y,
such that T is bounded from X into Y with norm M and from X, into Y; with
norm M, then T is also bounded from X, into Yy with norm M < Mé‘e Mf for
each 6 in the interval [0, 1].

There is also a version of the Reiteration Theorem 7.21 for complex interpolation;
if0<6y <6 <1,0<Ai<1,and 6 = (1 — X))y + AB;, then

[[Xo0, X114, [X0. X116, ], = [Xo, X11

with equivalent norms. This was originally proved under the assumption that
Xo N X is dense in [Xo, X1]g, N [Xo, X1lg,, but this restriction was removed by
Cwikel [Cw].

7.53 (Banach Lattices on £2) Most of the Banach spaces considered in this
book are spaces of (equivalence classes of almost everywhere equal) real-valued
or complex-valued functions defined in a domain € in R”. Such a Banach space
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B is called a Banach lattice on 2 if, whenever 4 € B and v is a measurable, real-
or complex-valued function on 2 satisfying |v(x)| < |u(x)| a.e.on 2, thenv € B
and ||v|lz < |lulp- Evidently only function spaces whose norms depend only on
the size of the function involved can be Banach lattices. The Lebesgue spaces
LP () and Lorentz spaces L79(£2) are Banach lattices on 2, but Sobolev spaces
W™mP(Q) (where m > 1) are not, since their norms also depend on the size of
derivatives of their member functions.

We say that a Banach lattice B on 2 has the dominated convergence property if,
wheneveru € B,u; € Bforl < j < oo, and |u;(x)| < |u(x)| a.e. in €, then

Jim u;(0) =0ae. = lim [u;], =0.

The Lebesgue spaces L7(€2) and Lorentz spaces L?'9(£2) have this property pro-
vided both p and ¢ are finite, but L>°(€2), L7*°(f2), and L°*9(2) do not. (As a
counterexample for L>, consider a sequence of translates with non-overlapping
supports of dilates of a nontrivial bounded function with bounded support.)

7.54 (The spaces X(}_BX 19 )} Now suppose that Xy and X, are two Banach
lattices on © and let 0 < 6 < 1. We denote by X, X¢ the collection of
measurable functions u on §2 for each of which there exists a positive number A and
non-negative real-valued functions ug € Xo and u; € X, such that [lupllx, = 1,
furllx, = 1and

(o)l < Auo(x)' =1y ()’ 23)

Then X 3_9 X9 is a Banach lattice on  with respect to the norm
“u ; X(l)fe X(f H = inf{)\ : inequality (23) holds}.

The key result concerning the complex interpolation of Banach lattices is the
following theorem of Calderdn [Ca2, p.125] which characterizes the intermediate
spaces.

7.55 THEOREM Let X; and X, be Banach lattices at least one of which has
the dominated convergence property. If 0 < 8 < 1, then

[Xo, X116 = Xo "X}
with equality of norms. I

7.56 EXAMPLE 1t follows by factorization and Holder’s inequality that if
l1<p <oofori=0,1, p; # p;,and 0 < 6 < 1, then

[L7(), L ()], = LP(Q),
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with equality of norms, where

1 1-6 6
+ —.
14 Po P

Moreover, if also 1 < ¢; < oo and at least one of the pairs (pg, qo) and (p1, q1)
has finite components, then

[LPOx‘]O(Q), LPa (Q)]e = LP9(Q),

with equivalence of norms, where

1 1-6 0 1 1-6 @6
= + — and - = + —.
Po pi1 q 90 q1

7.57 (Fractional Order Sobolev Spaces) We can define a scale of fractional
order spaces by complex interpolation between L? and Sobolev spaces. Specifi-
cally, if s > 0 and m is the smallest integer greater than s and €2 is a domain in
R”, we define the space W*7(2) as

W>P(Q) = [L7 (@), W™ ()],
Again, as for Besov spaces, we can use the Reiteration Theorem to replace m
with a larger integer and also observe that W*”(€2) is an appropriate complex
interpolation space between WP (Q2) and W*-P(Q)if 0 < 59 < 5§ < 51. We will
see later that if s is a positive integer and €2 has a suitable extension property, then
W* P (Q2) coincides with the usual Sobolev space with the same name.
Because W™ P(Q2) is not a Banach lattice on 2 we cannot use Theorem 7.55 to
characterize W*7(2). Instead we will use properties of the Fourier transform on
R* for this purpose. Therefore, as we did for Besov spaces, we will normally
work only with W*?(R"), and rely on extension theorems to supply results for
domains 2 C R".

We begin by reviewing some basic aspects of the Fourier transform.

7.58 (The Fourier Transform) The Fourier transform of a function u be-
longing to L!(R") is the function & defined on R" by

i(y) = ! f eV u(x) dx.

Qm)"? Jr

By dominated convergence the function # is continuous; moreover, we have
|&ll,, < @)™ |lull;. If u € C'(R*) and both u and D;u belong to L'(R"),
then D;ju(y) = iy;u(y) by integration by parts. Similarly, if both u and the
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function mapping x to |x|u(x) belong to L'(R"), then & € C!(R"); in this case
Dji(y) is the value at y of the Fourier transform of the function mapping x to
—ixju(x).

7.59 (The Space of Rapidly Decreasing Functions) Let.¥ = . (IR") denote
the space of all functions u in C*°(R") such that for all multi-indices ¢ > 0 and
B > 0 the function mapping x to x* Dfu(x) is bounded on R”. Unlike functions
in Z(R"), functions in . need not have compact support; nevertheless, they must
approach 0 at infinity faster than any rational function of x. For this reason the
elements of . are usually called rapidly decreasing functions.

The properties of the Fourier transform mentioned above extend to verify the
assertion that the Fourier transform of an element of .# also belongs to ..

The inverse Fourier transform i of an element u of L' (R") is defined for x € R"
by

. 1 ix.
u(x) = W‘/‘”e u(y)dy.

The Fourier inversion theorem [RS, chapter 9] asserts that if u € .%, then the in-
verse Fourier transform of # is u (th = u), and, moreover, that the same conclusion
holds under the weaker assumptions that x € L'(R") N C(R") and &t € L'(R").
One advantage of considering the Fourier transform on .% is that u € .% guaran-
tees that # € L'(R"), and the same is true for the function mapping y to y*&(y)
for any multi-index ¢ > 0. In fact, the inverse Fourier transforms of functions in
. also belong to .% and the transform of the inverse transform also returns the
original function. Thus the Fourier transform is a one-to-one mapping of .% onto
itself.

7.60 (The Space of Tempered Distributions) Given a linear functional F on
the space .%, we can define another such functional F' by requiring F(u) = F(i)
for all u € .. Fubini’s theorem shows that if F operates by integrating functions
in . against a fixed integrable function f, then F operates by integrating against
the transform f :

F(u) =f foux)ydx, felLl' (R,
Rn

— F) = A FOW)dy. 24)

There exists a locally convex topology on . such that the mapping F — F maps
the dual space . = %'(R") in a one-to-one way onto itself. The elements of
this dual space .’ are called tempered distributions. As was the case for 2'(),
not all tempered distributions can be represented by integration against functions.
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7.61 (The Plancherel Theorem) An easy calculation shows that if u and
v belong to L'(R"), then u*v = (27)"24d; Fourier transformation converts
convolution products into pointwise products. If u ¢ LY R, let it(x) = u(—x).
Then &t = @, and u x it = Qm)"?|#)%. If u € ., then both u * & and |a|? also
belong to .. Applying the Fourier inversion theorem to u * it at x = 0 then gives
the following result, known as Plancherel’s Theorem.

~

wes = ;=13

That is, the Fourier transform maps the space . equipped with the L2-norm
isometrically onto itself. Since . is dense in L2(R"), the isometry extends to one
mapping L2(R") onto itself. Also, L2(R") C .#’ and the distributional Fourier
transforms of an L? function is the same L? function as defined by the above
isometry. (That is, the Fourier transform of an element of .’ that operates by
integration against L functions as in (24) does itself operate in that way.)

7.62 (Characterization of W*2(R")) Given u € L*(R") and any positive
integer m, let

un(y) = (1 + |y a(y). (25)

It is easy to verify that u € W™2(R") if and only if u, belongs to L?(R"),
and the L?-norm of u,, is equivalent to the W™ 2 norm of u. So the Fourier
transform identifies W™ 2(R") with the Banach lattice of functions w for which
(1 + |- >™?%(-) belongs to L>(R"). For each positive integer m that lattice has
the dominated convergence property. It follows that u € W*2(R") if and only if
(1 + - [%*?4(-) belongs to L2(R").

7.63 (Characterization of W*P(R™)) The description of W*7(R") when
l<p<2or2 < p < oo ismore complicated. If u € LP(R*) with 1 < p < 2,
then u € L'(R") 4+ L*(IR"); this guarantees that i € L®(R") + L?>(R*), and in
particular that the distribution # is a function. Moreover, it follows by complex
interpolation that i1 € LP (R") and by real interpolation that & € LP'P(R"). But
the set of such transforms of L? functions is not a lattice when 1 < p < 2. This
follows from the fact (see [FG]) that every set of positive measure contains a subset
E of positive measure so that if the Fourier transform of an L? function, where
1 < p < 2, vanishes off E, then the function must be 0. If u € LP(R") and E is
such a subset on which &(y) # 0, then the function that equals # on E and 0 off
E is not trivial but would have to be trivial if the set of Fourier transforms of L*
functions were a lattice.

A duality argument shows that the set of (distributional) Fourier transforms of
functions in LP(R") for p > 2 cannot be a Banach lattice either. Moreover (see
[Sz]), there are functions in L? (R") whose transforms are not even functions.
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Nevertheless, the product of any tempered distribution and any sufficiently smooth
function that has at most polynomial growth is always defined. For any distribution
u € ' we can then define the distribution u,, by analogy with formula (25); we
multiply the tempered distribution # by the smooth function (1 + | - |?)"/2. When
l < p<2or2 < p < 0o, the theory of singular integrals [St, p. 138] then shows
that u € W"P(R") if and only if the function u,, is the Fourier transform of some
function in L?(R"). Again the space W* 7 (IR") is characterized by the version of
this condition with m replaced by s. In particular, if s = m we obtain the usual
Sobolev space W™ 7 (R") up to equivalence of norms, when 1 < p < oo. The
fractional order Sobolev spaces spaces are natural generalizations of the Sobolev
spaces that allow for fractional orders of smoothness.

One can pass between spaces W*7(R") having the same index p but different
orders of smoothness s by multiplying or dividing Fourier transforms by factors of
the form (1 4| - |>)~"/2. When r > 0 these radial factors are constant multiples of
Fourier transforms of certain Bessel functions; for this reason the spaces W*-? (R")
are often called spaces of Bessel potentials. (See [AMS].)

In order to show the relationship between the fractional order Sobolev spaces and
the Besov spaces, it is, however, more useful to refine the scale of spaces W* 7 (IR")
using a dyadic splitting of the Fourier transform.

7.64 (An Alternate Characterization of W*P(R")) In proving the Trace
Theorem 7.39 we used a splitting of a function in W™ 7 (R**!) into dyadic pieces
supported in slabs parallel to the subspace " of the traces. Here we are going
to use a similar splitting of the Fourier transform of an L? function into dyadic
pieces supported between concentric spheres.

Recall the C*° function ¢; defined in the proof of Lemma 7.40 and having support
in the interval (2', 2'*?). For each integer i and y in R", let ¥, (y) = ¢;(]y]).
Each of these radially symmetric functions belongs to . and so has an inverse
transform, W; say, that also belongs to .¥.

Fix an index p in the interval (1, co) and let u € L?(IR"). For each integer i let
T;u be the convolution of 1 with (27)™/2W;; thus Tiu(y) = ¥;(y) - 4(y). One
can regard the functions T;u as dyadic parts of u with nearly disjoint frequencies.
Littlewood-Paley theory [FTW] shows that the L?-norm of u is equivalent to the
LP-norm of the function mapping x to [Y o . |T;u(x)|*]"/2. That is

i=—00

. p/2
el = /[Zmuu)ﬁ] dx
Rn

i=—00

l/p

To estimate the norm of u in W*?(R") we should replace each term T;u by
the function obtained by not only multiplying i by v, but also multiplying the
transform by the function mapping y to (1 4+ |y[?)*/2.
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On the support of 1; the values of that second Fourier multiplier are all roughly
equal to 1 + 2%, It turns out that u € W*?(R") if and only if

00 p2 \ 1P
laelly.p = [lus WoP@RY | ~ / [ doa+ 2“')2|T,»u<x)|2} dx| <oo.
R | j=—00
This is a complicated but intrinsic characterization of the space W*?(R"). That
is, the following steps provide a recipe for determining whether an L? function u
belongs to W*7(R"):
(a) Split u into the the pieces T;u by convolving with the functions ¥; or by
multiplying the distribution & by v; and then taking the inverse transform.
For each point x in R this gives a sequence {T;u(x)}.
(b) Multiply the i-th term in that sequence by (1+4-2*') and compute the £2-norm
of the result. This gives a function of x.
(c) Compute the L?-norm of that function.

The steps in this recipe can be modified to produce other scales of spaces.

7.65 (The Triebel-Lizorkin Spaces)  Define F*:77(R") to be the space ob-
tained by using steps (a) to (c) above but taking an £9-norm rather than an £2-norm
in step (b). This gives the family of Triebel-Lizorkin spaces; if 1 < g < oo,

l/p

0 r/q
fu; FSPa@RY) | ~ / [Z (1+25i)q|7}u(x)lq] dx < 0.
R!I

i=—00

Note that F™P2(R") coincides with W™?(R") when m is a positive integer, and
FS72(R") coincides with W*?(IR*) when s is positive.

7.66 REMARKS

1. The space F%P2(R") coincides with L?(R") when 1 < p < oc.

2. The definitions of W*?(R*) and F*P-9(R") also make sense if s < 0, and
evenif 0 < p,q < 1. However they may contain distributions that are not
functions if s < 0, and they will not be Banach spaces unless p > 1 and
1<g < o0

3. If s > 0, the recipes for characterizing W*7(R") and F*74(R") given
above can be modified to replace the multiplier (1 4-2*') by 2° and restrict-
ing the summations in the £2 or £7 norm expressions to i > 0, provided we
also explicitly require u € L?(R"). Thus, for example, u ¢ FSP4(R") if
and only if

i/p

00 plq
lluell,, + f |:Z2Siq|7’,-u(x)|qil dx < 00.
R* | i=0
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4. If s > 0 and we modify the recipe for F*:7-4(R") by replacing the multiplier
(1+2°"y by 25 but continuing to take the summation over all integers i, then
we obtain the so-called homogeneous Triebel-Lizorkin space F5P9(R")
which contain equivalence classes of distributions modulo polynomials of
low enough degree. Only smoothness and not size determines whether a
function belongs to this homogeneous space.

7.67 (An Alternate Definition of the Besov Spaces) It turns out that the
Besov spaces B*74(R") arises from the variant of the recipe given in Paragraph

7.64 where the last two steps are modified as follows.
(b’) Multiply the i-th term in the sequence {Tju(x)} by (1 4+ 25') and compute
the L?-norm of the result. This gives a sequence of nonnegative numbers.

(¢’) Compute the £7-norm of that sequence.

l/q

00 q/p
Ju; e | ~ [Z (fa+2rmucorax) ]
Rn

I=—00

This amounts to reversing the order in which the two norms are computed. That
order does not matter when g = p; thus B* 7 7(R") = F*7P(R") with equivalent
norms. When g # p, Minkowski’s inequality for sums and integrals reveals that
in comparing the outcomes of steps (b) and (c), the larger norm and the smaller
space of functions arises when the larger of the indices p and g is used first. That
is,
{Fs:p.q(Rn) C BSPA(RY) ifg < p
BsP9(RY) ¢ FSPA(RY) ifg > p.

For fixed s and p the inclusions between the Besov spaces B*#'9(R") are the same
as those between £7 spaces, and the same is true for the Triebel-Lizorkin spaces
FsPa(RY).

Finally, the only link with the scale of fractional order Sobolev spaces and in
particular with the Sobolev spaces occurs through the Triebel-Lizorkin scale with
g = 2. We have

WoP(RY) = FSPAR) C FSP4(RY) ifg > 2
FSPa(RY) C FSP2(RY) = WSP(R') ifq < 2.

As another example, the trace of W™ P?(R**!) on R" is exactly the space
Bm-lpipp(Rry = Fm-U/Pip-P(RM), When p < 2, this trace space is included
in the space F™~1/?:P2(R") and thus in the space W"~1/7-P(R"). When p > 2,
this inclusion is reversed.
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7.68 REMARKS

1. Appropriate versions of Remarks 7.66 for the Triebel-Lizorkin spaces ap-
ply to the above characterization of the Besov spaces too. In particular,
modifying recipe item (b’) to use the multiplier 25 instead of 1 + 2° re-
sults in a homogeneous Besov space B*P4(IR") of equivalence classes of
distributions modulo certain polynomials. Again membership in this space
depends only on smoothness and not on size.

2. The K-version of the definition of B*#9(R") as an intermediate space
obtained by the real method is a condition on how well u € LP(R") can
be approximated by functions in W™?(IR") for some integer m > s. But
the J-form of the definition requires a splitting of u into pieces u; with
suitable control on the norms of the functions u; in the spaces L7 (R") and
w™-P(IR"). The Fourier splitting also gives us pieces T;u for which we can
control those two norms, and these can serve as the pieces u;. Conversely,
if we have pieces u; with suitable control on appropriate norms, and it we
apply Fourier decomposition to each piece, we would find that the norms
|T;u; ||, are negligible when | j —i| is large, leading to appropriate estimates
for the norms || T;u]l,.

7.69 (Extensions for General Domains) Many of the properties of the scales
of Besov spaces, spaces of Bessel potentials, and Triebel-Lizorkin spaces on
R"* can be extended to more general domains © via the use of an extension
operator. Rychkov [Ry] has constructed a linear total extension operator & that
simultaneously and boundedly extends functions in F*”-9(2) to F*74(R") and
functions in B*#4(Q2) to B* 7 4(R"*) provided €2 satisfies a strong local Lipschitz
condition. The same operator & works for both scales, all real s, and all p > 0,
g > 0; it is an extension operator in the sense that £u|q = u in 2'(2) forevery u
in any of the Besov or Triebel-Lizorkin spaces defined on €2 as restrictions in the
sense of 9'(2) of functions in the corresponding spaces on ",

The existence of this operator provides, for example, an intrinsic characterization
of B*P4(2) in terms of that for B*:79(R") obtained in Theorem 7.47.

Wavelet Characterizations

7.70 'We have seen above how membership of a function u in a space B*79(R*)
can be determined by the size of the sequence of norms || T;u||,, while its mem-
bership in the space F*:74(R") requires pointwise information about the sizes of
the functions T;u on R". Both characterizations use the functions T;u of a dyadic
decomposition of u defined as inverse Fourier transforms of products of & with
dilates of a suitable smooth function ¢. We conclude this chapter by describing
how further refining these decompositions to the level of wavelets reduces ques-
tions about membership of u in these smoothness classes to questions about the
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sizes of the (scalar) coefficients of u in such decompositions. These coefficients
do form a Banach lattice.

This contrasts dramatically with the situation for Fourier transforms of L? func-
tions with 1 < p < 2, where these transforms fail to form a lattice.

7.71 (Wavelet Analysis) An analyzing wavelet is a nontrivial function on
R" satisfying some decay conditions, some cancellation conditions, and some
smoothness conditions. Different versions of these conditions are appropriate in
different contexts. Two classical examples of wavelets on R are the following:

(a) The basic Haar function s given by

1 if<x<1/2
h(x)={—1 ifl1/2<x<1
0 otherwise.

(b) A basic Spannon wavelet S defined as the inverse Fourier transform of the
function S satisfying

2 1 ifn <|yl<2r
5(y) = {
o) 0 otherwise.

The Haar wavelet has compact support, and a fortiori decays extremely rapidly.
The only cancellation condition it satisfies is that fR ch(x) dx = 0forall constants
¢. Tt fails to be smooth, but compensates for that by taking only two nonzero values
and thus being simple to use numerically.

The Shannon wavelet does nor have compact support; instead it decays like 1/|x],
that is, at a fairly slow rate. However, it has very good cancellation properties,
since

/ x"S(x)dx =0 for all nonnegative integers m.
R

(These integrals are equal to constants times the values at y = 0 of derivatives of
S(y). Since S vanishes in a neighbourhood of 0, those derivatives all vanish at 0.)
Also, S € C*(RR) and even extends to an entire function on the complex plane.

To get a better balance between these conditions, we will invert the roles of
function and Fourier transform from the previous section, and use below a wavelet
¢ defined on R" as the inverse Fourier transform of a nontrivial smooth function
that vanishes outside the annulus where 1/2 < |y| < 2. Then ¢ has all the
cancellation properties of the Shannon wavelet, for the same reasons. Also ¢
decays very rapidly because é is smooth and ¢ is smooth because ¢> decays
rapidly. Again the compact support of ¢ makes ¢ the restriction of an entire
function.

Given an analyzing wavelet, w say, we consider some or all of its translates
mapping x to w(x — k) and some or all of its (translated) dilates, mapping x to
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w(2"x — h). These too are often called wavelets. Translation preserves L? norms;
dilation does not do so, except when p = oo; however, we will use the multiple
2r/2(2" x — h) to preserve L2 norms.

If we apply the same operations to the complex exponential that maps x to ¥ on
R, we find that dilation produces other such exponentials, but that translation just
multiplies the exponential by a complex constant and so does not produce anything
really new. In contrast, the translates of the basic Haar wavelet by integer amounts
have disjoint supports and so are orthogonal in L?(R). A less obvious fact is that
translating the Shannon wavelet by integers yields orthogonal functions, this time
without disjoint supports.

In both cases, dilating by factors 2, where i is an integer, yields other wavelets
that are orthogonal to their translates by 2 times integers, and these wavelets are
orthogonal to those in the same family at other dyadic scales. Moreover, in both
examples, this gives an orthogonal basis for L*(R).

Less of this orthogonality persists for wavelets like the one we called ¢ above.
But it can still pay to consider the waveler transform of a given function u which
maps positive numbers a and vectors 4 in R* to

1 —h
= ) u(x)p (%) dx.

For our purposes it will suffice to consider only those dilations and translates map-
ping x to ¢; 1 (x) = 2"/2¢(2'x — k), where i runs through the set of integers, and
k runs through the integer lattice in R*. Integrating u against such wavelets yields
wavelet coefficients that we can index by the pairs (i, k) and use to characterize
membership of # in various spaces.

For much more on wavelets, see [Db].
7.72 (Wavelet Characterization of Besov Spaces) Let ¢ be a function in .%¥
whose Fourier transform ¢ satisfies the following two conditions:
() ¢(») =0if ly| < 1/20r|y| > 2.
(i1) |<?)(y)| >c¢>0if3/5 < |y| <5/3.
Note that the conditions on ¢ imply that

f P(x)¢(x)dx =0
Rn

for any polynomial P.

Also, it can be shown (see [FTW, p. 54]) that there exists a dual function ¢ € %
satisfying the same conditions (i) and (ii) and such that

> 62y V(27 'y)dy =1 forally #0.

i=—00
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Let Z denote the set of all integers. For each i € Z and each n-tuple
k= (ki, ..., k,) € Z" we define two wavelet families by using dyadic dilates and
translates of ¢ and ¥:

bin(x) =272 27 x —k)  and  Yix(x) =272y Q2'x — k).

Note that the dilations in these two families are in opposite directions and that ¢; «
and ¥; ; have the same L? norms as do ¢ and ¥ respectively. Moreover, for any
polynomial P,

/ P(x)¢ix(x)dx = 0.

Let I denote the set of all indices (i, k) such that i € Z and k € Z", and let #
denote the wavelet family {¢;« : (i, k) € I}. Given a locally integrable function
u, we define its wavelet coefficients c;  (#) with respect to the family % by

cik(u) = / u(x)i i (x) dx,
and consider the wavelet series representation

u= Z cik )ik, (26)

(i.k)el

The series represents u modulo polynomials as all its terms vanish if u is a
polynomial.

It turns out that # belongs to the homogeneous Besov space B4 (R") if and only
if its coefficients {c,-'k(u) (k) el } belong to the Banach lattice on I having

norm
l/q

- a/p
3 l:zi(s+"[1/2—1/l?]) >l k|p} . @7

i=—o00 kezZn

The condition for membership in the ordinary Besov space B*P4(R") is a bit
more complicated. We use only the part of the wavelet series (26) with i > 0 and
replace the rest with a new series

Z i)Wy,

keZ"

where Wi (x) = W(x — k) and ¥ is a function in . satisfying the conditions
W(y) =0if|y] > 1 and [¥(y)| > ¢ > 0if |y| < 5/6. Again there is a dual such
function ¢ with the same properties such that the coefficients cx (1) are given by

ck(u):f u(x)or(x)dx.
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We have u € B*P9(R") if and only if the expression

1/q

I/p 0o q/p
(Z |ck|P) +1 2 [2””"“/2“‘“’1) ) |c.-,k|”} (28)

keZ" i=0 keZ"

is finite, and this expression provides an equivalent norm for B*:7-4(R").

Note that, in expressions (27) and (28) the part of the recipe in item 7.66 involving
the computation of an LP-norm seems to have disappeared. In fact, however, for
any fixed value of the index i, the wavelet “coefficients” c; 4 are actually values of
the convolution u * ¢; o taken at points in the discrete lattice {2'k}, where the index
i is fixed but k varies. This lattice turns out to be fine enough that the L?-norm of
u * ¢; o is equivalent to the £”-norm over this lattice of the values of u * ¢; o.

7.73 (Wavelet Characterization of Triebel-Lizorkin Spaces) Membership
in the homogeneous Triebel-Lizorkin space F*#9(IR") is also characterized by a
condition where only the sizes of the coefficients c; , matter, namely the finiteness

of
0o N
(Z [2i(x+"/2)2|ci,k|)(i,k:| )

M =
i=—00 ke PR

where x;; is the characteristic function of the cube 2ikj < xj < 2 (k;+),
(1 £ j < n). At any point x in R" the inner sum above collapses as fol-
lows. For each value of the index i the point x belongs to the cube corresponding
to i and k for only one value of k, say k; (x). This reduces matters to the finiteness

of
00 t/q
( Z [2i(s+n/2) |Ci,k,-(.)|]q>

i=—00
p.R"

We refer to section 12 in [FJ] for information on how to deal in a similar way with
the inhomogeneous space F* 74 (R").

Recall that in the discrete version of the J-method, the pieces u; in suitable
splittings of u are not unique. This flexibility sometimes simplified our analysis,
for instance in the proofs of (trace) imbeddings for Besov spaces. The same is
true for the related idea of atomic decomposition, for which we refer to [FJW] and
[FI] for sharper results and much more information.



8

ORLICZ SPACES AND
ORLICZ-SOBOLEV SPACES

Introduction

8.1 In this final chapter we present results on generalizations of Lebesgue and
Sobolev spaces in which the role usually played by the convex function ¢? is
assumed by a more general convex function A(#). The spaces L 4 ($2), called Orlicz
spaces, are studied in depth in the monograph by Krasnosel’skii and Rutickii [KR]
and also in the doctoral thesis by Luxemburg [Lul], to either of which the reader
is referred for a more complete development of the material outlined below. The
former also contains examples of applications of Orlicz spaces to certain problems
in nonlinear analysis.

Itis of some interest to note that a gap in the Sobolev imbedding theorem (Theorem
4.12) can be filled by an Orlicz space. Specifically, if mp = r and p > 1, then for
suitably regular 2 we have

W) - LU(Q), p=gq <o, but  W™P(Q) A L7(Q);

there is no best, (i.e., smallest) target L”-space for the imbedding. In Theorem
8.27 below we will provide an optimal imbedding of W™-? (£2) into a certain Orlicz
space. This result is due to Trudinger [Td], with precedents in [Ju] and [Pz]. There
has been much further work, for instance [Ms] and [Ad1].

Following [KR], we use the class of “N-functions” as defining functions A for
Orlicz spaces. This class is not as wide as the class of Young’s functions used in
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[Lu]; for instance, it excludes L!(§2) and L>°(£2) from the class of Orlicz spaces.
However, N-functions are simpler to deal with, and are adequate for our purposes.
Only once, in Theorem 8.39 below, do we need to refer to a more general Young’s
function.

If the role played by L”(£2) in the definition of the Sobolev space W™ P () is
assigned instead to the Orlicz space L4(£2), the resulting space is denoted by
W™ L4(R2) and is called an Orlicz-Sobolev space. Many properties of Sobolev
spaces have been extended to Orlicz-Sobolev spaces by Donaldson and Trudinger
[DT]. We present some of these results in this chapter.

N-Functions

8.2 (Definition of an N-Function) Let a be a real-valued function defined
on [0, oo) and having the following properties:

@ a) =0,a() >0ifr > 0, lim;_,oc a(t) = oc;

(b) a is nondecreasing, that is, s > ¢ implies a(s) > a(¢);

(c) a is right continuous, that is, if t > 0, then lim;_, ;. a(s) = a(z).
Then the real-valued function A defined on [0, c0) by

Ar) = / a(t)dr (1)
0

is called an N-function.
Itis not difficult to verify that any such N-function A has the following properties:
(i) A is continuous on [0, 00);
(ii) A is strictly increasing that is, s > ¢ > O implies A(s) > A(t);
(iii) A is convex, thatis, if 5,7 > Oando < A < 1, then

Ars + (1 = M)1) < AAG) + (1 = VMA@R);

@iv) lim,, 0 A(t)/t =0, and lim,_,, A(?)/t = 00;
(v) ifs >t > 0, then A(s)/s > A(t)/t.

Properties (i), (iii), and (iv) could have been used to define an N-function since
they imply the existence of a representation of A in the form (1) with a having the
properties (a)—(c).

The following are examples of N-functions:

AQt) =17, 1< p<oo,
Aty =¢" —1t -1,
A@) =" — 1, 1 <p<oo,

A@W) = 1+ 1) log(l +1) —t.
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Evidently, A(¢) is represented by the area under the grapho = a(r) fromr = 0to
T =t as shown in Figure 9. Rectilinear segments in the graph of A correspond to
intervals on which a is constant, and angular points on the graph of A correspond
to discontinuities (i.e., vertical jumps) in the graph of a.

T s L

/ Alr)

8.3 (Complementary N-Functions) Given a function a satisfying conditions
(a)—(c) of the previous Paragraph, we define

~y

Fig. 9

a(s) = sup t.
a(t)<s
It is readily checked that the function a so defined also satisfies (a)—(c) and that a
can be recovered from a via
a(t) = sup s.

a(s)<t

If a is strictly increasing then @ = a~!. The N-functions A and A given by

A(t):/ a(z)dr, A(s)zfa(a)da
0 0

are said to be complementary; each is the complement of the other. Examples of
such complementary pairs are:
tP sP

y 1 1
A = —, Als) = —, l<p<oo, —+—==1,
p p p P
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and )
Ay =e —t—1,  A(s)=(1+s)log(l +5)—s.

A(s) is represented by the area to the left of the graph o = a(t) (or, more correctly,
T = a(o)) from 6 = 0to ¢ = s as shown in Figure 10. Evidently, we have

st < A(t) + A(s), )

which is known as Young’s inequality (though it should not be confused with
Young’s inequality for convolution). Equality holds in (2) if and only if either
t =a(s) or s = a(r). Writing (2) in the form

A(s) > st — A®t)
and noting that equality occurs when ¢ = a(s), we have
A(s) = maox(st — A(1)).
=

This relationship could have been used as the definition of the N-function A
complementary to A.

hhhhh ag =alt)

T =alo)

.-'-\ (5)

Ny

Fig. 10

Since A and A are strictly increasing, they have inverses and (2) implies that for
every t > (}

AT AT < A(ATT D) + A(ATN) = 20,

On the other hand, A(r) < ra(t), so that, considering Figure 10 again, we have

foreveryt > 0,
A (@) < @t = A(@1). (3)
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Replacing A(¢) by ¢ in inequality (3), we obtain
~ t
Al ——— ) < t.
( A7(@) )

t<ATTOATI0) < 2t 4)

Therefore, for any ¢ > 0,

8.4 (Dominance and Equivalence of N-Functions) We shall require certain
partial ordering relationships among N-functions. If A and B are two N-functions,
we say that B dominates A globally if there exists a positive constant k such that

A(t) < B(kt) (5)

holds for all r > 0. Similarly, B dominates A near infinity if there exist positive
constants fg and k such that (5) holds for all ¢ > #75. The two N-functions A and
B are equivalent globally (or near infinity) if each dominates the other globally
(or near infinity). Thus A and B are equivalent near infinity if there exist positive
constants fy, k1, and ky, such that if r > #y, then B(kjt) < A(t) < B(kat). Such
will certainly be the case if

If A and B have respective complementary N-functions Aand B, then B dominates
A globally (or near infinity) if and only if A dominates B  globally (or near infinity).
Similarly, A and B are equivalent if and only if A and B are.

8.5 If B dominates A near infinity and A and B are not equivalent near infinity,
then we say that A increases essentially more slowly than B near infinity. This is
the case if and only if for every positive constant k

. Alkr)
lim —— =
t—o B(t)
The reader may verify that this limit is equivalent to
BT'(t) _
t—>oo A~ 1([)

Let | < p < oo and let A, denote the N-function

tP
A,,(t):;, 0<t <o0.
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If 1 < p < g < oo, then A, increases essentially more slowly than A, near
infinity. However, A, does not dominate A, globally.

8.6 (The A, Condition) An N-function is said to satisfy a global A,-
condition if there exists a positive constant k such that for every ¢ > 0,

AQ2t) <kA(1). (6)

This is the case if and only if for every r > 1 there exists a positive constant
k = k(r) such that for all r > 0,

A@rt) < kA(r). )

Similarly, A satisfies a Ay condition near infinity if there exists o > 0 such that
(6) (or equivalently (7) with » > 1) holds for all r > f,. Evidently, #y may be
replaced with any smaller positive number ¢, forif f; < ¢ < 1y, then

Alrt) < A(rty)
A(ty)

A(t).

If A satisfies a Aj-condition globally (or near infinity) and if B is equivalent to A
globally (or near infinity), then B also satisfies such a A,-condition. Clearly the
N-function A,(t) = t7/p, (1 < p < o0), satisfies a global A,-condition. It can
be verified that A satisfies a Aj-condition globally (or near infinity) if and only if
there exists a positive, finite constant ¢ such that

%ta(t) <A@ <ta(t)

holds for all t > 0 (or for all # > 15 > 0), where A is given by (1).

Orlicz Spaces

8.7 (The Orlicz Class K 4(§2)) Let Q be a domain in R" and let A be an
N-function. The Orlicz class K 4(S2) is the set of all (equivalence classes modulo
equality a.e. in 2 of) measurable functions u defined on €2 that satisfy

f A(u(x)]) dx < oo.
Q

Since A is convex K 4(£2) is always a convex set of functions but it may not be
a vector space; for instance, there may exist u € K4(2) and A > O such that
Au & K4 (R2).
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We say that the pair (A, 2) is A-regular if either
(a) A satisfies a global A,-condition, or
(b) A satisfies a Aj-condition near infinity and €2 has finite volume.

8.8 LEMMA K4(f2) is a vector space (under pointwise addition and scalar
multiplication) if and only if (A, ) is A-regular.

Proof. Since A is convex we have:
(i) Au € K4(2) providedu € K4(2) and |A| < 1, and

(ii) if u € K4(£2) implies that Au € K4(2) for every complex A, then
u,v € Kp(82) implies u + v € K4(2).

It follows that K 4(£2) is a vector space if and only if Au € K4(Q2) whenever
u € Kq(2) and |A| > 1.

If A satisfies a global As-condition and |A| > 1, then we have by (7) foru € K ()

f A(JAu(0)]) dx < k(l)»l)f Alu(x)|)dx < oo.
Q Q

Similarly, if A satisfies a A,-condition near infinity and vol(2) < oo, we have for
u € Ka(R2),|A] > 1, and some 1y > 0,

/ A(Aux)|)dx = (/ —|—/ )A(IAu(x)|)dx
Q {xeQ|u(x)|=t) {xeQ|u(x)|<ty}

< k(lkl)/ A(|Au(x)]) dx + A(|Alf)vol(R) < oo.
Q

In either case K 4(£2) is seen to be a vector space.

Now suppose that (A, €2) is not A-regular and, if vol(2) < o¢, that fy > 0 is
given. There exists a sequence {f;} of positive numbers such that

(i) AQ2j) > 27A(1)), and
(ii) t; > tp > 0if vol(Q2) < oo.

Let {2} be a sequence of mutually disjoint, measurable subsets of Q such that

[y Ae) if vol(Q) = oo
vol(s2); = {A(to)vol(JQ)/[ZjA(tj)] if vol(R) < oo,

Let

I ifx e Qj
"O=10 ifren-(US9).
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Then -
f Al dx =Y At)vol();
Q =
_ )1 if vol(2) = oo
] A(t)vol(2) if vol(R2) < oo.
But

/ A12u())) dx > Y 2 A(t))vol(Q); = 0.
o :

j=1

Thus K 4(2) is not a vector space.

8.9 (The Orlicz Space L 4(£2)) The Orlicz space L 4(S2) is the linear hull of
the Orlicz class K 4 (), that is, the smallest vector space (under pointwise addition
and scalar multiplication) that contains K 4(2). Evidently, L4(£2) contains all
scalar multiples Au of elements u € K4(€2). Thus K4(2) C L4(£2), these sets
being equal if and only if (A, ) is A-regular.

The reader may verify that the functional

nuuA=nuum=inf{k>o :fA('“(")') del]
| [a(

is a norm on L4 (). Tt is called the Luxemburg norm. The infimum is attained.
In fact, if k decreases towards ||} 4 in the inequality

/A('”(x)l) dx <1, 8)
o k

we obtain by monotone convergence

/ A ('”(x)l) dx < 1. 9)
Q llaell o

Equality may fail to hold in (9) but if equality holds in (8), then k = ||ull 4.

8.10 THEOREM L () is a Banach space with respect to the Luxemburg
norm.
The completeness proof is similar to that for the L? spaces given in Theorem 2.16.
The details are left to the reader. We remark thatif 1 < p < ocoand A,(¢) =17/p,
then

LP(Q) = L4, (2) = K4, ().

Moreover, [lull 4,0 = p~/7 lull . q-
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8.11 (A Generalized Holder Inequality) If A and A are complementary
N-functions, a generalized version of Holder’s inequality

VQM(X)U(X)dx <2|lullaelvize (10)

can be obtained by applying Young’s inequality (2) to |u(x)|/ llull , and [v(x}|/ V]l 3
and integrating over £2.

The following elementary imbedding theorem is an analog for Orlicz spaces of
Theorem 2.14 for L? spaces.

8.12 THEOREM (AnImbedding Theorem for Orlicz Spaces) Theimbedding
Lp(§2) —> La(£2)

holds if and only if either
(a) B dominates A globally, or
(b) B dominates A near infinity and vol(£2) < oo.
Proof. If A(r) < B(kt) forallr > 0, and if u € Lg(£2), then

)| / <|u(x)|>
A d B d 1.
fg (knuu,;) o A T Rl

Thus u € Ls(2) and |lull4 < k|lullp.

If vol(Q) < o0, let f; = A™'((2vol(R))™'). If B dominates A near infinity,
then there exists positive numbers fy and k such that A(+) < B(kr) for r > 1.
Evidently, for r > ¢, we have

A(to)
B(kn)

A(?) < max {1, } B(kt) = k| B(kt).

If u € Lg(R2) is given, let Q' (u) = {x € Q : |[u(X)|/[2kik llullz] < #;} and
Q" (1) = Q — Q'(u). Then

o \2kik[ullg |l 3 o (u) () 2kk [|u 5
()|
dx +k / B( )d
2vol(9> 2w T o T ety )

! ()|
—2+5/ (||u||3> dr=l

Thus u € L4(2) and ||u|l 4 < 2kik |ullp.
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Conversely, suppose that neither of the hypotheses (a) and (b) holds. Then there
exist numbers #; > 0 such that

A(ty) = B(jt)), i=12,....

If vol(2) < oo, we may assume, in addition, that

1 1
=z~ B .
J vol(£2)

Let ; be a subdomain of £ having volume 1/B(j1;), and let

‘ _ jtj ifoQj
“J(")”{o ifx e Q- Q.

[ 4 (M> arz [ Bluhdr=1
Q J 2

so that ||u;] , = 1 but |u;],, > j. Thus L5(<2) is not imbedded in L (). B

Then

8.13 (Convergence in Mean) A sequence {u;} of functions in L 4(£2) is said
to converge in meantou € L4(82) if

lim / A(luj(x)—u(x)l)dx =0.
Q

joo

The convexity of A implies that for 0 < € < 1 we have

/A(|”j(x)—“(x)|)dx§e/ A(M) dx
@ Q

€

from which it follows that norm convergence in L 4 (€2) implies mean convergence.
The converse holds, that is, mean convergence implies norm convergence, if and
only if (A, Q) is A-regular. The proof is similar to that of Lemma 8.8 and is left
to the reader.

8.14 (The Space E4(£2)) Let E4(S2) denote the closure in L A() oi the
space of functions u which are bounded on §2 and have bounded support in . If
u € K4(£2), the sequence {u;} defined by

oy Jux) if lu(x)| < jand x| <, xe 11
uj(x) = {0 otherwise (i

converges a.e. on §2 to u. Since A(Ju(x) — u;(x)|) < A(Ju(x)]), we have by
dominated convergence that u; converges to u in mean in L4(<2). Therefore, if
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(A, Q) is A-regular, then E4(2) = Ka(2) = L4(2). If (A, ) is not A-regular,
then we have
EA(Q) C Ka(@) G LA(R)

so that E4(£2) is a proper closed subspace of L4(£2) in this case. To verify the
first inclusion above let u € E4(2) be given. Let v be a bounded function with
bounded support such that 0 < |lu — v||4, < 1/2. Using the convexity of A and
(9), we obtain

1 2u(x) — 2v(x)|
T2 20l fQA(|2u(x) —2v(x)|)dx < /QA (——qu ol ) dx <1,

whence 2u — 2v € K4(2). Since 2v clearly belongs to K4(€2) and K 4(£2) is
convex, we have u = (1/2)(2u — 2v) + (1/2)(2v) € K4(82).

8.15 LEMMA E,(Q) is the maximal linear subspace of K 4(£2).

Proof. Let S be a linear subspace of K4(2) and let u € S. Then Au € K4(2)
for every scalar A. If € > 0 and u; is given by (11), then u; /€ converges to u/e
in mean in L 4(£2) as noted in Paragraph 8.14. Hence, for sufficiently large values

of j we have
/A<Iuj(X)—u(X)|> dx <1
Q €

and therefore u; converges to u in normin L 4(£2). Thus § C E4(22). 1

8.16 THEOREM Let 2 have finite volume, and suppose that the N-function
A increases essentially more slowly than the N-function B near infinity. Then

Lp(2) —> E4(Q2).

Proof. Since Lg(2) — L4() is already established we need only show that
L(Q) C EA(R2). Since Lg(L2) is the linear hull of Kp(€2) and E4(S2) is the
maximal linear subspace of K 4(£2), it is sufficient to show that Au € K4(£2)
whenever u € Kp(£2) and A is a scalar. But there exists a positive number fy such
that A(|A|t) < B(t) forall + > ty. Thus

/ A(lAu(x)|)dx = (/ +f )A(l)»u(x)l)dx
Q {xeQiu(x) <t} {reQ|ulx)>1}
< A(|A|t0)v01(Q) —+—/ B(lu(x)l) dx < o0
Q

whence the theorem follows. 1
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Duality in Orlicz Spaces

8.17 LEMMA Given v € L3(S2), the linear functional F, defined by

F,(u) = /s; u(x)v(x)dx (12)
belongs to the dual space [L4(£2)]" and its norm || F, || in that space satisfies

ol < IF I < 21wl - (13)
Proof. It follows by Holder’s inequality (10) that

[Fo()| < 2 llull4 vz

holds for all u € L 4(£2), confirming the second inequality in (13).

To establish the other half of (13) we may assume that v # 0 in L3(£2) so that
|Fyll = K > 0. Let

< [ lv&)] )|l .
u(x)=|A< K )/ kv F0

0 ifv(x) =0.

If |ull 4 > 1, then for 0 < € < |luf|4 — 1 we have

i (o)) )
- A d Al ———1}d 1.
||un,.—ef9 () xzfg (nuuA—e x>

Letting € — 0+ we obtain, using (3),

el o §LA(|u(x)|)dx=LA(A(lvg)l)/wg)l) dx
</QA<'”§:)') dx = “;v“fgumv(x)dxs el
|Foll = sup |[Fy(u)| = || Fyll

This contradiction shows that |ju]|, < 1. Now
[
Nlull o <1 Q 1 Full

)]
A d 1. 14
/Q (nnn) ¥ = (19

so that
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Thus, vz < |F,|. 1

8.18 REMARK The above lemma also holds when F, is restricted to act on
E4(£2). To obtain the first inequality of (13) in this case take || F,]| to be the
norm of F, in [E4(£2)]’ and replace u in the above proof by x,u where x, is the
characteristic function of Q, = {x € Q : |x| < n and |u(x)| < n}. Evidently,
xnu belongs to E4(2), || x.ull4 < 1, and (14) becomes

~ lv(X)|>
n(x)A dx < 1.
/QX(X) (anu =

Since x,(x) increases to unity a.e. on £ as n — 0o, we obtain (14) again, and
lvll; < || Fyll as before.

8.19 THEOREM (The Dual of £4(£2)) The dual space of E4(Q) is iso-
morphic and homeomorphic to L 5 (€2).

Proof. We have already shown that any element v € L;(2) determines a
bounded linear functional F, via (12) on L4(£2) and also on E4(S2), and that
in either case the norm of this functional differs from |{v|| ; by at most a factor of
2. It remains to be shown that every bounded linear functional on E 4(£2) is of the
form F,, for some such v.

Let F € [E4(2)] be given. We define a complex measure A on the measurable
subsets § of Q having finite volume by setting

MS) = F(xs),

xs being the characteristic function of S. Since

N _/ L
/QA(l)(s(x)lA [Vol(S)D dr= [ o= (15)

£l
A~Y(1/vol(S))’
Since the right side tends to zero with vol(S), the measure A is absolutely contin-

uous with respect to Lebesgue measure, and so by the Radon-Nikodym Theorem
1.52, & can be expressed in the form

we have
A = I1FN lxsll4 =

A(S) =/v(x)dx,
S

for some v that is integrable on €. Thus

F(u):/u(x)v(x)dx
Q
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holds for measurable, simple functions u.

If u € E4(R), a sequence of measurable, simple functions #; can be found
that converges a.e. to u and satisfies |u;(x)| < |u(x)| on . Since |u;(x)v(x)]
converges a.e. to |u(x)v(x)|, Fatou’s Lemma 1.49 yields

‘f u(x)v(x)dx
Q

< sup/ lu; (x)v(x)| dx = sup | F(lu;lsgnv)|
VY J

< IFlsup Ju; |, < WFI s
J
It follows that the linear functional
F,(w) = / u(x)v(x)dx
Q

is bounded on E4(2) whence v € L;(2) by Remark 8.18. Since F, and F
assume the same values on the measurable, simple functions, a set that is dense
in E4() (see Theorem 8.21 below), they agree on E4(€2) and the theorem is
proved. 1

A simple application of the Hahn-Banach Theorem shows that if £ 4(£2) is a proper
subspace of L () (thatis, if (A, §2) is not A-regular), then there exists a bounded
linear functional F on L 4(£2) that is not given by (12) for any v € L;(£2). As an
immediate consequence of this fact we have the following theorem.

8.20 THEOREM (Reflexivity of Orlicz Spaces) L 4() is reflexive if and
only if both (A, ) and (A, 2) are A-regular.

We omit any discussion of uniform convexity of Orlicz spaces. This subject is
treated in Luxemburg’s thesis [Lu].

Separability and Compactness Theorems

We next generalize to Orlicz spaces the L? approximation Theorems 2.19, 2.21,
and 2.30.

8.21 THEOREM (Approximation of Functions in E 4(£2))
(a) Co(R) is dense in E4(£2).
(b) E4(S2) is separable.

(c) If J. is the mollifier of Paragraph 2.28, then for each u € E4(£2) we have
lime_04 Je ¥ = u in normin E4(£2).

(d) C°(R) is dense in E4(£2).

Proof. Part (a) is proved by the same method used in Theorem 2.19. In approx-
imating u € E 4(S2) first by simple functions we can assume that « is bounded on
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2 and has bounded support. Then a dominated convergence argument shows that
the simple functions converge in norm to u in E4(£2). (The details are left to the
reader.)

Part (b) follows from part (a) by the same proof given for Theorem 2.21.
Consider part (¢). If u € E4(£2), let u be extended to R" so as to vanish identically
outside Q. Let v € L3(£2). Then

/ (JE *u(x) — u(x))v(x) dx
Q

s/ J(y)dy/ u(x — €) — u@)lv()] dx
R# Q
sznvn;,,gfll AW |uey —ul| , o dy

yi=

by Holder’s inequality (10), where u., (x) = u(x —€y). Thus by (13) and Theorem
8.19,

f (JE *u(x) — u(x))v(x) dx
Q

I Je*xu —ullso= sup
ol o<1

52/ J(y) "”@"”HA.Q dy.
[yl=1

Given § > 0 we can find # € Co(2) such that jlu —itll4, o < 6/6. Clearly,
||uGy — Uy ”A,Q < 8/6 and for sufficiently small €, Iﬂéy — QHA o < 3/6 for every
y with |y| < 1. Thus ||Je xu —ull4 o < é and (c) is established.

Part (d) is an immediate consequence of parts (a) and (c). I

8.22 REMARK L ,() is not separable unless La(2) = Ea(S2), that is,
unless (A, ) is A-regular. A proof of this fact may be found in [KR] (Chapter
11, Theorem 10.2).

8.23 (Convergence in Measure) A sequence {u;} of measurable functions is
said to converge in measure on 2 to the function u provided that for each € > 0
and § > 0 there exists an integer M such that if j > M, then

vol({x € Q @ |uj(x) —u(x)| > €}) < 4.
Clearly, in this case there also exists an integer N such thatif j, k > N, then
vol({x € 1 |u;(x) —up(x)] = €}) < 4.
8.24 THEOREM Let  have finite volume and suppose that the N-function
B increases essentially more slowly than A near infinity. If the sequence {u;} is

bounded in L 4 (2) and convergent in measure on €2, then it is convergent in norm
in Lp(S2).
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Proof. Fix ¢ > Oandlet v;,(x) = (u;(x) — ux(x))/e. Clearly {v; s} is bounded
in L4(2); say || Vjk “ 4o < K. Now there exists a positive number to such that if

t > tg, then
1 t
Boy<-A[—).
0= (K)

Let§ = 1/[4B(%)] and set

B 1
Qj,k — {x cQ: |Uj,k(x)| > B : (2V01(Q)>} ‘

Since {u;} converges in measure, there exists an integer N such thatif j, k > N,
then vol(2);x < 8. Set

Q},k ={x € Qjx : |vjx(x)] > to}, Q;/k =Qjr - Q;k

For j,k > N we have

/B(lv,-,k(x)ndx: (/ +/ +/ )Buvj,k(x)ndx
Q Q-Q;x Q,,Ak Q;/k

vol() 1 [vj£(x)]
= 2vol) ' 2 /Q A ( K ) P OB =t

Hence ”u] — uy “B o < € andso {u;} convergesin Lp(2). 1

The following theorem will be useful when we wish to extend the Rellich-
Kondrachov Theorem 6.3 to imbeddings of Orlicz-Sobolev spaces.

8.25 THEOREM (Precompact Sets in Orlicz Spaces) Let 2 have finite
volume and suppose that the N-function B increases essentially more slowly than
A near infinity. Then any bounded subset S of L,(£2) which is precompact in
L'(R) is also precompact in Lz ().

Proof. Evidently L,(R2) — L(S) since  has finite volume. If {u;f} is a
sequence in S, then it has a subsequence {1} that convergesin L'(Q); say u; — u
in L1(2). Let €, 8 > 0. Then there exists an integer N such that if j > N, then
”uj — ””1.9 < €4. If follows that

vol({x €  : |u;(x) —u(x)| > €}) <4.

Thus {u;} converges to u in measure on 2 and hence also in Lg(R2). 1
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A Limiting Case of the Sobolev Imbedding Theorem

826 If mp = n and p > 1, the Sobolev Imbedding Theorem 4.12 provides no
best (i.e., smallest) target space into which W7 (2) can be imbedded. In this
case, for suitably regular €2,

wWmP(Q) - L1(Q), p<qg <o,
but (see Example 4.43)
W™P(Q) ¢ L™(Q).

If the class of target spaces for the imbedding is enlarged to contain Orlicz spaces,
then a best such target space can be found.

We first consider the case of bounded 2 and later extend our consideration to
unbounded domains. The following theorem was established by Trudinger [Td].
For other proofs see [B+] and [Ta]; for refinements going beyond Orlicz spaces
see [BW] and [MP].

8.27 THEOREM (Trudinger’s Theorem) Let Q be a bounded domain in
R satisfying the cone condition. Let mp = n and p > 1. Set

A(t) = exp(t"/"™™) — | = exp(t?/P7V) — 1. (16)
Then there exists the imbedding
W™P() — La(S2).

Proof. If m > 1 and mp = n, then W*P(Q) — W!*(Q). Therefore it is
sufficient to prove the theorem form =1, p=n > 1. Letu € CH(Q) N W' ()
(a set that is dense in W'"(Q2)) and let x € Q. By the special case m = 1 of
Lemma 4.15 we have, denoting by C a cone contained in 2, having vertex at x,
and congruent to the cone specifying the cone condition for €2,

Il = K (““”w + 2 [ 1o -y dy)
j=17¢
<K (Ilullm+Z/§21Dju(y)||x_y|l—ndy>_
j=1

We want to estimate the L*-norm |||}, for arbitrary s > 1. If v € L () (where
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(1/s) + (1/s") = 1), then

D;
[ et <k, (nulhf |v(x>|dx+2]/' lx”(y)'l',f’(f)'dydx>
Q Q . —

1
< K Jlully ||v||s/ (vol())'”*

lu(x)| (n=D/n
TR (/ fsprm e

D' n l/n
y / | Dju(y)l |v(x)|dydx '
alao lx—y|e=bis
By Lemma 4.64,if 0 <v < n,

1 K _
/ dy < 2 (vol(Q))1 wrm,
Q

lx — yl” n—v
Hence
f f Ol < Kzs(vol(SZ))l/(m)f lv(x)| dx
o lx =y Q
< Kas(vol()) " o),
Also,

|Djuy)|"lv(x)l 1 /s
f ’—(n_l)/xdydx S] [Dju()"dy vl /—'ﬁdx
aJe Ix—yl Q o lx —yl

n\ 1/
< ”D]uui ”U”sl (KZ(VOI(Q))I/ ) s
= K4 | Dyully vl (vol(s) ™.

It follows from these estimates that
1/s
/ lu(x)v(x) dx < Ky llully [vlly (vol(2)) /
Q

+Ka Y s" VD], vl (vol(s) .

j=1

Since s"~1/" > 1 and since WI"(2) = L'(), we now have

llull;, = sup

o f GV dx < Kss™ " (vol()” ull,.
vels (Q) s
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The constant K5 depends only on »n and the cone determining the cone condition
for . Setting s = nk/(n — 1), we obtain

ko .
f|u(x)|"’</("*“dx < vol(2) <_”_1> (Ks )™
Q n —

p X " (n—1)/n nk/(n—1)
= VOI(Q) (m) eKS |:n — 1] ”unln

Since /"D > ¢, the series Y, (l/k!)(k/e"/(”‘“)k converges to a finite sum
K6. Let K7 = max{l, K¢vol(£2)} and put

(n—1)/n
Kg = eK7K5 (m) ”ullln =Ky "u“l,n .

Then

lu(x)] ™/ =D Je < Yol®) k k<vol(Q) ko
o Kg - K7nk/(n—1) en/(n—l) K7 en/(n—l)

since K7 > 1 and nk/(n — 1) > 1. Expanding A(¢) in a power series, we now

obtain P
lu(x)| e ()™
[ a=gu [ () @

vol(Q) & ko\*
—_ —_— < ]
S kz:;k! (en/<"—1>) =

Hence u € L4(£2) and
”u”A =< KS = K9 ”u”m,p ’

where Kq¢ depends on n, vol(£2), and the cone C determining the cone condition
for 2. 1

8.28 REMARK Theimbedding established in Theorem 8.27 is “best possible”
in the sense that if there exist an imbedding of the form

Wo P (Q) — Lp(S),
then A dominates B near infinity. A proof of this fact for the case m = 1,

p = n > 1 can be found in [HMT]. The general case is left to the reader as an
exercise.
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Trudinger’s theorem can be generalized to fractional-order spaces. For results in
this direction the reader is referred to [Gr] and [P].

Recent efforts have identified non-Orlicz function spaces that are smaller than
Trudinger’s space into which W"7(2) can be imbedded in the limiting case
mp = n. See [MP] in this regard.

8.29 (Extension to Unbounded Domains) If 2 is unbounded and so (sat-
isfying the cone condition) has infinite volume, then the N-function A given by
(16) may not decrease rapidly enough at zero to to allow membership in L 4(£2)
of every u € W™?(Q) (where mp = n). Let ko be the smallest integer such that
ko > p — 1 and define a modified N-function Ay by

ko—1

1 .
Ao(r) = exp(t”/(”‘l)) - E ._'tjp/(p—1>‘
— ;!
j=0

Evidently Ay is equivalent to A near infinity so for any domain £ having finite
volume, L 4(£2) and L 4,(£2) coincide and have equivalent norms. However, Ag
enjoys the further property that for0 < r < 1,

Ao(rr) < TRPIP=D Ag(r) < rP Ao(2). a7

We show that if mp = n, p > 1, and € satisfies the cone condition (but may be
unbounded), then
WP (Q) = L, ().

Lemma 4.22 implies that even an unbounded domain €2 satisfying the cone condi-
tion can be written as a union of countably many subdomains €2; each satisfying
the cone condition specified by a cone independent of j, each having volume
satisfying

0<K; < VO](Q]') < K,

with K and K, independent of j, and such that any M + 1 of the subdomains
have empty intersection. It follows from Trudinger’s theorem that

el ag. 0, < K3 el p.0;

with K3 independent of j. Using (17) with r = M/? ||u||_ p., 1llm.p.q and the
finite intersection property of the domains €2;, we have

/A ( |u(x)] ) / ( |u(x) )d
0 X
Q Ml/pK3 ”u”m,p,Q Ml/pK3 ”u“m p.Q

 ful] 0

<ZMnun

me



Orlicz-Sobolev Spaces 281

Hence [lull 4, 0 < MVYPK, el o @s required.

We remark that if kg > p — 1, the above result can be improved slightly by using
in place of A¢ the N-function max{z?, A¢(s)}.

Orlicz-Sobolev Spaces

8.30 (Definitions) For a given domain 2 in R” and a given N-function A
the Orlicz-Sobolev space W™ L 4(2) consists of those (equivalence classes of )
functions u in L 4(€2) whose distributional derivatives D“u also belong to L 4(£2)
for all @ with || < m. The space W™ E 4 (R2) is defined in an analogous fashion. It
may be checked by the same method used for ordinary Sobolev spaces in Chapter
3 that W™ L 4(€2) is a Banach space with respect to the norm

Nullma = Netlmao= max [D%ll,q,
0<|o|<m

and that W™ E 4(R2) is a closed subspace of W™ L 4(2) and hence also a Banach
space with the same norm. It should be kept in mind that W™ E 4 (2) coincides with
W"L4(Q)ifand only if (A, ) is A-regular. If 1 < p < oo and A,(¢) = 17, then
WML, () = WNE, (2) = W™P(), the latter space having norm equivalent
to those of the former two spaces.

As in the case of ordinary Sobolev spaces, W' L 4(£2) is taken to be the closure
of Cg°(£2) in W™ L 4(£2). (An analogous definition for W' E 4 (§2) clearly leads to
the same spaces in all cases.)

Many properties of Orlicz-Sobolev spaces are obtained by very straightforward
generalization of the proofs of the same properties for ordinary Sobolev spaces. We
summarize these in the following theorem and refer the reader to the corresponding
results in Chapter 3 for the method of proof. The details can also be found in the
article by Donaldson and Trudinger [DT].

8.31 THEOREM (Basic Properties of Orlicz-Sobolev Spaces)
(a) W™ E ,(S2) is separable (Theorem 3.6).

(b) If (A, ) and (A, Q) are A-regular, then W E4(Q2) = W™ L4(Q) is
reflexive (Theorem 3.6).

(c) Each element F of the dual space [W™ E 4(2)]' is given by

Fu) = Z /D“u(x)va(x)ds
Q

O<ler|<m

for some functions v, € L3(2),0 < || < m (Theorem 3.9).
(d) C(Q)NW™E4(2) is dense in W™ E 4(82) (Theorem 3.17).
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(e) If  satisfies the segment condition, then C® () is dense in W"E, ()
(Theorem 3.22).

(f) C°(R") is dense in W™ E4(R"). Thus W' Lo(R") = W™E4(R") (Theo-
rem 3.22).

Imbedding Theorems for Orlicz-Sobolev Spaces

8.32 Imbedding results analogous to those obtained for the spaces W™ (R2) in
Chapters 4 and 6 can be formulated for the Orlicz-Sobolev spaces W™ L 4(£2) and
W™ E4(82). The first results in this direction were obtained by Dankert [Da]. A
fairly general imbedding theorem along the lines of Theorems 4.12 and 6.3 was
presented by Donaldson and Trudinger [DT] and we develop it below.

As was the case with ordinary Sobolev spaces, most of these imbedding results
are obtained for domains satisfying the cone condition. Exceptions are those
yielding (generalized) Holder continuity estimates; these require the strong local
Lipschitz condition. Some results below are proved only for bounded domains.
The method used in extending the analogous results for ordinary Sobolev spaces
to unbounded domains does not seem to extend in a straightforward manner when
general Orlicz spaces are involved. In this sense the imbedding picture we present
here is incomplete. Best possible Orlicz-Sobolev imbeddings, involving a careful
study of rearrangements, have been found recently by Cianchi [Ci]. We settle here
for results that follow by methods we used earlier for imbeddings of W™ 7 (Q2) and
for weighted spaces; that is also how we proved Trudinger’s theorem.

8.33 (A Sobolev Conjugate) We concern ourselves for the time being with
imbeddings of WL A(S); the imbeddings of W™ L 4(£2) are summarized in The-
orem 8.43. As usual, 2 is assumed to be a domain in R".

Let A be an N-function. We shall always suppose that
1 4-1
AT (D)
/0‘ W dt < o0, (18)

replacing, if necessary, A by another N-function equivalent to A near infinity. (If
£2 has finite volume, (18) places no restrictions on A from the point of view of
imbedding theory since N-functions equivalent near infinity determine identical
Orlicz spaces in that case.)

Suppose also that

tin+)/n

o0 -1
/ u dt = o0. 19
1

For instance, if A() = A,(t) =7, p > 1, then (19) holds precisely when p < n.
With (19) satisfied, we define the Sobolev conjugate N-function A, of A by setting

_ “ATY(D)
A*l(z)=/0 e 4T t>0. (20)
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It may readily be checked that A, is an N-function. If | < p < n, we have,
setting ¢ = np/(n — p) (the normal Sobolev conjugate exponent for p),

Ap(t) = q" " 1p 1P A, ().

It is also readily seen for the case p = n that A,.(t) is equivalent near infinity
to the N-function ¢/ — ¢ — 1. In [Ci] a different Sobolev conjugate is used; it is
equivalent when p = n to the N-function in Trudinger’s theorem.

834 LEMMA Letuc WIL‘CI () and let f satisfy a Lipschitz condition on R.
If g(x) = f(lu(x)]), then g € W\ (Q) and
Djg(x) = f'(lu(x)))sgnu(x) - Dju(x).

Proof. Since |u| € W,i! (Q2) and D;|u(x)| = sgnu(x) - Dju(x) it is sufficient to
establish the lemma for positive, real-valued functions u so that g(x) = f (u (x))).
Let ¢ € 2(2) and let {e; };.’zl be the standard basis in R*. Then

_/ F(u()) D (x) dx = —lim/ Flugy) PO —he)
Q =0 Jo h

/ fu(x + hep)) — f(u(x))

= lim
h—0

p ¢(x)dx

Y u(x + hej) — u(x)
_mfﬂg(x,h) z é(x) dx,

where, since f satisfies a Lipschitz condition, for each 4 the function Q(-, ) is
defined a.e. on 2 by

Flux + hep)) — f(ux)

Q(x,h) = u(x + he;) — ulx) if u(x + hej) # u(x)
f(u@)) otherwise.

Moreover, [|Q(-, ) |lo.o < K for some constant K independent of . A well-

known theorem in functio_nal analysis tells us that for some sequence of values
of A tending to zero, Q(:, h) converges to f’(u(-)) in the weak-star topology of
L>®(£2). On the other hand, since u € W' ! (supp (¢)) we have

. u(x+he;) —u(x)
lim
h—0 h

¢(x) = Dju(x) - ¢(x)

in L' (supp (¢)). It follows that

- /Q fu@))Djp(x)dx = fg f'(u(x)) Dju(x) ¢(x)dx,
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which implies the lemma. 1

8.35 THEOREM (Imbedding Into an Orlicz Space) Let Q2 be bounded
and satisfying the cone condition in R". If (18) and (19) hold, then

WILA(Q) - La (),

where A, is given by (20). Moreover, if B is any N-function increasing essentially
more slowly than A, near infinity, then the imbedding

WILA(Q) > Lg(Q)

(exists and) is compact.
Proof. The function s = A,(¢) satisfies the differential equation

ds
A—l e (n+1)/n’ 21
(s) Pt 2D
and hence, since s < A~ (s)A~1(s) (see (4)),
d—: < s A71(s).

Therefore o (1) = (A*(t))("_l)/ " satisfies the differential inequality

do n—1-_ n/n—
— <A e@)”™). (22)

Letu € W!L () and suppose, for the moment, that u is bounded on £2 and is not
zero in L 4(€2). Then fQ A (lu(x)|/A) dx decreases continuously from infinity to

zero as A increases from zero to infinity, and, accordingly, assumes the value unity
for some positive value K of A. Thus

fA*(’”(x)l) dx=1, K =lull, . (23)
Q K i

Let f(x) = o (lu(x)|/K). Evidently,u € W"'() and o is Lipschitz on the range
of [u|/K so that, by the previous lemma, f belongsto W!!(2). By Theorem 4.12
we have W 1(Q) — LY=D(Q) and so

W nyn—1y < Kt (Z “DjUnl + “f“l)
j=1

"1
' [Z;E/Qo’(lug”)IDju(x)ldx+/Qa<lu§;)|) dx].
J:

(24)
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By (23) and Holder’s inequality (10), we obtain

@y N
([ ()
2K; &
< 71 o ('”')“ |Du||A+K1/ (@) dx.  (25)
Making use of (22), we have
= (G

K K .

A

1-1
B N Y e

j=1

n—1

A n

o y

Suppose A > 1. Then

71
fA(A (A*<|u<x>|/1<))) dxgl/A*('“(x)'> S
o A rJo K X
,<Iu|)
o" —
K

Let g(t) = A.(t)/t and h(¢) = o (t)/t. Itis readily checked that & is bounded on
finite intervals and lim,_, o, g(#)/h(r) = oco. Thus there exists a constant #; such

that 2(r) < g(t)/(2K) if t > 1. Putting K» = K3 supy,,, #(f), we have, for all
t>0,

Thus

Pty 26)

A n

a(t)<LA (t)+&t
2K, K,
Hence
K}fg(lu(x)l) dxfl/A*(lu(x)|)d +_/ ()| dx
Q K 2 Ja
1
§+—|IuIIA, 27

where K3 = 2K ||1]|; < oo since €2 has finite volume.
Combining (25)-(27), we obtain

2K1 1 K3
1= —K—(n =D llully 4+ 2 + X llull 4,
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so that
lully, = K < Kqllully 4, (28)

where K4 depends only on n, A, vol(€2), and the cone determining the cone
condition for £2.

To extend (28) to arbitrary u € W' L () let

| ()] if lu(x)| <k

ue(x) = {ksgnu(x) if ()| > k. (29)

Clearly u; is bounded and it belongs to W!L,(2) by the previous lemma.
Moreover, |luxl 4, increases with k but is bounded by K llull4. Therefore,
limy, o0 lurll4, = K exists and K < K4 ||u||; 4. By Fatou’s lemma 1.49

/ A, ('"(x)|> dx < lim / A, ('“"(x”) dx <1
Q K k—oo Jo K

whence u € L4, (2) and (28) holds.

Since 2 has finite volume we have

WILL(Q) — WH(Q) — LY(Q),

the latter imbedding being compact by Theorem 6.3. A bounded subset of
W!L () is boundedin L 4, (£2) and precompact in L'(2), and hence precompact
in Lp(£2) by Theorem 8.25 whenever B increases essentially more slowly than
A, near infinity. 1

Theorem 8.35 extends to arbitrary (even unbounded) domains €2 provided W is
replaced by Wy.

8.36 THEOREM Let Q2 be an arbitrary domain in R". If the N function A
satisfies (18) and (19), then

W(;nLA(Q) - LA*(Q).
Moreover, if € is a bounded subdomain of €2, then the imbedding
Wy La(82) = Lg(S0)

exists and is compact for any N-function B increasing essentially more slowly
that A, near infinity.

Proof. If u € W' L 4(S), then the function f in the proof of Theorem 8.35 can
be approximated in W'!(Q) by elements of C°(2). By Sobolev’s inequality
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(Theorem 4.31), (24) holds with the term || f||; absent from the right side. There-
fore (27) is not needed and the proof does not require that 2 have finite volume.
The cone condition is not required either, since Sobolev’s inequality holds for all
u € C(R"). The compactness arguments are similar to those above. 1

8.37 REMARK Theorem 8.35 is not optimal in the sense that for some A, L4,
is not necessarily the smallest Orlicz space in which W' L 4(2) can be imbedded.
For instance, if A(t) = A,(t) = t"/n, then, as noted earlier, A.(¢) is equivalent
near infinity to ¢’ — r — 1, an N-function that increases essentially more slowly
near infinity than does exp(r"/*~D) — 1. Thus Theorem 8.27 gives a sharper
result than Theorem 8.35 in this case. In [DT] Donaldson and Trudinger state
that Theorem 8.35 can be improved by the methods of Theorem 8.27 provided A
dominates near infinity every t” with p < n, but that Theorem 8.35 gives optimal
results if for some p < n, t? dominates A near infinity. The former cases are
those where [Ci] improves on Theorem 8.35.

There are also some unbounded domains [Ch] for which some Orlicz-Sobolev
imbeddings are compact.

The following theorem generalizes (the case m = 1 of) the part of Theorem 4.12
dealing with traces on lower dimensional hyperplanes.

8.33 THEOREM (Traces on Planes) Let © be a bounded domain in R”
satisfying the cone condition, and let §; denote the intersection of & with a k-
dimensional plane in R". Let A be an N-function for which (18) and (19) hold,
and let A, be given by (20). Let 1 < p < n where p is such that the function B
defined by B(t) = A(t'/?) is an N-function. If eithern — p <k <norp =1
andn — 1 <k <n, then

WILA(R) = Ly (),

where AY" (1) = [AL(0)1F".
Moreover, if p > 1 and C is an N-function increasing essentially more slowly
than AY" near infinity, then the imbedding

WILA(Q) = Lc() (30)

is compact.

Proof. The problem of verifying that A¥" is an N-function is left to the reader.
Letu € W'L () be a bounded function. Then

()
f A (T dy=1.  K=lullgm g, Gb
Qe
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We wish to show that
K <Ki|lull| 40 (32)

with K7 independent of . Since this inequality is known to hold for the special
case k = n (Theorem 8.35) we may assume without loss of generality that

K > “u”A*,Q = ”uHA:/",Qn . (33)

Let w(r) = [A.(t)]"/4 where ¢ = np/(n — p). By (case m = 1 of) Theorem 4.12

we have
K J K o K ‘

P n
<K |
kp/(n—p), % j=1

1< AIEI YK
=K, [E;/Qw( e > |Dju(x)|” dx
lu@)\ |7
dx|.
Ll (] ]
Using (31) and noting that ||[v|? |5 o < llv[|} o, we obtain
k/n (n—p)/k p
L) el = ()
o K K J ko /n-p). 2

2K, & [l \\? lul\ ||©
22| (@ (%)) o+ e o (4
j=1 B.Q P2
2nK, ( ,(IM))” lul\ ||
< o | — lulf p 0+ K2 || — (34)
K K o A K/, o

Now B~!(t) = (A™'(1))” and so, using (21) and (4), we have

(w/(t))l’ _ ql_p(A*(t))p(Fq)/q(A;(t))P

1 1
=M% @) S o

It follows by (33) that

/B(<w’(|u(x)|/K))”) de/A*(|M(x)|) dr <1,
Q 1/q Q K
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(%))

Now set g(1) = A.(r)/t? and h(t) = (w(t)/t)". It is readily checked that
lim; 00 g(t)/h(t) = oo. In order to see that k(r) is bounded near zero let
s = A,(t) and consider

1
< —

. (35).
o 47

(A0)"" sm=/m SU/p .
t s AT = s (p-l\ /P
[ Srar f<_B_<fL
0o T o T

Since B is an N-function lim,_, ., B~(1)/t = 0o. Hence, for sufficiently small
values of + we have

A

(h(t))l/p —

(h(,))l/f’ < SL _ l
P gp p

0

Therefore, there exists a constant K5 such that forr > 0
1
(0())” < —A L) + Kst?.

Using (33) we now obtain

LAY 1 |ue(x)] Ks ,
“a)(?) pﬂf —272 A*< X )dx+ﬁ/;2|u(x)| dx

1 2K3
1
§2K +_”u”AQ (36)

From (34)-(36) there follows the inequality

2nK2
<
= "kp

1 1 KK,
-q—,,llull aat syt ull% o

and hence (32). The extension of (32) to arbitrary u € W'L 4(2) now follows as
in the proof of Theorem 8.35.

Since B(r) = A(t'/P) is an N-function and § is bounded, we have

WLA(Q) —> W'P(Q) > L' (),
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the latter imbedding being compact by Theorem 6.3 provided p > 1. The com-
pactness of (30) now follows from Theorem 8.25. 1

8.39 THEOREM (Imbedding Into a Space of Continuous Functions) Let
 satisty the cone condition in R". Let A be an N-function for which

o] -1
/ A—ﬁ dt < o0. 37
1

t(rH—l)/n

Then
W'LA(R) — CY(Q) = C(RQ) N L™(R).

Proof. Let C be a finite cone contained in 2. We shall show that there exists a
constant K| depending on n, A, and the dimensions of C such that

lulloo.c < Killullyac- (38)

In doing so, we may assume without loss of generality that A satisfies (18), for
if not, and if B is an N-function satisfying (18) and equivalent to A near infinity,
then W!L4(C) — W!'Lp(C) with imbedding constant depending on A, B, and
vol(C) by Theorem 8.12. Since B satisfies (37) we would have

Nullooc < Ko llullygc < Kzllulliac-

Now £2 is a union of congruent copies of some such finite cone C so that (38)
clearly implies
lullowe < Killully aq- (39)

Since A is assumed to satisfy (18) and (37) we have

00 A*l([)
/0 t("T)/;dt = K4 < .

Let D
AN = [ A~ ® dr
0

b &5

The A~! maps [0, co) in a one-to-one manner onto [0, K;) and has a convex inverse
A. We extend the domain of definition of A to [0, c0) by defining A(¢) = oo for
t > K4. The function A is a Young’s function. (See Luxemburg [Lu] or O’Neill
[O).) Although it is not an N-function in the sense defined early in this chapter,
nevertheless the Luxemburg norm

el c =inf{k 0 / A ('“"‘”) dx < 1}
| [ ("
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is easily seen to be a norm on L*°(C) equivalent to the usual norm; in fact,

1
< < .
K4 ”u“oo.C = ”u“AC = -1(1/V01(C)) ”u"oo,C

Moreover, s = A(¢) satisfies the differential equation (21), so that the proof of
Theorem 8.35 can be carried over in this case to yield, for u € W!'L4(C),

lullpac < Ksllullya.c

and inequality (38) follows.

By Theorem 8.31(d) an element u € W™ E 4(2) can be approximated in norm by
functions continuous on 2. It follows from (39) that ¥ must coincide a.e. on §
with a continuous function. (See Paragraph 4.16.)

Suppose that an N-function B can be constructed such that the following conditions
are satisfied:

(a) B(t) = A(¢) near zero.

(b) B increases essentially more slowly than A near infinity.

(c) B satisfies
e} B_l(t) o0 A~I(t)
/1 Py dt < 2/1 pErSIYM dt < 0.

Then, by Theorem 8.16, u € W!L4(C) implies u € W!E(C) so that we have
WILA(Q) C C(R) as required.

It remains, therefore, to construct an N-function B having the properties (a)—(c).
Letl <f <t < ---besuch that

* ATl 1 [® A
/ A L [AO
tnt)/n 22k | fin+D/n
We define a sequence {s;} with 5; > #, and the function B~'(¢), inductively as
follows.

Lets; = tyand B™'(t) = A™'(t) for0 < t < s;. Having chosen sy, 55, ..., s; and
defined B~'(¢) for 0 < t < 531, we continue B~'(¢) to the right of s,_, along a
straight line with slope (A~!)'(s,_;—~) (which always exists since A~ is concave)
until a point 7, is reached where B~!(1;) = 2*='A~1(¢]). Such #] exists because
lim, o A7N(t)/t = 0. If 1, > &, let sy = t;. Otherwise let s; = # and extend
B! from #] to sy by setting B~ (t) = 2¥"1A~'(¢). Evidently B! is concave and
B is an N-function. Moreover, B(t) = A(t) near zero and since

B~'(1)
im —— = 00,
t—00 A—l(t)
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B increases essentially more slowly than A near infinity. Finally,
e} B_l(t) 51 A-l(t) e Sk 2k_1A_1(t)
/1 tnt)/n dt = ﬁ tn+1)/n dr + ;L tint)/n dt
s -1 o0 4—1
) k=1 AT (D)
= '/; ,(n+1)/n premymcld r+ 22 el tintl)/n dt

oo -1
(1)
[T,

8.40 THEOREM (Uniform Continuity) Let €2 be a domain in R” satisfy-
ing the strong local Lipschitz condition. If the N-function A satisfies

< AT
/1 prewayym dt < 00, (40)
then there exists a constant K such that for any u € W!L 4(Q2) (which may be

assumed continuous by the previous theorem) and all x, y € Q we have

o] A_l(t)
. t(n+1)/n

as required. 1

lu(x) —u()| < K ||”||1,A,Q/ 41

fx=yl
Proof. Weestablish (41) for the case where 2 is a cube of unit edge; the extension
to more general strongly Lipschitz domains can then be carried out just as in the
proof of Lemma 4.28. As in that lemma we let ©, denote a parallel subcube of £
having edge o and obtain for x € Q,

1
< Ln]/ r_"dt/ lgrad u| dz.
o Jo "

By (15), I1llz o, = 1/A='(t"c™"). It follows by Holder’s inequality and (4)
that

u(x) — L"f u(z)ydz
g Q,

/ lgradu|dz < 2|lgradull4 o 111115 g,

to

el 4.0

==
A_l(t_"d_")
<20"t"AT Nt "0 Nlullag

Hence

L 1
<2vno IIulll,A,Q/ A 1(—,, ) at
0 "o

2 [ l(l')
=7 el a0 /0_" “arn 4T

u(x) — %/ u(z)dz

4
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Ifx,y € Qand o = |x — y| < |, then there exists a subcube 2, with x, y € Q,,
and it follows from the above inequality applied to both x and y that

oo A_l(t)
_, ttD/n '

4
lu(x) —u(y)| < T ||M||1,A,Q/

[x—y]

For |x — y| > 1, (41) follows directly from (39) and (40). 1

8.41 (Generalization of Holder Continuity) Let M denote the class of pos-
itive, continuous, increasing functiogs of t > 0. If u € M, the space C, (),
consisting of those functions u € C(§2) for which the norm

_ _ lu(x) — u(y)|
$CD| = |u; @ + sup ————
s @) = s @] +sup 50—

is finite, is a Banach space under that norm. The theorem above asserts that if (40)
holds, then
A7)

o
1 [e) —
WILA(Q) = C,(Q), where u(t) = flyr" T hn dt. 42)

If i, v € M are such that u/v € M, then for bounded 2 we have, as in Theorem
1.34, that the imbedding . -
Cu(€2) - Cy(2)

exists and is compact. Hence the imbedding
W!ILA(Q) — C.(Q)
is also compact if u is given as in (42).

8.42 (Generalization to Higher Orders of Smoothness) We now prepare to
state the general Orlicz-Sobolev imbedding theorem of Donaldson and Trudinger
[DT] by generalizing the framework used for imbeddings of WL 4(S2) considered
above so that we can formulate imbeddings of W™ L 4 (£2).

For a given N-function A we define a sequence of N-functions By, By, Ba, ... as
follows:
By(t) = A(1)
! -1
[ B (1) _
(Bk) (’)— Owdf, k—1,2,....
(Observe that By = A,.) At each stage we assume that
LB, @3)
) 1t oo
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replacing By, if necessary, with another N-function equivalent to it near infinity
and satisfying (43).
Let J = J(A) be the smallest nonnegative integer such that

0 -1
[(B0, o
1

t(n+1)/n

Evidently, J(A) < n. If p belongs to the class M defined in the previous
Paragraph, we define the space cy () to consist of those functions u € C () for
which D%y € C, (Q) whenever [¢| < m. The space Cy/ () is a Banach space
with respect to the norm

Ju: G| = max | D*u: Cu @)

8.43 THEOREM (A General Orlicz-Sobolev Imbedding Theorem) Let
2 be a bounded domain in R" satisfying the cone condition. Let A be an N-
function.
(@) If m < J(A), then W"L4() — Lp, (2). Moreover, if B is an N-
function increasing essentially more slowly than B,, near infinity, then the
imbedding W™ L4(£2) — Lg () exists and is compact.

(b) Ifm > J(A), then W™ L4(Q) — CI(Q) = CO(Q) N L=(Q).

(¢) If m > J(A) and satisfies the strong local Lipschitz condition, then
WM LA(R2) — CZ’_J‘I(Q) where

o] -1
w(r) = / B @

. pnFhn
Moreover, the imbedding W™ L 4(Q) — C™~/~1(Q) is compact and so is
W"LA(R) — C™/~1(Q) provided v € M and /v € M.

8.44 REMARK Theorem 8.43 follows in a straightforward way from the
special cases with m = 1 provided earlier. Also, if we replace L4 by E, in
part (a) we get W"E4(Q2) — Ep, () since the sequence {u;} defined by (29)
converges to u if u € W' E4(Q). Theorem 8.43 holds without any restrictions on
Qif W L4(Q) is replaced with W' L 4(2).

8.45 REMARK Since Theorem 8.43 implies that W L ,(2) —» WL B, (§2),
we will also have W™ L 4(2) — Ly(p,,(S2), where 2 is the intersection of §2
with a k-dimensional plane in R", provided that (using Theorem 8.38) there exists
psatisfyinglSp<nforwhichn—p<k§n(orn—1§k§nifp= 1)
and B(t) = B,,(t'/7) is an N-function.
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N-function, 262 Bessel potentials, 252
complementary, 263 Bochner integrable function, 207
N -function dominance Bochner integral, 206
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Bounded continuous function space, 10
Almost everywhere, 15

Anisotropic Sobolev inequality, 104 Calder6n extension theorem, 156

Calderon-Zygmund inequality, 155
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Arzela-Ascoli theorem, 11
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Banach lattice, 248 Compact operator, 9, 167
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of a normed space, 5
Complex interpolation, 247
Complex interpolation space, 247
Cone, 81
Cone condition, 79, 82

uniform, 82

weak, 82
Continuous linear functional, 4
Continuous functions

between topological spaces, 3
Continuous function space, 10

bounded functions, 10

Holder continuous functions, 10

uniformly continuous functions, 10
Convergence in mean, 270
Convex function, 261
Convolution, 32

Fourier transform of, 251
Coordinate transformations

m-smooth, 77
Cube

A-fat or A-thin, 187
Cusp, 115

Decomposition of domains, 93
Delta-2 (A7) condition

global or near infinity, 265
Delta-regular (A-regular), 266
Dense set, 5
Derivative

partial, 2

weak, 22
Dirac distribution, 20
Distance between sets, 3
Distribution

derivative of a, 21

Schwartz, 20

tempered, 251

Distribution function, 52, 221
Domain, 1

of finite width, 183

quasibounded, 173

quasicylindrical, 184
Dominance of N-functions, 265
Dominated convergence property

of a Banach lattice, 248
Dominated convergence theorem, 17
Dual of Orlicz space E 4(2), 273
Dual space, 4

normed, 6

of LP(), 45

of W™P(Q), 62

of Wy"f (), 64

Embedding, see Imbedding
Equimeasurable rearrangement, 221
Equivalence

of J- and K-methods, 215

of definitions of Sobolev spaces, 67
Equivalent norm for W(;" (), 184
Essentially bounded function, 26
Exact interpolation theorem, 220, 247
Extension operator, 146

total, 255

Fatou’s lemma, 17
Finite cone, 81
Finite width, 183
First countable space, 9
Flow on a domain, 195
Fourier inversion theorem, 250
Fourier transform, 250
inverse of, 250
Fractional order Sobolev space, 249
Fubini’s theorem, 19
Function
essentially bounded, 26
measurable, 15
N-, 262
Functional, 4

Gagliardo
averaging lemma, 95
decomposition lemma, 93
Generalized Holder inequality, 268
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Holder continuity, 10
generalized, 231
Holder’s inequality, 24, 25
converse of, 25
for complementary N-functions, 268
for mixed-norm spaces, 50
generalized, 268
reverse, 27
Hahn-Banach theorem, 6
Hausdorff space, 3
Hilbert-Schmidt
imbedding, 202
norm, 200
operator, 200
Hilbert space, 5

Imbedding, 9, 80
best possible, 108
boundary trace, 164
compact, 9, 167
noncompact, 173
of an Orlicz-Sobolev space, 284
restricted, 167
Imbedding theorem
for L? spaces, 28
for domains with cusps, 117
for Orlicz spaces, 269
for Sobolev spaces, 85
Inner product, 5
for L2(), 31
for W™2(Q), 61
Integrable function, 16
Integral
Lebesgue, 16
of Banach-space-valued functions, 206
Intermediate space, 208
classes 5, #,and £, 216
Interpolation
complex method, 247
real method, 208221
Interpolation inequality
for L? spaces, 27
hybrid, 141
involving compact subdomains, 143
on degree of summability, 139

Interpolation inequality (continued)
on order of smoothness, 135
Interpolation pair, 208
Interpolation space
complex, 247
exact, 220
of type 8, 220
Interpolation theorem
exact, 220, 247
Marcinkiewicz, 54
Inverse Fourier transform, 250
Irregular domain
nonimbedding theorem, 111
Isometric isomorphism, 5

J-method, 211
discrete version, 213
J-norm, 208

K-method, 209
discrete version, 210
K-norm, 208

L? space, 23
£7 space, 35
Lebesgue integral, 16

of complex-valued functions, 18
Lebesgue measure, 14
Lebesgue space L?(R2), 23
Linear functional, 4

on LP(Q), 45
Lipschitz condition, 83, 93
Lipschitz spaces

imbeddings into, 99
Locally convex, 3
Locally finite open cover, 82
Locally integrable function, 20
Lorentz space, 223
Lusin’s theorem, 15

Marcinkiewicz

interpolation theorem, 54, 91, 226

Maurin’s theorem, 202
Measurable function, 15
Measurable set, 14
Measure, 14

Lebesgue, 14
Minkowski’s inequality, 25
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Norm, 4
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of a linear functional, 6

of a linear operator, 9
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Normed dual, 6
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Operator, 9
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Open cover
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complete, 200
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Permuted mixed norm, 50
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Quasi-norm, 54
Quasibounded domain, 173
Quasicylindrical domain, 184

Radon-Nikodym theorem, 18
Rapid decay, 192
Rapidly decreasing functions, 250
Rearrangement of a function

equimeasurable decreasing, 221
Reduced Sobolev inequality, 105
Reflexive space, 7
Reflexivity
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of Orlicz spaces, 274

of Sobolev spaces, 61
Regularity condition, 84
Regularization, 36
Reiteration theorem, 217

for complex interpolation, 248
Rellich-Kondrachov theorem, 168
Restricted imbedding, 167
Reverse Holder inequality, 27
Reverse Minkowski inequality, 28
Riesz representation theorem, 6

for LP(Q), 47

for L1(), 47

Schwartz distribution, 20
Schwarz inequality, 31
Segment condition, 68, 82
Seminorm, 101, 135
Separability

of L? spaces, 32

of Orlicz spaces, 274

of Sobolev spaces, 61
Separable space, 5
Sigma-algebra, 13

Simple (m, p)-extension operator, 146

existence of, 156
Simple function, 15, 206
Sobolev conjugate N-function, 282
Sobolev imbedding theorem, 79, 84
a limiting case, 277
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Sobolev imbedding theorem (continued) Total extension operator, 146, 255
alternate proof, 141 existence of, 147, 154
optimality of, 108 Trace, 81
sharper version, 227 boundary, 163

Sobolev’s inequality, 102 of Orlicz-Sobolev functions, 287
anisotropic, 104 characterization theorem, 233
best constant, 104 Transformation of coordinates, 77
reduced, 105 Triangle inequality, 207

Sobolev space, 59 Triebel-Lizorkin space, 253
of fractional order, 249 homogeneous, 254
weighted, 119 Trudinger’s theorem, 277

Spiny urchin, 176

Standard cusp, 115

Stein extension theorem, 154

Stone-Weierstrass theorem, 11

Streamline, 195

Strong m-extension operator, 146
existence of, 151

Strong local Lipschitz condition, 83, 93

Strongly measurable function, 206

Unbounded domain
compact imbedding for, 175
Uniform C™-regularity condition, 84
Uniform cone condition, 82
Uniform convexity, 8
of L? spaces, 45
of Sobolev spaces, 61
Uniformly continuous function spaces, 10

Strong type operator, 54 Vandermonde determinant, 149
Sublinear operator, 54 Vector space, 3
Subspace topological, 3

of a normed vector space, 6

Wavelet, 256

Weak cone condition, 82

Weak convergence, 7

Weak derivative, 22

Weak L7 space, 53

Weak sequential compactness, 7
Weak-star topology, 4

Weak topology, 7

Weak type operator, 54, 91
Weighted Sobolev space, 119

Support, 2

Tempered distribution, 251
Tesselation, 187
Test function, 19
Topological product, 3
Topological space, 3
Topological vector space, 3
locally convex, 3
Topology, 3 Young’s theorem, 32
weak, 7 Young’s inequality, 34, 35, 208, 264
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