Master 1

Mathématiques Appliquées et Statistiques

Mathématiques et Applications

Année 2024-25

université

BORDEAUX

Espace L^p , analyse de Fourier

Devoir Maison

Exercice 1. On note $C_{2\pi}$ l'espace des fonctions continues sur \mathbb{R} , 2π -périodiques et pour $p \in [1, +\infty[$, $L^p_{2\pi}$ l'espaces des fonctions f mesurables sur \mathbb{R} , 2π -périodiques telles que $||f||_{p,2\pi} < +\infty$, où

$$||f||_{p,2\pi} := \left(\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^p dt\right)^{\frac{1}{p}}.$$

Dans toute la suite, on notera aussi

$$\langle f \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$$

- (1) Montrer que pour tout $f \in L^p_{2\pi}$, $\langle f \rangle$ est bien définie.
- (2) Montrer que pour tout $f \in L^1_{2\pi}$ et pour tout $a \in \mathbb{R}$, on a $\int_0^{2\pi} f(t)dt = \int_a^{a+2\pi} f(t)dt$.
- (3) On définit

$$f * g(x) = \frac{1}{2\pi} \int_0^{2\pi} f(y)g(x-y)dy$$

Montrer que pour tout $f, g \in \mathcal{C}_{2\pi}$, f * g est bien définie et $f * g \in \mathcal{C}_{2\pi}$.

(4) Pour tout $n \in \mathbb{N}^*$, on définit

$$D_n(x) = \sum_{k=-n}^{n} e^{ikx}, \ x \in [0, 2\pi]$$

et

$$K_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} D_k(x), \ x \in [0, 2\pi]$$

Montrer D_n et K_n appartiennent à $\mathcal{C}_{2\pi}$ et que que $\langle D_n \rangle = \langle K_n \rangle = 1$.

(5) Montrer que pour tout $n \in \mathbb{N}$, on a

$$D_n(x) = \frac{\sin((n+\frac{1}{2})x)}{\sin(\frac{x}{2})} \quad \text{et} \quad K_n(x) = \frac{1}{n} \left(\frac{\sin(\frac{nx}{2})}{\sin\frac{x}{2}}\right)^2$$

(6) Montrer que pour tout $\delta > 0$, on a

$$\lim_{n \to +\infty} \int_{x \in [0,2\pi] \setminus [-\delta,\delta]} K_n(x) dx = 0$$

- (7) Montrer que pour tout $f \in \mathcal{C}_{2\pi}$, la suite de fonctions $(f * K_n)_{n \in \mathbb{N}^*}$ converge uniformément vers la fonction f sur \mathbb{R} .
- (8) On suppose que la suite $(f * D_n)_{n \in \mathbb{N}^*}$ converge uniformément vers une fonction g. Montrer que g = f.
- (9) On appelle polynôme trigonométrique toute combinaison linéaire finie des fonctions $x \mapsto e^{ikx}$, $k \in \mathbb{Z}$. Montrer que l'ensemble des polynômes trigonométriques est dense dans $\mathcal{C}_{2\pi}$ muni de la norme $\|.\|_{\infty}$.
- (10) Montrer que l'ensemble des polynômes trigonométriques est dense dans $L^p_{2\pi}$ muni de la norme $\|\cdot\|_p$.

Exercice 2. Dans cet exercice, on note $\langle \xi \rangle = (1+|\xi|^2)^{\frac{1}{2}}$. Pour tout $s \geq 0$ on définit l'espace $H^s(\mathbb{R}) := \{u \in L^2(\mathbb{R}), \ \langle \xi \rangle^s \hat{u} \in L^2(\mathbb{R})\}$. On munit H^s du produit scalaire

$$\langle u, v \rangle_s = \int_{\mathbb{R}} \langle \xi \rangle^{2s} \hat{u}(\xi) \overline{\hat{v}(\xi)} d\xi.$$

On utilisera aussi l'espace des fonctions continues bornées muni de la norme $||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$.

- (1) Identifier l'espace $H^0(\mathbb{R})$
- (2) Montrer que $(H^s(\mathbb{R}), \langle ., . \rangle_s)$ est un espace de Hilbert
- (3) Montrer que $\mathscr{S}(\mathbb{R}) \subset H^s(\mathbb{R})$ pour tout s > 0.
- (4) Montrer que pour $s > \frac{1}{2}$, $\hat{u} \in L^1(\mathbb{R})$.
- (5) En déduire que pour tout $s > \frac{1}{2}$, $H^s(\mathbb{R})$ s'injecte continument dans $\mathcal{C}_b(\mathbb{R})$.
- (6) Montrer que $u \in H^1(\mathbb{R})$ si et seulement si il existe une fonction $v \in L^2(\mathbb{R})$ telle que pour tout $\varphi \in \mathscr{S}(\mathbb{R}), \int u\overline{\varphi'} = -\int v\overline{\varphi}$. Que vaut v lorsque $u \in \mathscr{S}(\mathbb{R})$? On notera par la suite $v = \delta u$. Que vaut $\widehat{\delta u}$?
- (7) Soit $f \in L^2(\mathbb{R})$. On cherche à résoudre l'équation

$$(H) u - \partial_x^2 u = f.$$

- (a) On pose $u(x) = \frac{1}{\sqrt{2\pi}} \int e^{ix\xi} \frac{\hat{f}(\xi)}{1+\xi^2} d\xi$. Montrer que $u \in H^2(\mathbb{R})$ et que $u \delta \delta u = f$.
- (b) On suppose qu'il existe r>0 tel que $f\in H^{1+r}(\mathbb{R})$. Montrer que $u\in C^2(\mathbb{R})$ et que u est solution de (H)