Exercice 1:

On munit N de la topologie discrète (induite par la topologie métrique usache sur R) et on munit $X=N^N$ de la topologie produit, qui est la noine line à rendre les projections $\pi:N^N \longrightarrow N$, $\pi:(x)=x_i$, continues. Nous avons ru en TD que la topologie produit est induite par la distance $d:X^2 \longrightarrow [0, +\infty[$ défine par : $d(x,y)=\frac{1}{2^n}$ où x=y

Les compacts de MM sont d'intérieur vide.

Preuve: Soit K C MM un compact

Prison les soils connects de M sont les aventuels finse

Puisque les sents compets de M sont les ensembles fins, on a que pour tout $n \in \mathbb{N}$ $\pi_n(K) \subset \mathbb{N}$ est un ensemble fins. Supposons par l'abourde que $K \neq \emptyset$. Alors il existe $x \in K$ et E > 0 tq. $B(x, E) \subset K \subset K$. Il existe donc k > 0 tq. $O(x, E) \subset K \subset K$. Il existe Or $O(x, E) = \{y \in \mathbb{N}^N : y_0 = x_0, ..., y_{N-1} = x_{N-1}\}$ et donc $O(x, E) = \{y \in \mathbb{N}^N : y_0 = x_0, ..., y_{N-1} = x_{N-1}\}$

Soit & E Cc (NN, R). Abos & K CNN compact ty.

P'(R*) CK. Or R* est ouvert dans R et &
est continue, done & T'(R*) C R = \$

Done Festidéntiquement nulle et Cc(NN, R)= ?=)
Soit je une mosure de porbabilité sur (X,Bx).
Alors 1/x EZ (X, y, R) cor mésure ble puisqu'indicatrice
d'un brêlier et \ \ \(\lambda \text{ du = g(X) = 1 <+00} \).
00 } [0] est un fermé de 21(X, n, R) don \$ [0] = }[0]
et [1x] \$ [0] cer [0] =0 et [1x] 2 =1
Done C'c (X,R) n'est pas dense dans L1(X,u,R).
Exercia 2,
W Thésième de Stone-Weierstran:
Soit X un especitopologique compact.
One sous-algebre 4 de C(X, R) est dense
si et seulement si:
elle sépare les passats (i.e. Yx, y ex, x + y, 3 f e A + q. fout fy)
et pour tout point de X il existe une fonction de 4 pui
ne s'annule pas en ce point.
(2) 12 suffit de montrer que
$\forall \varphi \in C^{2}(l_{0},+\infty l), \int_{\mathbb{R}^{+}} \varphi du = \int_{\mathbb{R}^{+}} \varphi d\vartheta.$
Soit donc q e Ci([o,+n]). Alors JR 70 tg.
Yx>R φ(x) = 0 (i.e. Supp(q) C [0, R]).

Soit XR = [3, R]. XR est un espace topologique
compat. Notons ep: [0, R] -> R la findius
ep(2) = e ^{-px} , pour p ER et considérons l'algèbre
Ag engendrée par jep, pasj.
Cette algêbre sépare les points car excul= et est
injective et de plus es ne s'annule jamais.
Done de cot dense den C'(XR, IR) par le
Théorème de Ston-Weierstrans.
Done YESO 35 Et R tg 4 -5 < E
SEAR done elle est de la forme s= Î=i e; ep;
arec aj $\in \mathbb{R}$ at $p_j \geqslant 0$.
De plus perhypothèse sep du = sep di 4 piso et donc sedu = sedi xe On 2 dons sedu - sedu = sedu xe xe xe xe
et denc Jedn=Jedv.
$\frac{\partial n}{\partial x} = \frac{\partial n}{\partial x}$
Rt XR XR
= [(4-5) du- [(4-5) dv]
$\leq \left \int_{X_{R}} (\varphi - s) du \right + \left \int_{X_{R}} (\varphi - s) dv \right $
€ \(1\phi - 2 \phi \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
$\leq \varphi - s _{\infty} \left(\mu(\mathbb{R}) + 2(\mathbb{R}) \right) < \leq 2 = \epsilon$
$\leq \varphi - s _{\infty} $

ce qui implique u= D.

(3) Dans le conspéréel. Considérans:

J: BR+ - [0,1] or 3: BR+ - [0,1]

défines per ju(A) = 1 (e-Pordju(a) VA EBRE

 $\vec{\mathcal{P}}(A) \doteq \frac{1}{A} \int_{A} e^{-p_{0}x} dx (x) \quad \forall A \in B_{R^{+}}$

Où $\lambda = \int_{0}^{+\infty} e^{-\beta x} dx(x) = \int_{0}^{+\infty} e^{-\beta x} dx(x) < +\infty$

$$=\iint_{\mathbb{R}^+} e^{-(Q+P_0)^{\chi}} d \mathcal{D}(\mathcal{U}) = \int_{\mathbb{R}^+} e^{-Q^{\chi}} d \mathcal{D}(\mathcal{U}).$$

Done 1 = 3.

Or, pour tout $\varphi \in C_c^2(\mathbb{R}^+, \mathbb{R})$ on peut écrite $\varphi(x) = \lambda \varphi(x) \cdot e^{Pox} \cdot e^{-Pox} = \varphi(x) \cdot e^{-Pox} \cdot e^{-Pox}$

Done Yq e Ci(RT, R) $\int_{\mathbb{R}^+} \varphi(x) d\mu(x) = \int_{\mathbb{R}^+} \varphi(x) \frac{e^{-p_3 x}}{4} d\mu(x)$ = | R+ (x) 9 mm $=\int_{\mathbb{R}^{+}} \mathcal{L}(x) \, d\mathcal{F}(x)$ $=\int_{\mathbb{R}^{+}} \varphi(x) \frac{\lambda}{e^{-\rho_{0} \lambda}} d\lambda(x) = \int_{\mathbb{R}^{+}} \varphi(x) d\lambda(x)$ ce qui implique 11=2 (4) Le transfirmée de Laplace est une application linéaire dre pour montrer son injectivité il suffit de colonder Soit PEEps ty L[f] = o. Abra Yp>ps Jfajepx dx = o Posens ft = max(f, o) so et f= max(-f, o) so. Ona feft 12 s'agit de deux fonctions mésurables sur IRt. De plus 17t1 < 181 et 18t1 = 18t1, done f, f e Eps Considerons den les deux mésures jut et jut désinées per utA) = J toda, u-A) = J tolde VA EB 1R+ ut et ut sont deux mêmes o-additives et Ypaps $\int_{0}^{+\infty} e^{-px} d\mu(x) - \int_{0}^{+\infty} e^{-px} d\mu(x) = \int_{0}^{+\infty} e^{-px} dx - \int_{0}^{+\infty} e^{-px} dx$

= (x+-b) = by dx

= L(t](b) = o

