TD4 – Convolution

Exercice 1 Soient $a, b, c, d \in \mathbb{R}$ tels que d - c < b - a, $f = \mathbf{1}_{[a,b]}$ et $g = \mathbf{1}_{[c,d]}$. Calculer f * g.

Exercice 2 Soient a, b > 0. Calculer $f_a * f_b$ où $f_a(x) = e^{-ax^2}$ pour $x \in \mathbb{R}$.

Exercice 3 Soient $a \in \mathbb{R}$, $g = \mathbf{1}_{[0,+\infty[}$ et pour tout $n \in \mathbb{N}$, $n \geq a$, $f_n = \mathbf{1}_{[a,n]}$. Calculer $f_n * g$. Etudier $\lim_{n \to +\infty} f_n * g(x)$ pour $x \in \mathbb{R}$. Mêmes questions en remplaçant f_n par $h_n = \mathbf{1}_{[-n,a]}$, $n \in \mathbb{N}$.

Exercice 4 Pour toute fonction $f: \mathbb{R}^d \to \mathbb{R}$, on définit le support de f par

$$\operatorname{supp}(f) = \overline{\{x \in \mathbb{R}^d, \ f(x) \neq 0\}}.$$

On note $C_c(\mathbb{R}^d)$ l'espace des fonctions continues à support compact. Soient $f \in L^1(\mathbb{R}^d)$ et $g \in L^{\infty}(\mathbb{R}^d)$. Montrer que $\operatorname{supp}(f * g) \subset \overline{\operatorname{supp}(f) + \operatorname{supp}(g)}$.

Exercice 5 Soient X et Y deux boréliens de \mathbb{R}^d de mesure de Lebesgue λ strictement positive. Le but de cet exercice est de démontrer que Z := X + Y est d'intérieur non vide. On suppose dans un premier temps que $\lambda(X)$ et $\lambda(Y)$ sont finis.

- 1. Montrer que $\phi := \mathbf{1}_X \star \mathbf{1}_Y$ est intégrable et que $\|\phi\|_{L^1} > 0$.
- 2. En déduire qu'il existe $x_0 \in \mathbb{R}^d$ et r > 0 tels que $\phi > 0$ sur $B(x_0, r)$.
- 3. Montrer que x_0 appartient à l'intérieur de Z
- 4. Traiter le cas où $\lambda(X)$ et $\lambda(Y)$ ne sont plus supposés finis

Exercice 6 Dans cet exercice on note $C_b(\mathbb{R})$ l'espace des fonctions continues et bornées sur \mathbb{R} muni de $\|.\|_{\infty}$ et τ_{α} l'opérateur de translation défini par $\tau_{\alpha}f = f(.+\alpha)$. On considère une application linéaire continue $T: L^p(\mathbb{R}) \to C_b(\mathbb{R})$ (pour un certain $p \in [1, \infty[)$). On suppose que T commute aux translations, c'est à dire que $T \circ \tau_{\alpha} = \tau_{\alpha} \circ T$ pour tout $\alpha \in \mathbb{R}$.

- 1. Soit $\phi: L^p(\mathbb{R}) \to \mathbb{R}$ définie par $\phi(f) = T(f)(0)$. Montrer que ϕ est continue.
- 2. Montrer qu'il existe une fonction $g \in L^{p'}(\mathbb{R})$ (où $\frac{1}{p} + \frac{1}{p'} = 1$) telle que

$$\forall f \in L^p, \ \phi(f) = \int_{\mathbb{R}} f(y)g(-y)dx$$

3. Montrer que pour tout $f \in L^p$, Tf = f * g.

Exercice 7 Soit $p, q \in [1, \infty]$ deux exposants conjugués : $\frac{1}{p} + \frac{1}{q} = 1$ et $f \in L^p(\mathbb{R}), g \in L^q(\mathbb{R})$.

1. Montrer que la fonction f * g est bien définie, vérifie

$$||f * g||_{\infty} \le ||f||_p ||g||_q$$

et que c'est une fonction uniformément continue.

- 2. Montrer de plus, que si $1 alors <math>\lim_{|x| \to +\infty} f * g(x) = 0$.
- 3. Que se passe-t-il pour p = 1 et $q = +\infty$?

Exercice 8 Soient p, q, r > 0. On suppose qu'il existe C > 0 tel que pour toutes fonctions f et g continues à support compact on a

$$||f * g||_r \le C||f||_p ||f||_q.$$

En considérant des fonctions de la forme $f_{\lambda}(x) = f(\lambda x)$ avec $\lambda > 0$, montrer qu'on a nécessairement $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$.

Exercice 9 Le but de cette exercice est de démontrer l'inégalité de Young. On suppose que $1 \le p, q, r \le +\infty$ sont tels que $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. On veut montrer que pour tout $f, g \in C_c(\mathbb{R}^d)$, on a

$$||f * g||_r \le , ||f||_p ||g||_q.$$
 (1)

- 1. On suppose r = 1. Montrer que p = q = 1 et démontrer (1).
- 2. On suppose que $r = +\infty$. Démontrer (1).
- 3. On suppose désormais que $1 < r < \infty$.
 - (a) On suppose que p = 1. En appliquant l'inégalité de Holder aux fonctions $y \mapsto |f(x-y)|^{\frac{q-1}{q}}$ et $y \mapsto |f(x-y)|^{\frac{1}{q}} ||g(y)|$, montrer que

$$\int |f(x-y)g(y)|dy \le ||f||_1^{1-\frac{1}{q}} \left(\int |f(x-y)||g(y)|^q dy\right)^{\frac{1}{q}}$$

En déduire que $f * g \in L^q$ et que (1) est valide.

- (b) On suppose maintenant que $1 < p, q < \infty$.
 - i. Montrer que pour tout $x, y \in \mathbb{R}^d$, on a

$$|f(x-y)g(y)| = |f(x-y)|^{\frac{p}{r}}|g(y)|^{\frac{q}{r}} \times |f(x-y)|^{\frac{r-p}{r}} \times |g(y)|^{\frac{r-q}{r}}.$$

ii. En appliquant l'inégalité de Holder à trois termes aux fonctions ci-dessus, montrer que pour tout $x \in \mathbb{R}^d$, on a

$$\left(\int |f(x-y)g(y)|dy\right)^{r} \le (|f|^{p} * |g|^{q}(x))||f||_{p}^{r-p}||g||_{q}^{r-q}$$

iii. Conclure à l'aide de la guestion 1).