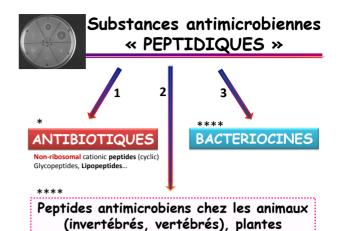
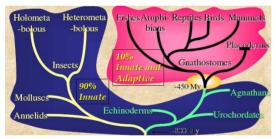
Peptides antimicrobiens


comme nouvelles armes thérapeutiques

Maria URDACI


Bordeaux Sciences Agro (ex-ENITA de Bordeaux Laboratoire de microbiologie UMR 5248, CNRS - Univ. Bordeaux - ENITA

Producteurs de Peptides Antimicrobiens

- 1. Procaryotes (bactéries); Eucaryotes (fungi)
- 2. Animaux:

(besoin de se défendre contre les pathogènes)

Substances antimicrobiennes

ANTIBIOTIQUES:

Bactériolytiques, bactériostatiques

Classés selon des analogies structurales en 8 familles essentielles: beta-lactamines, aminosides, phenicols, cyclines,

macrolides et apparentés, quinolones, sulfamides,

lipopeptides-polypeptides,

inclassables.

BACTERIOCINES:

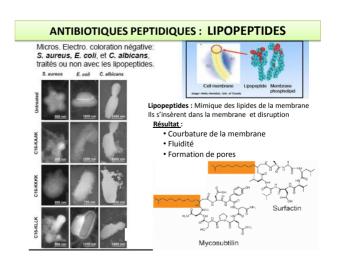
Substances naturelles de **nature protéique**, Synthétisées par la voie ribosomale, Bactériolytiques, bactériostatiques Spectre d'action **étroit**

ANTIBIOTIQUES peptidiques

Les peptides synthétases ou NRPS

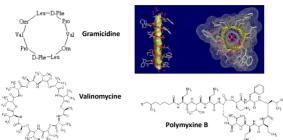
Les synthétases sont des protéines enzymatiques de grand taille, organisées en modules Chaque module est responsable de l'incorporation d'un acide aminé spécifique dans la chaîne peptidique en formation.

Les modules sont eux-mêmes subdivisés en domaines.


le **domaine d'adénylation** (A) : il permet la reconnaissance d'un acide aminé spécifique et son activation grâce à une réaction d'adénylation. le **domaine de thiolation** (T) : il fixe l'acide aminé sur la synthétase de

manière covalente par l'intermédiaire d'une liaison thioester. le **domaine de condensation** (C) : il permet la formation de la liaison peptidique entre deux monomères.

le domaine de la thioestérase (Te) : il permet de libérer le peptide néoformé.


L-Glu→L-Leu → D-Leu → L-Val → L-Asp→D-Leu → L-Leu

Peptides ANTIBIOTIQUES qui perméabilisent la membrane bactérienne

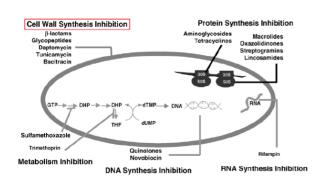
Valinomycine, Gramicidine S. Polymyxine B

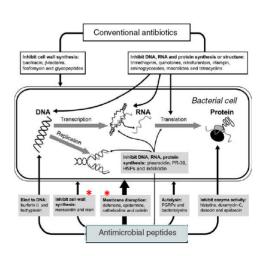
- peptides cationiques, synthèse non-ribosomale
- insertion dans la membrane bactérienne et = perméation
- effets toxiques =non pour l'application systémique; utilisation topique
 Gramicidine dimérise réversiblement et forme des canaux membranaires

Problèmes de Résistance des bactéries aux antibiotiques utilisées actuellement

Besoin de retrouver de nouveaux composés

Peptides antimicrobiens comme nouvelles armes thérapeutiques ???


Le dilemme des antibiotiques


- Les bactéries éventuellement vont développer la résistance contre chaque nouveau antibiotique
- pression/sélection produite par antibiotiques a comme conséquence l'acquisition des gènes de résistance aux antibiotiques pour les principales bactéries pathogènes
- Une grande variété d'antibiotiques vont faire apparaître la résistance autant dans les malades que dans la biosphère

Principaux problemes de résistance aux antibiotiques

- Oxacilline-résistance de Staphylococcus aureus (ORSA)
- Vancomycine-résistance des enterocoques (VRE)
- Pénicilline-résistance de Streptococcus pneumoniae
- Multidrogue résistance de bacilles Gram- :
 - » Pseudomonas, entérobactéries, klebsiella et salmonella
- Multidrogue-résistance de Mycobacterium tuberculosis (MDR-TB)

Cibles antibactériennes

BACTERIOCINES

promise as the next generation of antimicrobials ??

- > Différentes des antibiotiques :
 - ✓ Nature protéique peptidique
 - ✓ Sensibles à l'action d'enzymes protéolytiques (*)
 - ✓ Spectre d'activité étroit
 - ✓ Cibles différentes aux AT usuels
- La colicine a été la 1^{ere} bactériocine découverte (1925) Elle est produite par Escherichia coli.
- Différent classes selon structure protéique-peptidique: Classe 1, classe 2, classe 3 et classe 4.

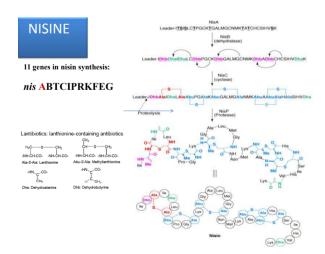
Classes de BACTERIOCINES

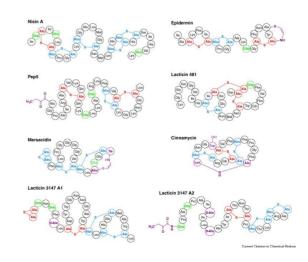
> Classe 1: les Lantibiotiques

- ✓ Petit peptides de masse moléculaire inférieur à 5 kDa
- ✓ Présence dans la molécule d'acides aminés modifiés posttraductionnellement, tels que la lanthionine et la 3-méthyl lanthionine
- ✓ Présence de résidus deshydratés: 2,3-didehydroalanine (DHA) et 2,3-didehydrobutyrine (DHB) impliqués dans la formation d'anneaux thioether
 - Le type A = linéaires, amphipatiques, de 2 3,5 kDa. *
 - Le type B = globulaires, approx. 2 kDa.
- * NISINE découverte en 1940

BACTERIOCINES

- Classe 2: « pediocin like» et plus
 - ✓ Petit peptides thermostables, Pm inférieur à <13 kDa</p>
 - ✓ Dépourvus d'acides aminés modifiés de type lanthionine
 - ✓ Subdivises en trois sous-groupes:
 - √2a: « pediocin like »
 - ✓ Activité anti- Listeria
 - ✓ Seq. consensus N-ter : YGNGV -
 - ✓ Les principaux : Pediocines, Sakacine, Mesentericine, ...
 - ✓2b: « à deux peptides»: plantaricines, lacticines.....
 - ✓2c: à thiol activé, 1 seul connue.
- Classe 4: partie peptidique + partie lipidique ou glucidique ✓ Leuconocine, Lactocine 27


BACTERIOCINES

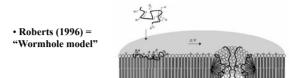

SPECTRE ANTIMICROBIEN:

- ✓ De étroit à très étroit
- ✓ Celles de la classe 1 (Lanthibiotiques): spectre le plus large
- ✓ Beaucoup de bactériocines sont produites par des bactéries
 Gram⁺, et son spectre d'action est seulement contre les Gram⁺
 Quelques exceptions: thermoleovorines produites
 par B. thermoleovorans qu' inhibent Salmonella.

Mode d'action:

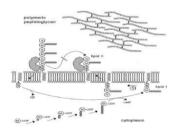
- ✓ Classe 1 (sauf globulaires) et classe 2: formation de pores au niveau des membranes bactériennes
- ✓ Classe 1 globulaires: inhibiteurs spécifiques d'activités enzymatiques

Nisin is produced by Lactococcus lactis and is used as a food preservative.



Mersacidin (from *Bacillus sp.*) and other type *B* lantibiotics bind to lipid II involving both Glc-NAc and Mur-NAc and prevent incorporation into peptidoglycan.

Mersacidin is active against MRSA (methicillin resistant *S. aureus*) and is *currently in* preclinical development.


Pore Formation: Type A Lantibiotics

in vivo formation of transmembrane pores

- 1. Peptides become amphiphilic upon binding to membranes.
- 2. This enables insertion into the outer membrane. (Hydrophobic)
- 3. Electrical potential of membrane drives the peptide residues through carrying surface phospholipid along.

Binding to Lipid II: Type B Lantibiotics

• Binds not to D-Ala-D-Ala but to the disaccharide-PP moiety of Lipid II. "a new target binding site not used by any current antibacterial drug"

Sahl, H-G and Bierbaum, G. Annu. Rev. Microbiol., 1998, 52: 41-79

Domaines d'application des BACTERIOCINES

> Applications alimentaires :

- ✓ En général sont thermorésistantes (120°C 10 min); Stables à de pH entre 3 et 8; Sensibles à l'action d'enzymes protéolytiques (présents dans le tractus gastrointestinale)
- ✓ Inodores, incolores
- ✓ Compatibles avec les procédés de fabrication et de conservation des aliments
- ✓ Certaines sont reconnues comme « saines » « GRAS » (Generally Recognized as Safe)
- ✓ La Nisine = E234, autorisé dans bc des pays pour l'industrie laitière ou dérivés de viande (anti-Listeria, anti-Clostridium butyricum..).
- ✓ La Pediocine permisse dans certains pays, autres en cours
- \checkmark Possibilité d'étendre le spectre d'action à des Gram- avec combinaison des traitements physiques ou chimiques.
- ✓ Utilisations dans les films alimentaires

Domaines d'application des BACTERIOCINES

Applications médicales et vétérinaires :

- ➤ 1. Les Lanthibiotiques (produites par les Gram+)
 - mastites bovines (Nisine=Ambicin^R)
 - Infections de la peau, ulcères
 - La Nisine en solution buccale, action contre la plaque dentaire et inflammations gingivales chez le chien
 - •
 - •
- ➤ 2. Les Colicines et les Microcines (produites par les Gram-)
 -

Lipid II-Targeted Comp.

	Antibiotic	Important strains	MIC (mg l-1)	Development stage
dnes	Nisin	Staphylococcus aureus Enterococcus faecalis/faec Vancomycin-resistant Ente (VRE)	rococci 1.5-16	Preclinical
Ħ		Streptococcus pneumoniae		
Lanthibiotiques	Mutacin	S. aureus E. faecalis/faecium VRE S. pneumoniae	0.1-18.1 1.6-25.6 6.4 0.03-6.4	Preclinical
	Mersacidin	S. aureus E. faecalis/faecium VRE S. pneumoniae	0.78–32 32–64 Not published 2–4	Preclinical
Glyco	Ramoplanin -lipo-depsipeptide	S. aureus E. faecalis/faecium VRE S. pneumoniae	0.03-1.5 0.06-1 0.1-1.5 0.03-0.12	Phase III
	Mannopeptimycin	S. aureus	0.03-0.06	Preclinical
Glycope	(AC98-6446) eptide cyclique	E. faecalis/faecium VRE S. pneumoniae	0.06-0.25 0.06-0.12 ≤0.008	
	Katanosin B	S. aureus E. faecalis/faecium	0.39 0.78	Preclinical
Depsipe	eptide cyclique	VRE 5. pneumoniae	0.78 0.78 Not published	
Lipo-dep	Plusbacin A ₃ sipeptide cyclique	S. aureus E. faecalis/faecium VRE	0.78-1.56 3.13 1.56-3.13	Preclinical
P P. P		S. pneumoniae	(Breukink & De Kruijff, Nature	e Rev. Drug Discov. 2006

Exemples des possibles utilisations des Bactériocines				
Bactériocines Souche productrice		Utilisation potentielle		
	Lanth	- ibiotiques		
Ancovenin	Streptomyces spp.	Treating high blood pressure		
Cinnamycin	Streptoverticillium and Streptomyces spp.	Treating inflammations and allergies		
Duramyein	Streptoverticillium and Streptomyces spp.,	Treating inflammations and allergies		
Epidermin	Staphylococcus epidermidis	Treating skin infections *		*
Gallidermin	Staphylococcus gallinarum		Treating skin infections	*
Lacticin 3147	Lactococcus lactis	Treating mastitis infections		*
Lanthiopeptin Streptoverticillium cinnamoneum		Treating Herpes simplex virus		
Mersacidin	Bacillus subtilis	Tr	Treating vancomycin resistant strains	
Mutacin	Streptococcus mutans		Treating dental carries	
Nisin	Lactococcus lactis		Treating peptic ulcer ial inhibiting multi-drug resistant pa obial barrier in implanted medical de	

,		Colicines	s		
Ia	Escherichia coli		Component in an engineered species specific antibiotic		
E1, E4, E7, E8, K & S4	Escherichia coli	Tre	Treating hemorrhagic colitis and hemolytic uremic syndrome		
	N	licrocine	es		
24	Escherichia coli		Treating salmonelosis in chicken *		
B17	Escherichia coli		Antibacterial agent in cattle		
E294	Klebsiella pneumoniae		Controlling cell proliferation		
J25	Escherichia coli		Treating salmonelosis in chicken		
L	Escherichia coli		Treating salmonelosis		
		Pyocine	es		
S-35	Pseudomonas aeruginosa	. young	Treating pulmonary infections *		
	Pseudomonas syringae pv. ciccaro	nei	Treating olive knot disease		

Les peptides antimicrobiens (non produits par les microorganismes)

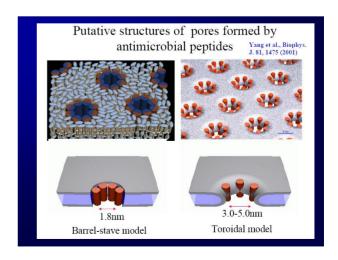
Produits par toutes les espèces du royaume animal et chez les plantes (> 800 peptides Eucaryotiques décrits)

Amoebas --> Humans

- Produits par de multiples types cellulaires
 - Cellules épithéliales (peau, muqueuse intestinale...)
 - Cellules « spécialisées » de l'immunité naturelle
 - Polynucléaires neutrophiles
 - Macrophages
- Selon les cas, intervention extracellulaire, intracellulaire (bactéries phagocytées) ou les deux

Peptides cationiques antimicrobiens

• Effecteurs de l'immunité innée


- ✓ Première ligne de défense des organismes multicellulaires, animaux et végétaux
- ✓ Insectes : réponse systémique inductible
- ✓ Autres : réponses locales
- ✓ Chez l'homme : cathélicidines, défensives, histatine.....

· Spectre d'activité étendu

✓ Bactéries, champignons, (virus enveloppés, protozoaires...)

Peptides cationiques antimicrobiens

- > Peptides cationiques, amphiphiles
- > 20 à 50 AA, grande diversité structurale
- > Actions multiples concentration dépendantes
 - perméabilisation membranes microbiennes
 - interactions protéines bactériennes
 - immunomodulateurs (chimiokines)
- > Peu d'action sur cellules animales:
 - les membranes bactériennes on une charge négative plus forte; possèdent bc de PG/PE/PS et pas de stérols.

Chez l'homme

2 grandes familles de molécules AT:

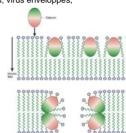
- ➤ Les Défensines
- ➤ Les Cathélicidines (LL37)

Retrouvés majoritairement dans la peau, les muqueuses Mais aussi produits par des cellules immunitaires

Chez l'homme

- Rôle essentiel dans les défenses de première ligne
- Activité des défensines et des cathélicidines effondrée dans les poumons des enfants mucoviscidosiques
 - Inhibition fréquente par hautes concentrations en sel (cf. mucoviscidose)
 - Nouvelles approches thérapeutiques agissant sur la concentration saline du mucus
 - Autres mécanismes?

Chez l'homme


- **Défensines** (feuillets β)
 - β défensines (HBD-1 et HBD-2)
 - Peau et tractus respiratoire
 - α défensines (=cryptidines)
 - Cellules de Paneth de l'intestin
- Cathélicidines (hélices α) (leucocytes)
- Protéines A et D du surfactant (*opsonines* primitives)

Défensines

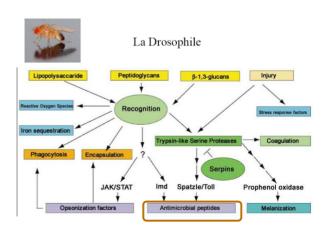
Peptides antimicrobiens, α ou β

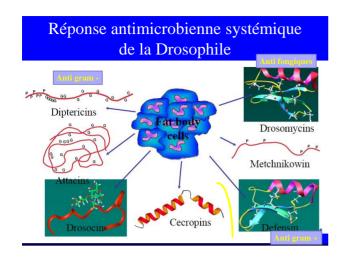
29-35 a.a.avec 6 résidus cystéine :
 configuration sphérique serrée, invariablement cationique
 Actives sur bactéries (surtout G+), levures, virus enveloppés, cellules eucaryotes.

Action par liaison électrostatique avec feuillet externe des membranes et ouverture de celle-ci sous forme de **pores.**

INVERTEBRES

L'immunité chez les invertébrés


Il existe chez les invertébrés une immunité naturelle très solide contre toutes espèces de bactéries et de toxines»


1972 : Hans Boman

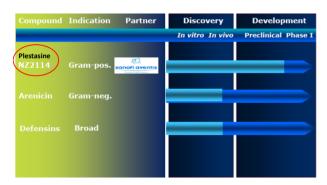
Défenses antibactériennes inductibles de la ${\bf drosophile}$

1981: Purification et caractérisation de la cécropine

1983 : Tom Ganz et Bob Lehrer Purification et caractérisation de peptides antimicrobiens issus de neutrophiles

PEPTIDO-MIMETIOUES

- Peptidomimetiques: des molécules qui miment la structure peptidique.
- Peptidomimetiques: ont des caractéristiques générales des structures analogues à leur parent, les polypeptides, tels que amphiphilicity.


 $\underline{Exemples}\ d'\alpha\text{-peptidomimetiques: N5N '-linked }\ oligopyrrolinones, oxazolidine-2-ones, azatides et azapeptides.$

Exemples de β -peptides : les β -foldamers peptide,

Examples de γ-peptides i p Fotoamirs peptide.

Exemples de γ-peptides comprennent, sans s'y limiter, γ-foldamers peptide, oligocarbamates, et phosphodiester.

Développement de nouveaux peptides antimicrobiens

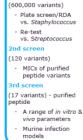
Plestasine = NZ2114

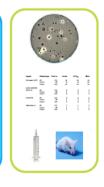
Novozymes

Plectasine

UCLA Prof. Robert Lehre

- Nouvelle défensine fongique, isolé du champignon Nigrella Pseudoplectania (trouvé dans les forêts de pins nord européennes)
- Possède autant de puissance que la pénicilline et la vancomycine (et différent mode d'action)
- Peptide de 4,4 kDa (40 amino acides)
- Anti- Gram positif, à large spectre, en particulier contre Streptococcus pneumoniae (causal de la pneumonie), y compris les souches cliniques résistantes aux antibiotiques classiques
- Elle a montré une toxicité extrêmement faible chez la souris.


Plectasin wildtype showed good activity on Streptococcus but less on Staphylococcus


Bacterial strain	Minimum inhibitory concentration (µg/ml)		
	Vancomycin "Gold Standard"	Plectasin wildtype	
MRSA (clinical strain)	1	32	-
MRSA (clinical strain)	1	16	
MRSA (clinical strain)	1	16	
MSSA (ATCC 29737)	0.5	8	
MSSA (clinical strain)	0.5	1	
VRSA (clinical strain)	>64	16	
S. pneumoniae (ATCC700671)	0.25	0.25	_
S. pyogenes (ATCC12344)	0.38	0.06	

HUVUZYITIES Rethink Tomorrow

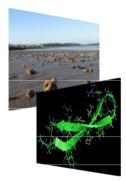
Goal: Improve the activity against resistant Staphylococcus Protein engineering and high throughput screening lead to new and improved plectasin variant

Plectasin NZ2114 showed good activity on both *Streptococcus* and *Staphylococcus*

novozymes Rethink Tomorrow

Bacterial strain	Minimum inhibitory concentration (µg/ml)			
	Vancomycin "Gold Standard"	Plectasin wildtype	Plectasin lead NZ2114	
MRSA (clinical strain)	1	32	1	
MRSA (clinical strain)	1	16	1	
MRSA (clinical strain)	1	16	1	
MSSA (ATCC 29737)	0.5	8	1	
MSSA (clinical strain)	0.5	1	0.5	
VRSA (clinical strain)	>64	16	2	
S. pneumoniae (ATCC700671)	0.25	0.25	0.06	
S. pyogenes	0.38	0.06	0.12	

novozymes'


Main characteristics of Plectasin NZ2114 /SAR215500

- New mode of action inhibits cell wall biosynthesis
- Rapidly cidal agent vs. staphylococci & streptococci
- Active on resistant strains, e.g., MRSA, VRSA, incl. Linezolid/Cubicin-resistant strains
- Exhibits efficacy in animal models of infection:
 - Thigh infection
 - Sepsis/peritonitis
 - Pneumonia
 - Meningitis
 - Endocarditis

Future AMP activities

- Currently producing the Plectasin NZ2114/ SAR215500 material for clinical phase I trial
- Sanofi-aventis will perform the clinical trials of Plectasin NZ2114/SAR215500
- Continue to develop Arenicin variant against gram-negative infections
 - Early discovery project
 - Isolated from a marine organism (lugworm – Arenicola marina)
 - 21 amino acid peptide
 - Potent activity against gram-negative bacteria
 - High unmet medical need for new gramnegative compounds
- Continue to develop AMPs in the antiinflammatory area

OZYIIICS

Arenicin-1 (AR-1)

un nouveau peptide antimicrobien, isolé du polychète marin *Marina Arenicola*

RWCVYAYVRVRGVLVRYRRCW

- contient un pont disulfure unique entre Cys3 et Cys20, formant un anneau de 18 résidus
- affiché cytotoxicité contre les globules rouges humains
- Elucidation de la structure de AR-1 et ses dérivés devraient faciliter la conception de nouveaux antibiotiques peptide non-cytotoxiques avec de puissants activités antibactériennes

Peptides cationiques antimicrobiens Développement clinique

• Topiques

- Traitements:
 - •□ ulcérations cutanées chez le diabétique (phase III)
 - •□ brûlures et infections cutanées à P. aeruginosa (I)
- •□ Prévention
 - •□ mucites chimio-induites (III)
 - •□ infections cutanées et sur cathéter (III)
- •□ Prévention / traitement
 - •□ gingivites et infections périodontales (II, III)

Andres E et Dimarcq LJ Med Mal Infect 2007: 37: 194-9 Chalekson CP et al. J Trauma 2003; 54: 770-4 Chalekson CP et al. Plast Reconstr Surg 2002; 109: 1338-43

Autres « defensines »

- Indolicidine analogues testés dans des infections IP or IV
- Protegrine analogues
 helps chemotherapy oral mucositis
- <u>Magainine</u> analogue *LOCILEX™* Crème en clinical trials

diabetic ulcers, not approved

Peptides antimicrobiens: Problèmes d'utilisation?

- Proteolysis, Sels, Transport,
- Manufacture

Synthèse chimique très chère; \$100's/gram!

organic mimics or modular design may help

Production possible chez les bactéries ou les plantes

TMV with tobacco (GENEWARE®)

Peptides et peptidomimetics en développent commercial

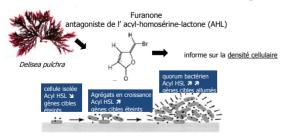
Company (location)	Drug	Stage of development	Medical use
AM-Pharma (Bilthoven, The Netherlands)	hLF-1-11 (small peptide derived from human lactoferrin)	Phase 2	Allogeneic bone marrow stem cell transplantation-associated infections
BioLineRx (Jerusalem)	BL2060 (a synthetic compound comprising fatty acid and lysine copolymers)	Lead optimization	Anti-infective
Ceragenix (Denver)	CSA-13 (cationic steroid (ceragenin) that mimics host- defense peptides)	Preclinical	Anti-infective
Helix Biomedix (Bothell, Washington, USA)	HB-50 (synthetic natural peptide mimetic of oecropin)	Preclinical	Anti-infective
	HB-107 (19-amino-acid fragment of cecropin B)	Preclinical	Wound healing
Inimex (Vancouver, BC, Canada)	IMX942 (5-amino-acid peptide)	Lead optimization	Immunomodulation; treatment of fevers and neutropenia in chemotherapy patients
Lytix Biopharma (Tromso, Norway)	Not available	Discovery	Anti-infective, antitumor
Migenix (Vancouver, BC, Canada)	Omiganan pentahydrocholoride/ CP-226/MX-226/CLS001 (12-mer analog of bactolysin)	Phase 3b/phase 2	Prevention of catheter-related infections; dermatology-related infections
Novacta Biosystems Ltd. (Hatfield, England)	Mersacidin (bacteriocin)	Preclinical	Gram-positive infections
Novobiotics (Cambridge, Massachusetts, USA)	Not available	Discovery	Nail fungus; methicillin-resistant S. aureus
Novozymes A/S (Bagsvaerd, Denmark)	Plectasin (fungal defensin)	Preclinical	Systemic anti-Gram positive, especially pneumococcal and streptococcal infections
Pacgen (Vancouver, BC, Canada)	PAC113 (based on the active segment of histatin 5 protein found in human saliva)	Investigational New Drug (IND) approval	Oral candidiasis
PepTx (St. Paul, MN, USA)	PTX002 (33-mer peptide) PTX005 (12-mer peptide), PTX006 (N-acylated analog of PTX005) and PTX007 (a nonpeptidic structural analog of PTX005)	Discovery	Broad-spectrum antimicrobial antiendotoxin
Polymedix (Philadelphia)	Peptidomimetics (derived from the arylamide, calixarene, hydrazide and salicylamide series)	Discovery/preclinical	Anti-infectives; antimicrobial polymer and coating materials
Zengen (Woodland Hills, CA. USA)	CZEN-002 (synthetic 8-mer derived from α-melanocyte- stimulating hormone)	Phase 2b	Vulvovaginal candidiasis

Quorum Sensing

communication cellulaire par signaux

- > Bacteria change their behaviour according to their numbers -
- > Autoinduction of genes

How do bacteria count ?


- → Release a messenger molecule
- Concentration of messenger reflects cell concentration

Atténuation de la virulence bactérienne

- Inhibition du quorum sensing bactérien
 - P. aeruginosa et bacilles à Gram négatif
 - Antagonistes des N-acyl homosérine lactones
 - Oligonucléotides antisens au niveau des systèmes de régulation
 - · Diminution mortalité et virulence dans les modèles animaux expérimentaux
- · Inhibition systèmes de sécrétion de type III
 - Diminuer la cytotoxicité pour les cellules phagocytaires
 - Intérêt pour P. aeruginosa
- Inhibition des toxines

Ex : Exotoxine A de P. aeruginosa

Inhibition du Quorum sensing

Peptide hybride: defensine-antiquorum sensing

Designation (RIP): RNA III-inhibiting peptide YSPWTNF_{CONH2} ALWKTLLKKVLKA_{CC} RIP K₄-S4(1-13)_a is a heptapeptide ALWKTLLKKVLKAYSPWTNF, DD₁₃-RIP DD₁₃: dermaseptin derivative

(WO/2007/095393)

DISPOSITIFS MEDICAUX ET REVETEMENTS COMPOSES DE PEPTIDES ANTIMICROBIENS

Revêtements peptides qui présentent des propriétés bactériostatiques et bactéricides.

- Résistantes aux médicaments (Staphylococcus méthicilline et vancomycine Resistants)
- Cathéters veineux centraux, ainsi que des cathéters urinaires
- Biofilms récalcitrants
 - Le biofilm protège des bactéries à l'intérieur du film
 - Les antibiotiques systémiques sont inefficaces
- Cathéters existants avec: chlorhexidine et la sulfadiazine d'argent ; minocycline,

PATCHS: (iode, argent..) PHMB (Kendall Healthcare Kerlix AMD ™

Les peptides peuvent être enduits sur une variété de différents types de substrats, y compris les implants médicaux comme les prothèses vasculaires, orthopédiques

Brevet:

peptide antimicrobien D28: (FLGVVFKLASKVFPAVFGKV) D51: (FLFRVASKVFPALIGKFKKK)

quorum sensing inhibiteurs de type ARN-III

peptide inhibiteur (RIP)

peptides sont positionnés sur la surface d'un matériau

Cecropin-Melittin Hybrid

Lys Trp Lys Leu Phe Lys Lys Ile Gly Ala Val Leu Lys Val Leu 15 10 15

