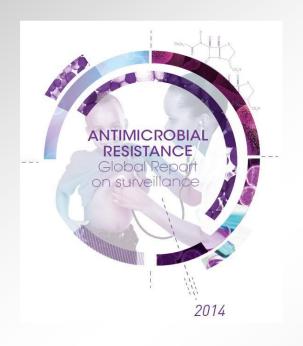


<u>UE Recherche</u> Microbiologie Générale 2 Bactériologie 2023-2024

Mécanismes de résistance aux antibiotiques : Généralités

Pr V. Dubois
Laboratoire de bactériologie
UMR CNRS 5234
Microbiologie Fondamentale et Pathogénicité



Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae

Karen Bush

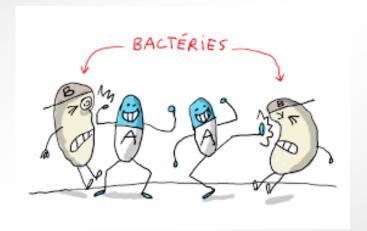
Le Monde.fr 6 ÉDITION ABONNÉS

Bactéries résistantes : "Les rapatriés sanitaires seront bientôt testés"

 Très forts taux de résistance → infections courantes acquises dans les établissements de soins, dans la communauté, dans toutes les parties du monde.

Résistance à des traitements de 1ère ligne

Résistances à des antibiotiques utilisés en dernière ligne


- Strategic objectives
- Awareness and education
- Surveillance of antimicrobial resistance
- Infection prevention and control
- Optimal use of antimicrobial medicines in human and animal health
- R&D and investment

PLAN

1 – LES ANTIBIOTIQUES : RAPPEL

Définition Classification Mode d'action

2 – LA RESISTANCE AUX ANTIBIOTIQUES


Résistances naturelles Résistances acquises

- Mécanismes génétiques
 - * Mutations chromosomiques
 - * Acquisition de gènes
- Mécanismes biochimiques
 - * Mécanismes

Défaut d'accumulation Détoxification enzymatique Altération de la cible

1 - LES ANTIBIOTIQUES: RAPPEL

Définition

Antibiotiques = agents strictement anti-bactériens

- ➤ Toxicité sélective ⇔ mode d'action spécifique
- ➤ Effet ≈ lent (heures), à concentrations ≈ faibles (mg/l)
- ➤ Administration par voie générale ⇒ traitement des infections systémiques

```
Antiseptiques : usage local
Désinfectants : surfaces et matériel inertes
```

Classification

Critère = structure chimique

⇒ 13 familles + 4 antibiotiques isolés + Anti-tuberculeux à part

Critère = Spectre

Pharmacologie

Indications

Famille	Antibiotique	Gram+	Gram -
ß-lactamines	Benzylpénicilline	+	-
	Oxacilline	+	-
	Ampicilline	+	+
	Imipénème	+	+
Aminosides	Gentamicine	+	+
	Tobramycine	+	+
Phénicolés	Chloramphénicol	+	+
Tétracyclines	Doxycycline	+	+
Macrolides	Erythromycine	+	-
Glycopeptides	Vancomycine	+	-
Quinolones	Acide nalidixique	-	+
Autres	Acide fusidique	+	-

Bactériostatiques (inhibent la croissance, CMI) ou bactéricides (tuent la bactérie, CMB)

CLASSIFICATION DES ANTIBIOTIQUES

I - β-LACTAMINES

PENICILLINES

CEPHALOSPORINES: 1ère (C1G), 2ième (C2G), 3ième (C3G), 4ième Génération (C4G) Autres (Cefsulodine)

CARBAPENEMES MONOBACTAMES

INHIBITEURS DE β-LACTAMASES + β-LACTAMINES:

II - AMINOSIDES

DESOXYSTREPTAMINES 4, 5 BISUBSTITUEES: DESOXYSTREPTAMINES 4, 6 BISUBSTITUEES: STREPTIDINE

III - MACROLIDES, LINCOSAMIDES, STREPTOGRAMINES = SYNERGISTINES (MLS)

MACROLIDES à 14, 15 ou 16 atomes LINCOSAMIDES STREPTOGRAMINES = SYNERGISTINES

IV - TETRACYCLINES

V - SULFAMIDES ET TRIMETHOPRIME : SULFAMIDES et SULFAMIDES + TMP

VI - POLYPEPTIDES: POLYMYXINE, COLISTINE, BACITRACINE

VII - QUINOLONES: 1ère, 2ième Génération, urinaires ou systémiques

VIII - PHENICOLES

IX - RIFAMYCINES

X - GLYCOPEPTIDES

XI - 5-NITRO-IMIDAZOLES

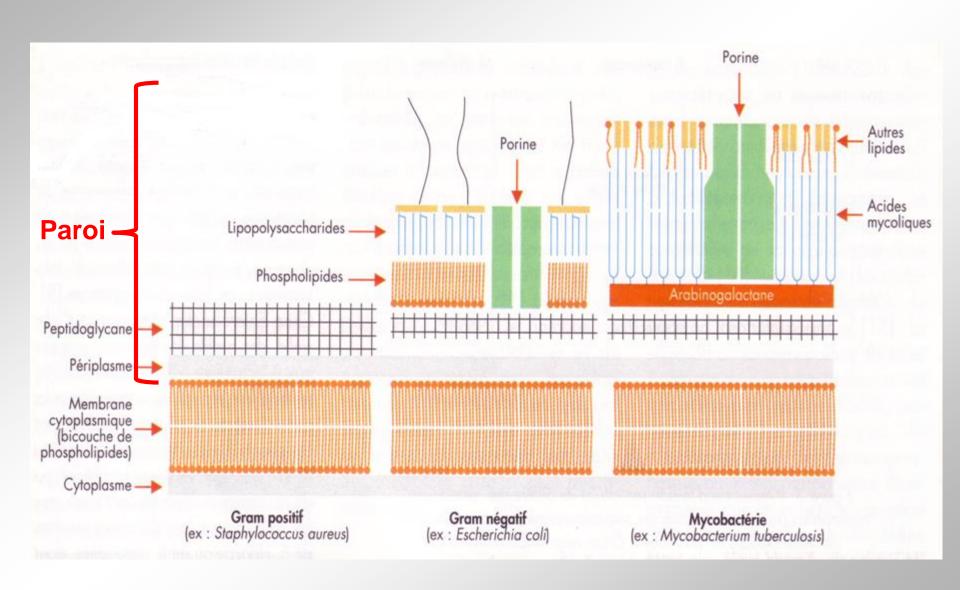
XII - NITROFURANES

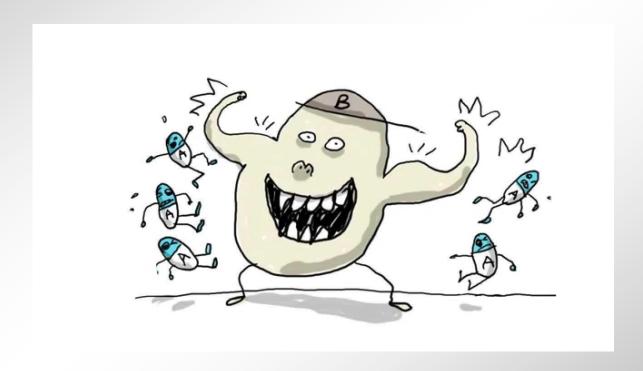
XIII- OXAZOLIDINONES

ANTIBIOTIQUES ISOLES: Fosfomycine, Acide fusidique, Mupirocine, Daptomycine

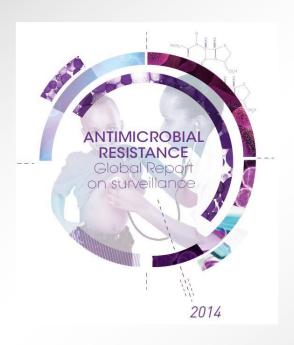
ASSOCIATIONS D'ANTIBIOTIQUES APPARTENANT A DES FAMILLES DIFFERENTES

ANTITUBERCULEUX


ANTILEPREUX

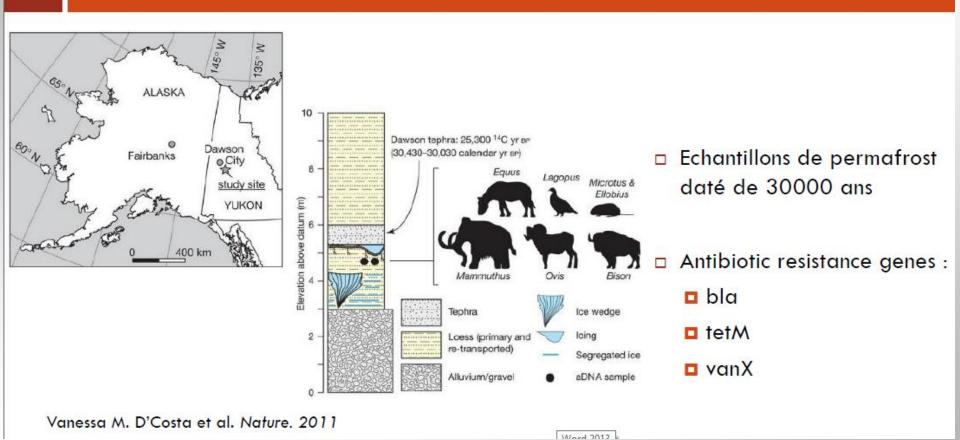

Mode d'action

Colimycine Daptomycine Inhibition de la synthèse Inhibition de la synthèse de la paroi bactérienne de la membrane cytoplasmique Béta-lactamines Glycopeptides Fosfomycine Inhibition de la Inhibition de la synthèse protéique synthèse de l'ADN Aminosides-Macrolides Tétracyclines-acide fusidique Linézolide- chloramphénicol Autres mécanismes Quinolones Rifampicine, sulfamides Nitroimidazolés



(Jarlier, Médecine Thérapeutique, 1997, 3, hors série janvier, 46-60)

2- RÉSISTANCE AUX ANTIBIOTIQUES



2- RÉSISTANCE AUX ANTIBIOTIQUES

- Résistance connue
 - pour toutes les familles d'ATB
 - pour toutes les espèces bactériennes

Certaines résistances aux antibiotiques sont anciennes

Résistances naturelles

- ✓ <u>Résistance naturelle</u> : intrinsèque, innée
- = affecte d'emblée toutes les souches d'une même espèce

Support chromosomique Constante

Phénotype sauvage, sensible

✓ Définit le spectre d'un ATB

Société Française de Microbiologie

Association reconnue d'Utilité Publique, Décret du 17 Mai 1993 (J.O. n° 119)

2. 1. Bacilles à Gram négatif non exigeants

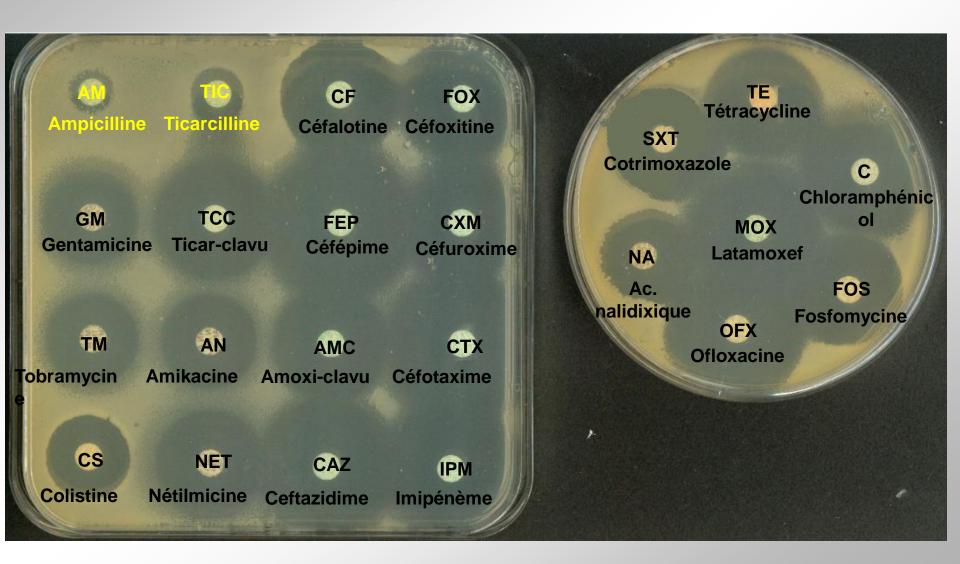
Pénicilline G, oxacilline, macrolides, kétolides, lincosamides, streptogramines, acide fusidique, glycopeptides, oxazolidinones, lipopeptides.

2.1.1. Entérobactéries

(cf. site du CASFM : http://www.sfm.asso.fr/)

Tableau IV - Résistance naturelle chez les entérobactéries.

Espèces	AM	AMC	TIC/ PIP	C1G	FOX	MA	CXM	GM	ТОВ	TET	COL	FT
Klebsiella spp.	R		R									
E. hermanii	R		R									
C. koseri	R		R									
C. freundii	R	R		R	R							
E. cloacae	R	R		R	R							
E. aerogenes	R	R		R	R							
H. alvei	R	R		R								
S. marcescens	R	R		R		R	R		R		R	
P. mirabilis										R	R	R
P. vulgaris, P. penneri	R			R		R	R			R	R	R
M. morganii	R	R		R			R			R	R	R
P. stuartii	R	R		R				R		R	R	R
P. rettgeri	R	R		R						R	R	R
Y. enterocolitica	R	R	R	R	R	R	R					


R : résistance naturelle

AM : aminopénicillines ; AMC : amoxicilline + acide clavulanique ; TIC : ticarcilline ; PIP : pipéracilline C1G : céphalosporines de 1ère génération ; FOX : céfoxitine ; MA : céfamandole ; CXM : céfuroxime ;

GM : gentamicine ; TOB : tobramycine ; TET : tétracyclines y compris la tigécycline ; COL : colistine, polymyxine B ;

FT: nitrofuranes.

Exemple: *Klebsiella pneumoniae*Kp226C Souche sauvage (résistances naturelles)

2.1.3. Bacilles à Gram négatif non fermentaires

Tableau V - Résistance naturelle chez les bacilles à Gram négatif non fermentaires.

Espèces	TIC	TCC	PIP	CTX	CAZ	IPM	QUI	С	TMP	FOS	COL
S. maltophilia	R		R	R		R			R	R	
B. cepacia	R					R	R	R	R	R	R
A. denitrificans				R							
C. meningosepticum	R	R	R	R	R	R	R				R
O. anthropi	R	R	R	R	R						

R : résistance naturelle

TIC: ticarcilline; TCC: ticarcilline + ac. clavulanique; PIP: pipéracilline; CTX: céfotaxime; CAZ: ceftazidime;

IPM: imipénème; QUI: quinolones; C: chloramphénicol; TMP: triméthoprime; FOS: fosfomycine;

COL: colistine, polymyxine B.

2. 3. Coques à Gram positif

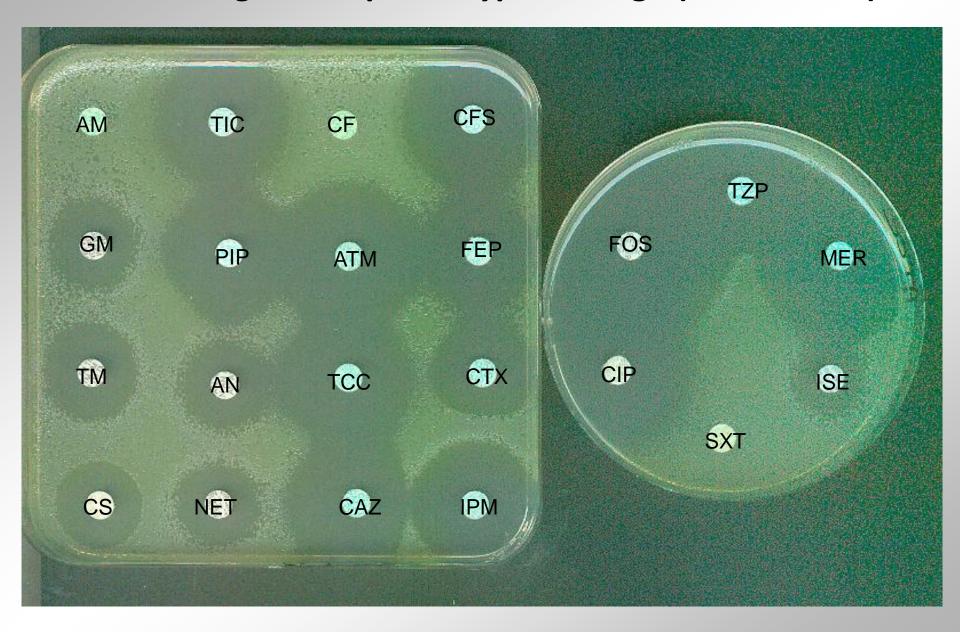
Mécillinam, aztréonam, quinolones, colistine.

Staphylococcus saprophyticus: fosfomycine, novobiocine.

Staphylococcus cohnii et Staphylococcus xylosus: novobiocine, lincomycine.

Micrococcus: furanes.

Streptococcus (dont Streptococcus pneumoniae): aminoglycosides (bas niveau), péfloxacine.


Enterococcus: oxacilline, céphalosporines, ertapénème, aminosides (bas niveau), péfloxacine, sulfamides.

Enterococcus faecalis, E. gallinarum, E. casseliflavus, E. avium: lincosamides, streptogramines A.

Enterococcus gallinarum - Enterococcus casseliflavus / flavescens : vancomycine.

Pediococcus – Leuconostoc : glycopeptides.

P. aeruginosa: phénotype sauvage (ATCC 27853)

Staphylococcus saprophyticus

Résistance naturelle à la fosfomycine

Spectre des antibiotiques

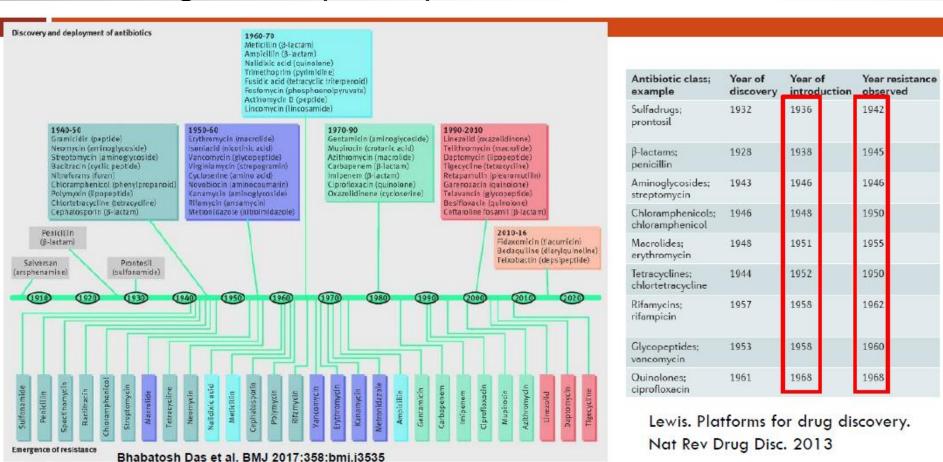
Famille	Groupe	Spectre		
		Gram + et Cocci à Gram -	Bacilles à Gram -	
β-Lactamines	Pénicillines G	+	-	
	Pénicillines M	+	-	
	Pénicillines A	+	+	
	Céphalosporines	+	+	
	Carbapénèmes	+	+	
	Monobactames	-	+	
Aminosides		+	+	
MLS		+	-	
Quinolones	Q1G	-	+	
	Q2G	+	+	
Tétracyclines		+	+	
Phénicolés		+	+	
Sulfamides ± TMP		+	+	
Glycopeptides		+	-	
Rifamycines*		+	+	
Polypeptides		-	+	
Nitro-imidazoles		Anaérobies	Anaérobies	
Nitrofuranes		+	+	
Ac. fusidique		+	-	
Fosfomycine		+	+	
Linézolide		+	-	
Mupirocine		+	-	
Daptomycine		+	-	

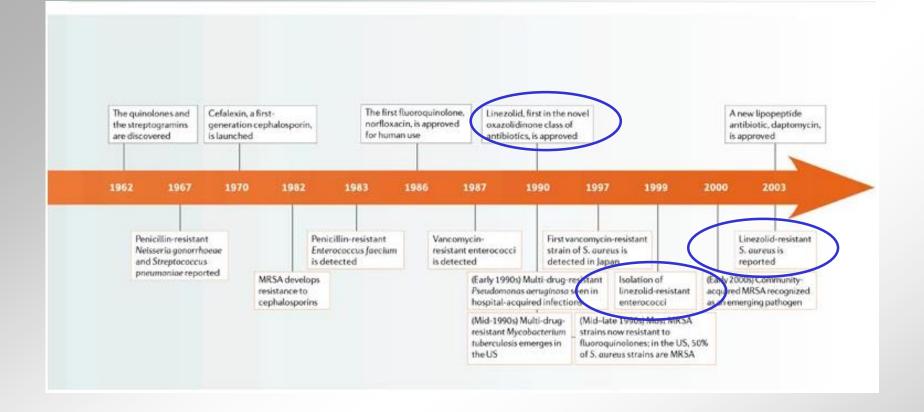
Nombreuses exceptions...

Résistances acquises

- ✓ Résistance acquise :
- = affecte une fraction des souches d'espèces naturellement sensibles suite à des évènements génétiques :

mutations acquisition de gènes


Support chromosomique ou extrachromosomique

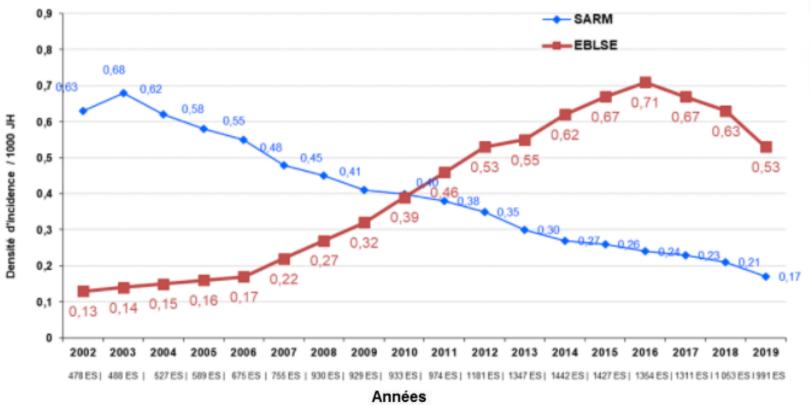

Phénotype de résistance

Surveillance nécessaire : adaptation de l'antibiothérapie probabiliste détection d'épidémie

RÉSISTANCE BACTÉRIENNE

Emergence rapide après introduction des ATB

- Fréquence variable selon l'ATB
- Résistance transférable (gènes mobiles sur plasmides, transposons, intégrons, transformation)
- Diffusion épidémique
- Bactéries multi-résistantes « BMR » « BHRe »


Evolution de l'incidence SARM et EBLSE dans les établissements de santé français, Réseau BMR-Raisin

Densités d'incidence des SARM et des EBLSE pour 1 000 JH (densité d'incidence globale par année) entre 2002 et 2019

Source : Rapport BMR-Raisin : Surveillance nationale des bactéries multirésistantes dans les établissements de santé : réseau BMR-Raisin.

Disponible sous: http://www.invs.sante.fr/Dossiers-thematiques/Maladies-infectieuses/Infections-associees-aux-soins/Surveillance-des-infections-associees-aux-soins-IAS/Surveillance-en-incidence

S. pneumoniae de sensibilité diminuée à la pénicilline G (CMI ≥ 0,064 mg/L) en France : tous âges et prélèvements confondus

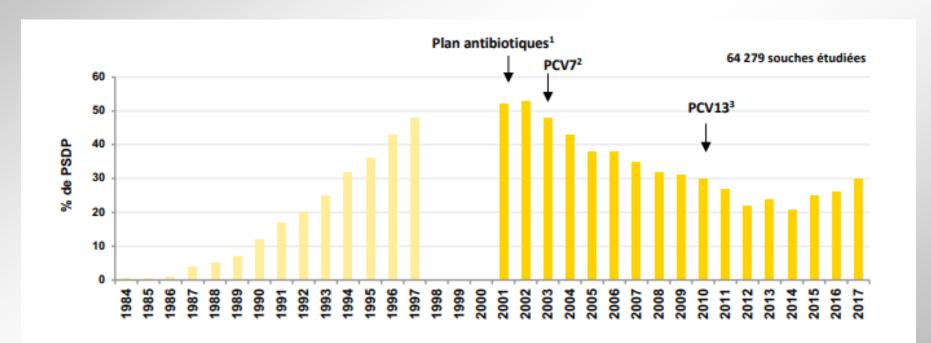
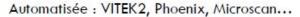
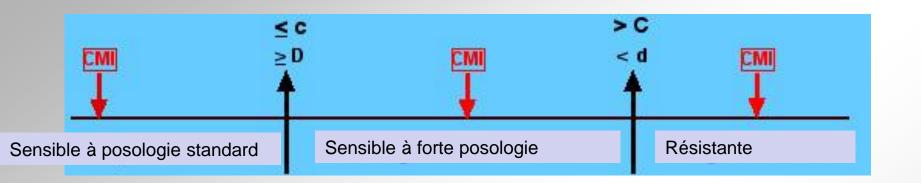



Figure 67 - S. pneumoniae de sensibilité diminuée à la pénicilline (PSDP) en France d'après les données du CNRP. (1984-1997 : P. Geslin ; 2001-2017 : CNRP-ORP, E. Varon, L. Gutmann). ¹Plan national pour préserver l'efficacité des antibiotiques, nov. 2001 http://www.sante.gouv.fr/htm/actu/34_01.htm ; ²Introduction du vaccin anti-pneumococcique conjugué heptavalent (PCV7) ; ³Remplacement du PCV7 par le vaccin conjugué 13-valent (PCV13).

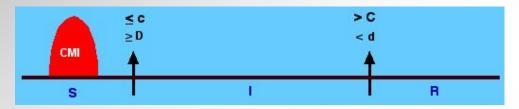
Antibiogramme

- Définition : mesure de la sensibilité bactérienne à un ou plusieurs antibiotiques
- Objectif: dépistage des résistances acquises + intérêt épidémiologique (suivi de l'évolution des résistances)
- □ Techniques multiples :



Manuelle : diffusion en milieu gélosé ; microdilution

Catégories définies par le Comité de l'Antibiogramme de la Société Française de Microbiologie (CA-SFM) délimitées par deux concentrations critiques (c, C) et à deux diamètres critiques (D, d) et choisies par un compromis : données bactériologiques, cinétique, résultats clinique


Spectre clinique des antibiotiques : SCA

3. DÉFINITION DES CATÉGORIES CLINIQUES

Les concentrations et les diamètres critiques cliniques utilisés pour l'interprétation des tests de sensibilité in vitro permettent de classer les antibiotiques testés en 3 catégories cliniques distinctes : « sensible à posologie standard » (S), « sensible à forte posologie » (SFP ou F), et « résistant » (R) [voir aussi Annexe 3 et Annexe 7].

- « Sensible à posologie standard » : la probabilité de succès thérapeutique est élevée dans le cas d'un traitement basé sur la posologie standard de l'antibiotique.
- 2. « Sensible à forte posologie » * : la probabilité de succès thérapeutique est élevée dès lors que l'antibiotique est utilisé à forte posologie ou si l'antibiotique est fortement concentré au site de l'infection.
- 3. Souches « résistantes » : la probabilité d'échec thérapeutique est élevée, même lorsque l'antibiotique est utilisé à forte posologie et quel que soit le mode d'administration utilisé.

Les espèces habituellement sensibles appartiennent au spectre naturel de l'antibiotique et le pourcentage de souches résistantes ne dépasse pas 10%.

CMI

Les espèces modérément sensibles sont naturellement peu sensibles à l'antibiotique mais ne possèdent pas de résistance acquise (CMI 50%

comprises entre c et C).

Les espèces résistantes : fréquence de résistance > 90%,

Résistances acquises

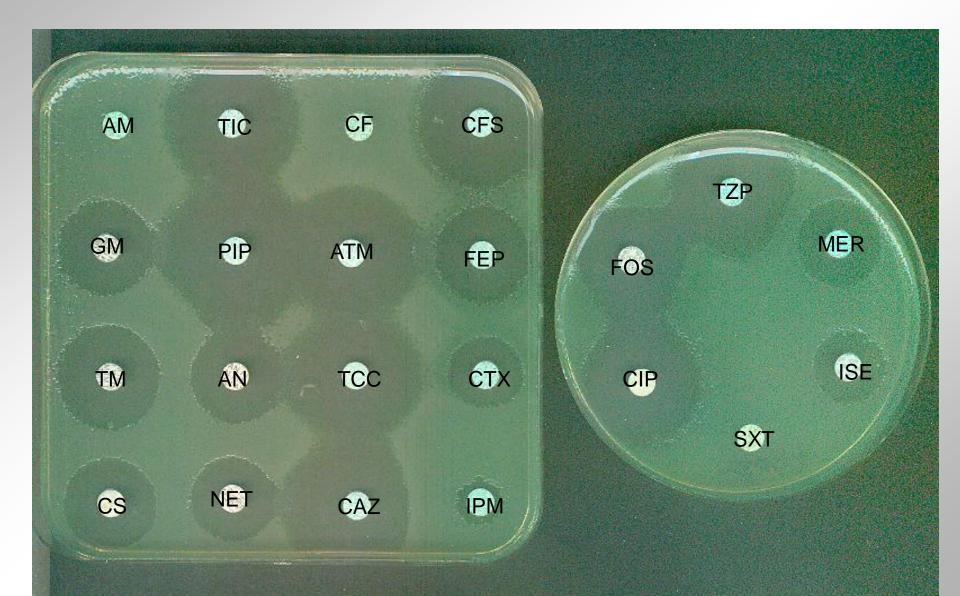
RESISTANCES CROISEES

- Un seul mécanisme biochimique
- Au sein ou non d'une même famille d'antibiotiques
- Même mécanisme de résistance
 - notion d'équivalence des antibiotiques
 - notion de phénotypes impossibles

Exemple des fluoroquinolones chez le *Staphylococcus* spp. Ofloxacine, lévofloxacine, ciprofloxacine et moxifloxacine ont une activité similaire sur les staphylocoques. La résistance est croisée entre ces molécules. Le dépistage se fait avec la norfloxacine (Si Nor S \rightarrow toutes S, si Levo ou Moxiflo R \rightarrow toutes R)

Résistances acquises

RESISTANCES ASSOCIEES

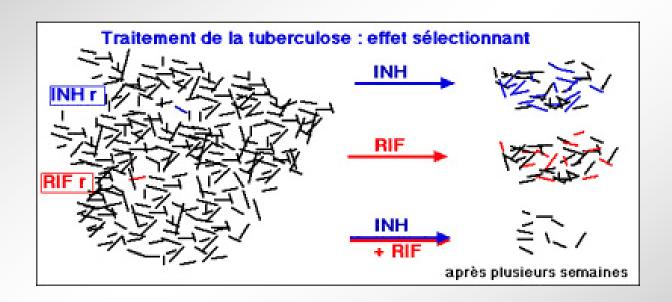

- Co-existence d'au moins 2 mécanismes de résistance qui, le plus souvent, touchent deux classes d'antibiotiques.
- Ce sont deux mécanismes biochimiques de résistance différents qui sont en cause
- Phénotypes possibles mais rares

Exemple des Staphylococcus spp. résistants à la méticilline Les staphylocoques résistants à la méticilline sont souvent résistants à de multiples familles d'antibiotiques (KT, FQ); cependant, certaines souches ont une résistance isolée à l'oxacilline.

MECANISMES GENETIQUES

- ✓ <u>Mutations chromosomiques</u>
 Modification ou perte de la fonction
 - Spontanées mais sélectionnées par l'antibiotique
 - ❖ Rares 10⁻⁶ à 10⁻¹⁰ (sauf FOS, FA, RA, Quinolones, S)
 - HN en une étape (association obligatoire)
 - Un antibiotique ou une famille d'antibiotiques
 - Stables héréditairement
 - Non transférables en dehors de la descendance
 - 20% des résistances acquises en clinique

Mutation d'une porine (imperméabilité) Porine D2 chez *P. aeruginosa*


Mutations des topoisomérases : quinolones

1 mutation dans GyrA + 1 dans ParC 2 mutations dans GyrA + 1 dans ParC PEF CIP NAL NAL CIP PEF

(d'après Soussy, l'Antibiogramme)

Exemples

MECANISMES GENETIQUES

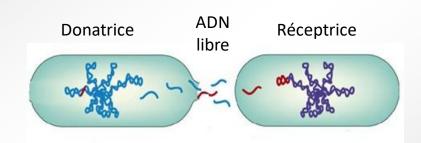
- ✓ <u>Acquisition de gènes</u> (plasmides, transposons, intégrons)
 - Shigella multi-R au Japon dans les années 55-60
 - ❖ Facteur de transfert de résistance R Transfert à partir d'une autre espèce (E. coli)
 - Plusieurs antibiotiques ou familles d'antibiotiques
 - *Relativement instables héréditairement
 - Transférables en dehors de la descendance
 - ❖80% des résistances acquises en clinique
- ✓ Mécanisme retrouvé pour ≈ tous les antibiotiques et ≈ toutes les bactéries

MECANISMES GENETIQUES

Acquisition de gènes

- → Transferts de gènes
 - Entre bactéries :
 - Transformation
 - Transduction
 - Conjugaison

Unidirectionnels : donatrice → réceptrice


Conséquences : Substitution de gènes

Addition de gènes partielle

- * Entre réplicons (chromosome, plasmides) :
 - Transposition

Transformation naturelle

→ Mécanisme général

ADN transformant

= fragments d'ADN chromosomique, db, intact, libéré par lyse bactérienne et/ou sécrétion

Réceptrice en « état de compétence » (modifications de surface et de l'ADN)

Fixation de l'ADN \rightarrow pénétration + dégradation d'1 brin (MC) \rightarrow Si homologie avec le chromosome de la réceptrice \rightarrow intégration par recombinaison homologue \Rightarrow substitution de gènes

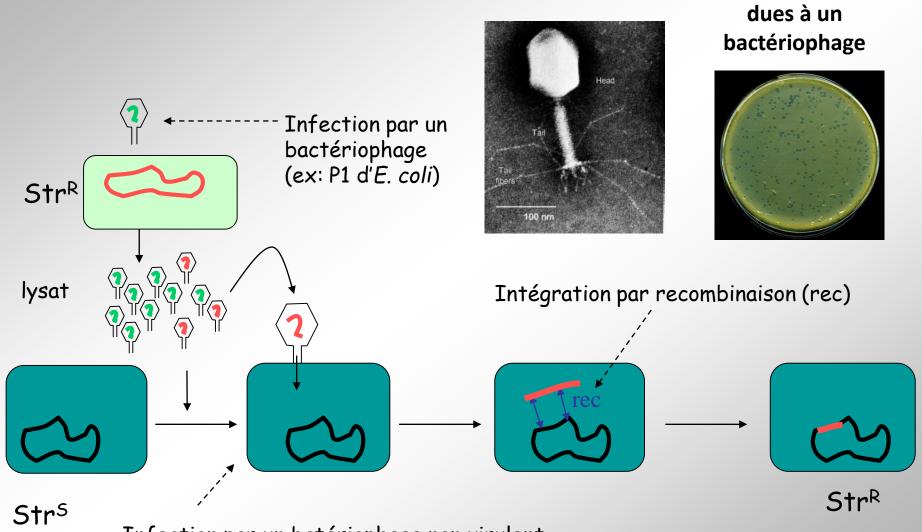
Phénomène relativement limité:

* Rares espèces naturellement transformables

(décrit chez ≈ 20 espèces):

Gram+: Streptococcus (pneumocoque)

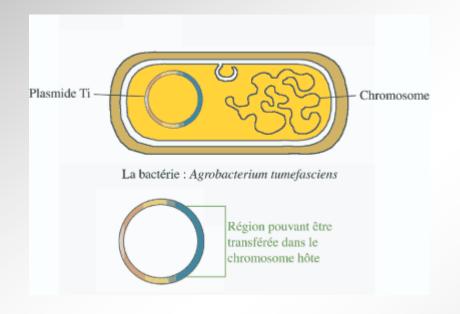
Bacillus (B. subtilis)...


Gram- : *Neisseria* (méningocoque, gonocoque) *Haemophilus* (H. influenzae) *Campylobacter jejuni...*

- **❖** Concerne ≤ 1% du chromosome
- ♣ Faible efficacité de la recombinaison (10⁻⁴-10⁻⁶)
 - ↓ avec la distance génétique entre les espèces

⇒Transfert entre bactéries du même genre, voire de la même espèce

Transduction: transfert d'ADN via un bactériophage


Plages de lyse

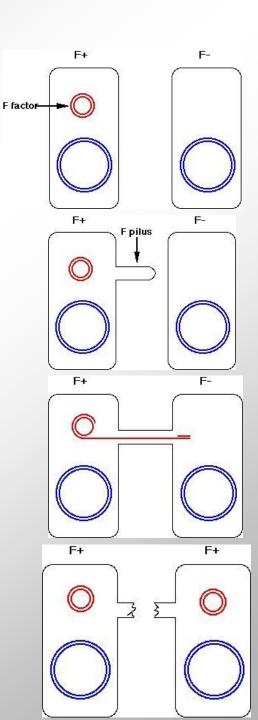
Infection par un batériophage non virulent Ayant encapsidé l'ADN portant le(s) gène(s) responsable(s) de Str^R

Conjugaison = transfert d'ADN dû à un plasmide

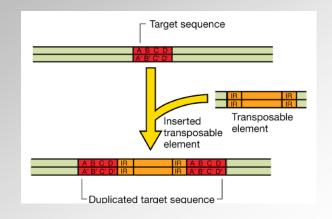
Molécules d'ADN db douées d'auto-réplication (= réplicons), Circulaires et généralement libres extra-chromosomiques Taille variable ≈ 100 fois < chromosome (0,5 à 500 kb)

Gènes codant pour la réplication autonome (*oriV*) et éventuellement le transfert (*oriT*).

± Fonctions inconstantes : résistance aux antibiotiques, facteurs de pathogénicité, etc.

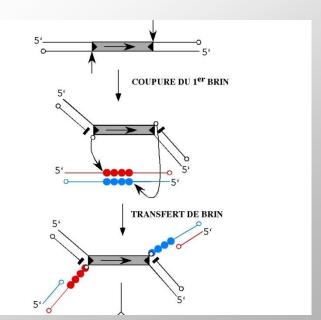

→ Auto-transfert

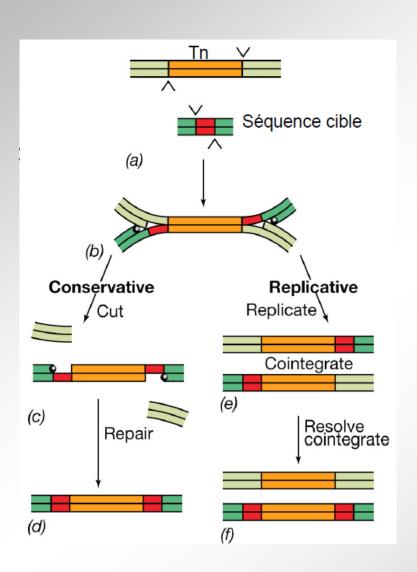
Plasmides extra-chromosomiques, conjugatifs


Production d'un pilus sexuel (Gram -) \rightarrow contact avec F- \rightarrow paire cellulaire, rétraction du pilus \rightarrow pont cytoplasmique

Signal de réplication pour le plasmide (selon le modèle du « cercle roulant »)
Transfert d'1 brin du plasmide à la réceptrice

Chez la réceptrice, synthèse du brin complémentaire → circularisation → plasmide ➡ Addition de gènes, F- → F+


Transposition = transfert d'ADN dû à des éléments transposables

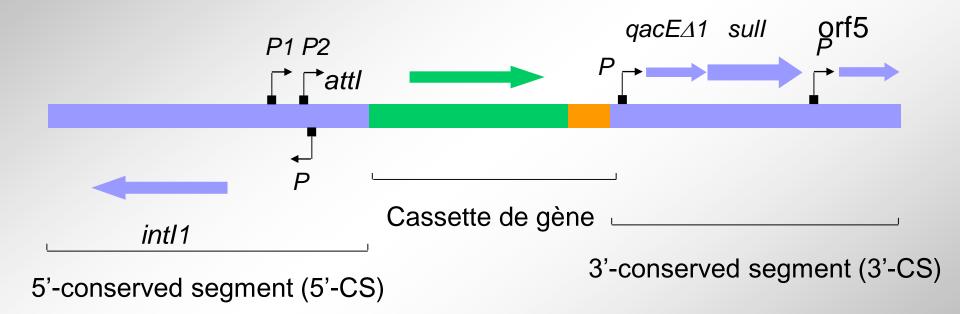

Séquences d'ADN capables de promouvoir leur propre translocation (site donneur → site récepteur):

- √ transposition intermoléculaire
- √ transposition intramoléculaire
- ✓ par recombinaison illégitime

- ✓ coupures endonucléolytiques des extrémités de l'ET
- ✓ transfert dans une molécule d'ADN cible.

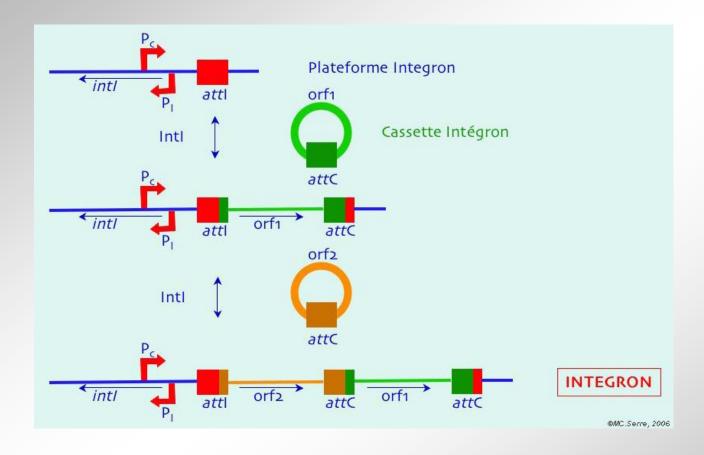
Mécanismes de la transposition

Transposition conservative

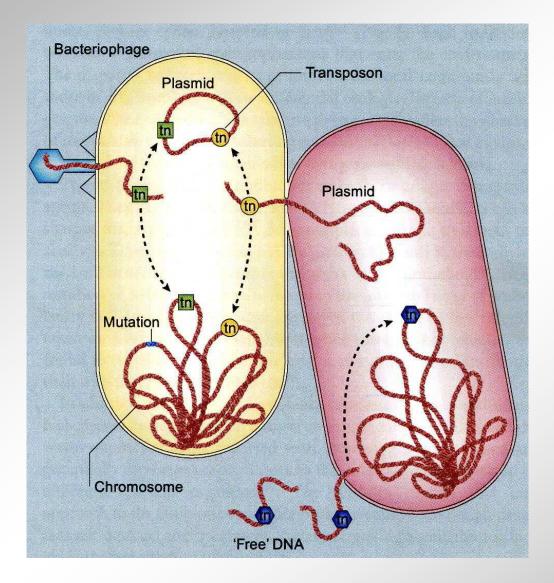

Absence de duplication de l'élément transposable (« coupé-collé ») ± perte du réplicon donneur

Transposition réplicative

Duplication de l'élément transposable (« copié-collé »), formation d'un co-intégrat, résolution du co-intégrat

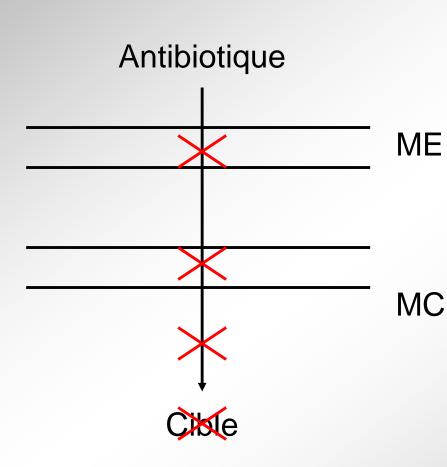

Intégrons

Système naturel de capture et d'expression des gènes sous forme de cassettes.



Plusieurs classes d'In selon la nature des gènes codant pour l'intégrase

Mouvement des cassettes



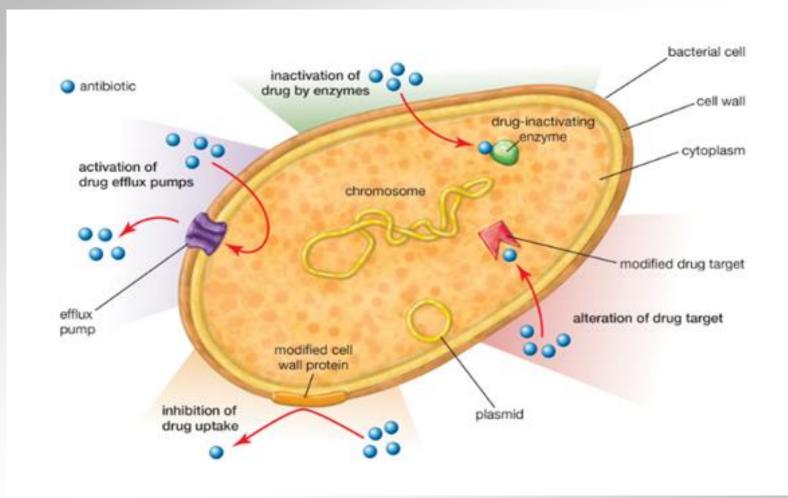
Incapables d'auto réplication, immobiles, mais localisé sur des éléments mobiles, Tn et plasmides.

Dissémination des gènes de résistance (plasmides, phages, ADN nu, Tn)

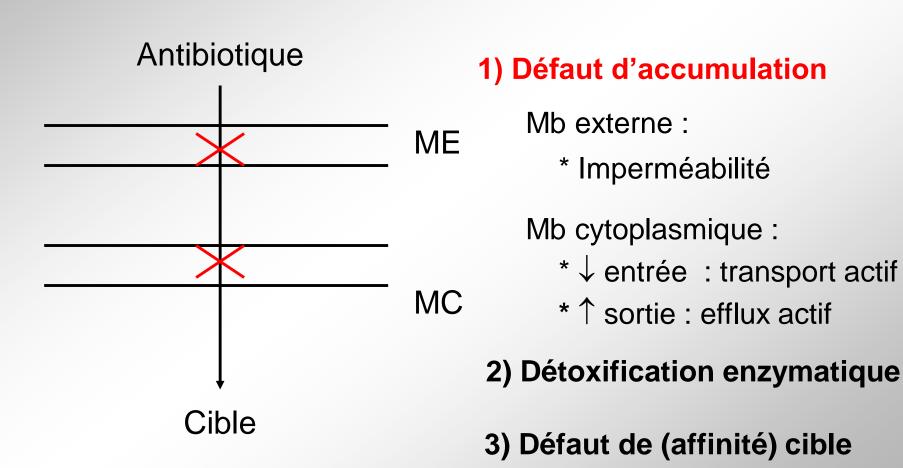
MECANISMES BIOCHIMIQUES DE LA RESISTANCE

1) Défaut d'accumulation

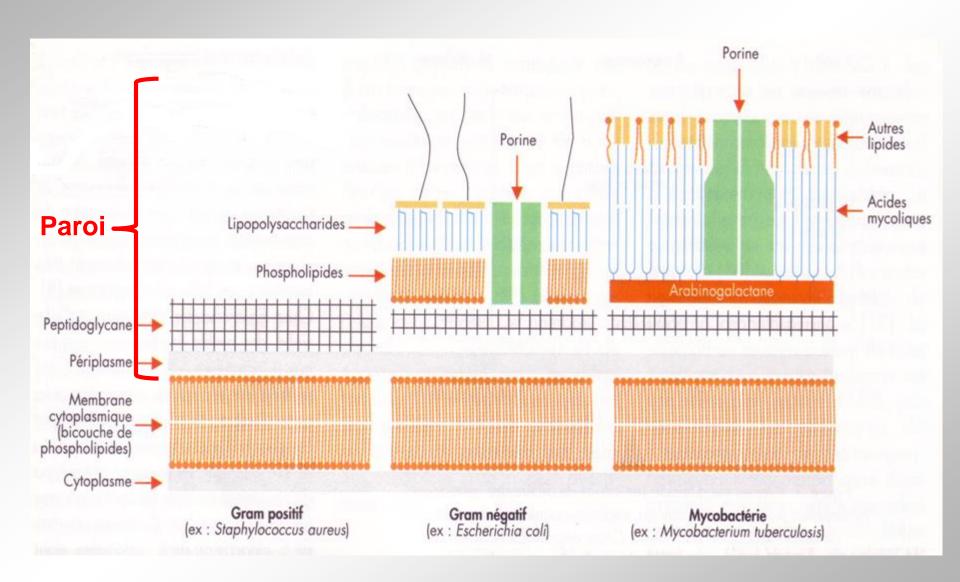
Mb externe:


* Imperméabilité

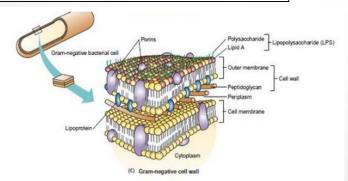
Mb cytoplasmique:


* ↓ entrée : transport actif

* ↑ sortie : efflux actif


- 2) Détoxification enzymatique
- 3) Défaut de (affinité) cible

MECANISMES BIOCHIMIQUES DE LA RESISTANCE


1) Résistance par défaut d'accumulation

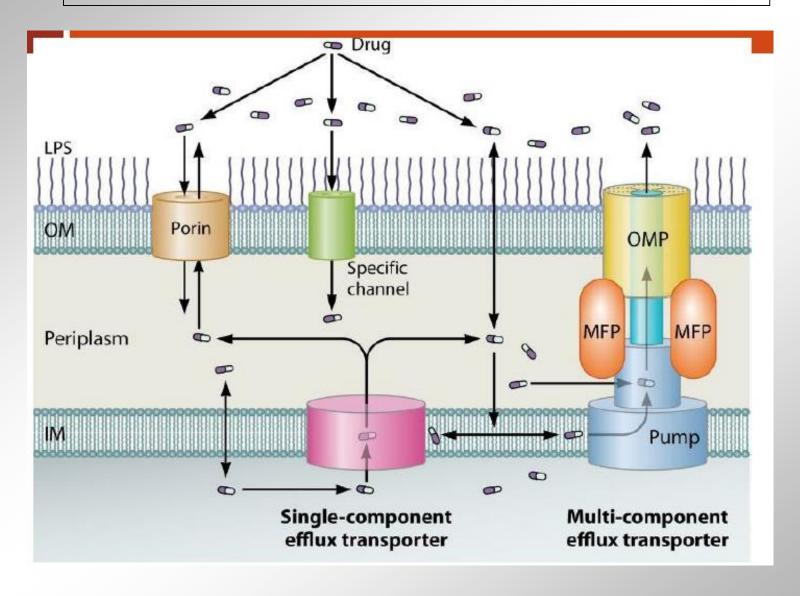
(Jarlier, Médecine Thérapeutique, 1997, 3, hors série janvier, 46-60)

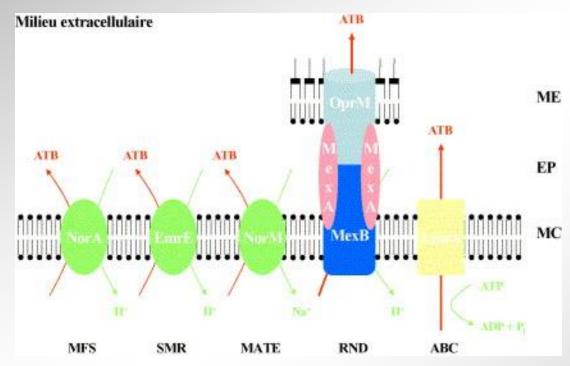
→ ME = double barrière de perméabilité

✓ LPS fortement chargé (-) :
Obstacle aux substances lipophiles

- ✓ <u>Double couche phospho-lipidique</u>: Obstacle aux substances hydrophiles et de masse moléculaire élevée (pénicilline G, M, macrolides, rifampicine, vancomycine) auxquels sont S les BGP.
- Antibiotiques actifs sur les Gram négatif = hydrophiles, capables de passer par les pores par diffusion passive (f. taille, hydrophilie, charge)
- ✓ <u>Altération des porines</u> ⇒ imperméabilité Résistance acquise à des ATB de petite taille et hydrophiles (β-lactamines, fluoroquinolones).

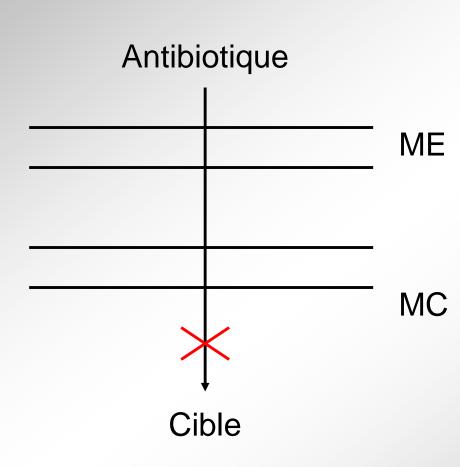
→ MC = double couche phospho-lipidique


barrière de perméabilité vis-à-vis des substances hydrophiles


Nécessité d'un transport actif impliquant des perméases spécifiques (protéines transmembranaires) + systèmes producteurs d'énergie

✓ Résistance acquise par <u>altération des systèmes de</u> <u>transport actif</u> ⇒ imperméabilité (aminosides, fosfomycine).

→ Système d'efflux actif


→ Système d'efflux actif

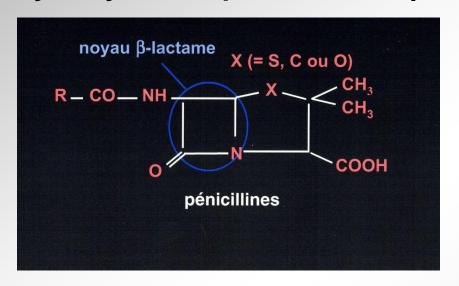
Cattoir, Pathologie Biologie 2004

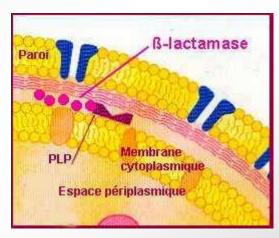
Peut concerner **plusieurs ATB** (« Multi Drug Resistance » ou MDR) : fluoroquinolones, tétracyclines, β-lactamines, aminosides etc ... ou **système spécifique** d'une famille d'antibiotiques (macrolides, tétracyclines).

MECANISMES BIOCHIMIQUES DE LA RESISTANCE

1) Défaut d'accumulation

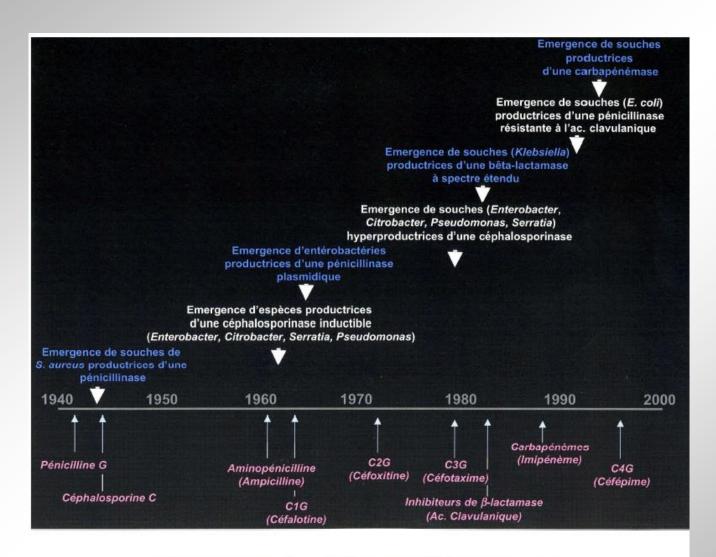
Mb externe:


* Imperméabilité

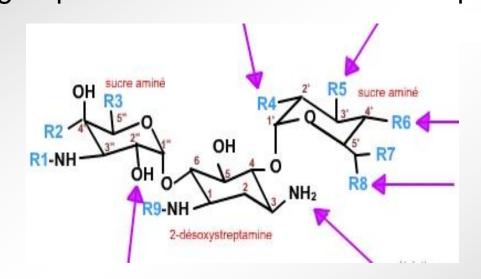

Mb cytoplasmique:

- * ↓ entrée : transport actif
- * ↑ sortie : efflux actif
- 2) Détoxification enzymatique
- 3) Défaut de (affinité) cible

2) Résistance par détoxification (inactivation) enzymatique


Hydrolyse des β -lactamines par les β -lactamases

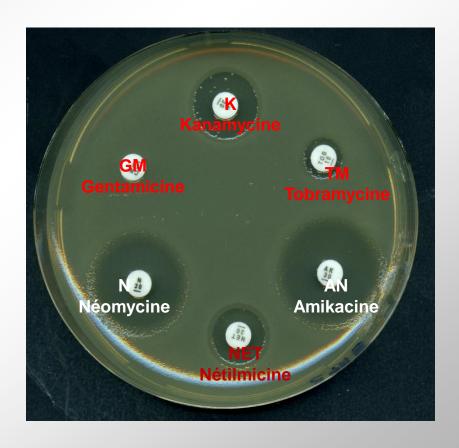
Enzymes bactériennes => hydrolyse du pont β -lactame


Inactivation totale et définitive des β -lactamines

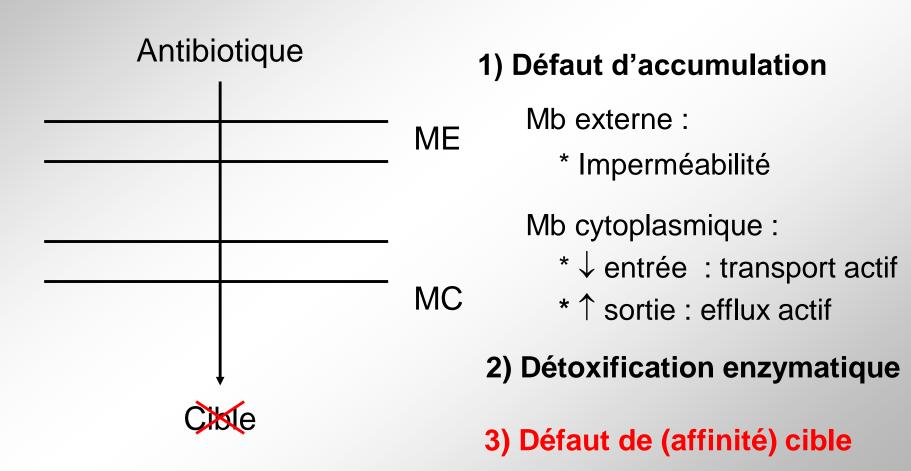
Emergence des différentes β-lactamases

Enzymes modifiant les aminosides

substituent certaines fonctions OH ou NH₂
 ⇒ ↓ affinité des aminosides pour leur cible
 ⇒ 3 groupes en fonction de la réaction qu'elles catalysent



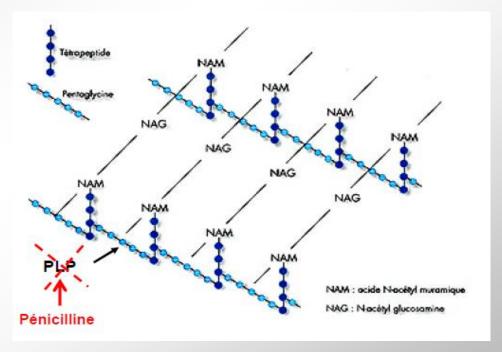
- Aminosides phosphotransférases APH
- Aminosides adénylyltransférases AAD =
 Aminosides nucéotidyltransférase ANT
- Aminosides acétyltransférases AAC

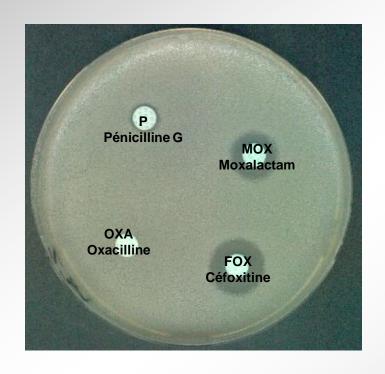

Ec60C Sauvage


Kanamycine Gentamicine Tobramycine **Amikacine** Néomycine Nétilmicine

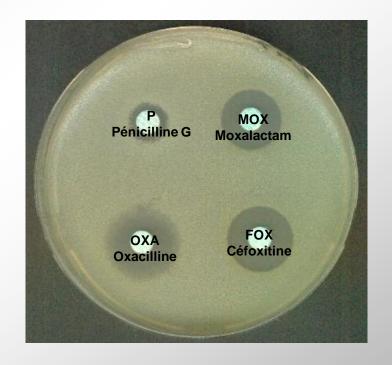
Escherichia coli Ec2945 KGTNt ⇔ AAC(3)-II

MECANISMES BIOCHIMIQUES DE LA RESISTANCE




Absence de cible : mycoplasmes, bactérie dépourvues de paroi ⇒ absence de PLP, cible des β-lactamines

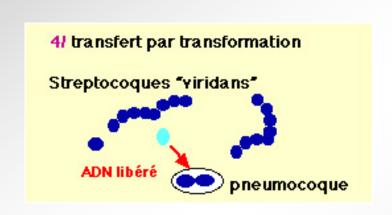
Modification de la cible de l'ATB : exemple β-lactamines Altération des PLP rendant la bactérie insensible à l'ATB

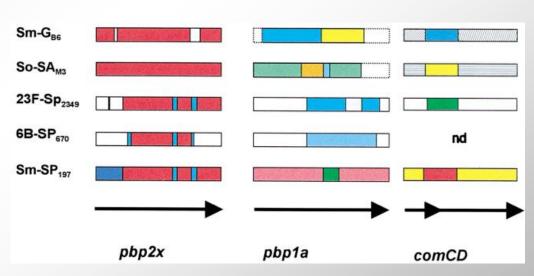


S. aureus résistants à la méticilline (SARM)

Acquisition d'une PLP additionnelle : PLP2a ou PLP 2', de très faible affinité pour la méticilline et toutes les autres β-lactamines.

S. aureus Sa231 Méti-R homogène

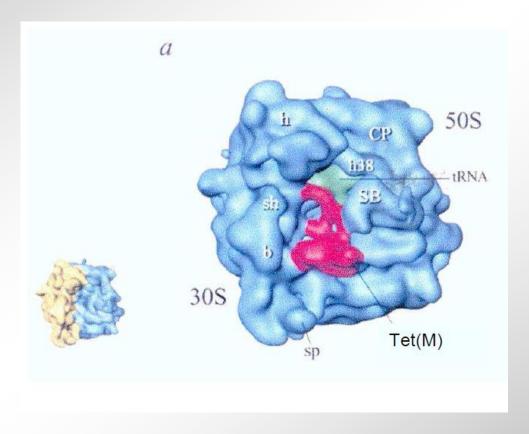



S. aureus Sa242 Méti-R hétérogène

Pneumocoques de sensibilité diminuée aux pénicillines (PSDP)

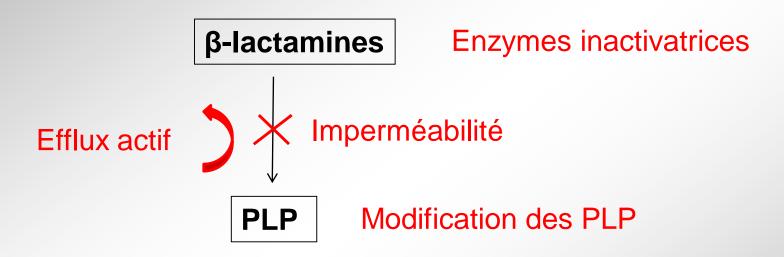
Modification des PLP (PLP 1a, 2x, 2a, 2b) ↓ d'affinité des β-lactamines pour les PLP.

PLP modifiées codées par des gènes « mosaïques » provenant de streptocoques non groupables, commensaux.


So, S. oralis; Sm, S. mitis.

Mutation des cibles : exemple quinolones diminution de l'affinité des quinolones pour les topo II (ADN gyrase et topoisomérase IV)

GyrA		GyrB	ParC		CMI Nal	CMI Cip
83	87	447	80	84	(µg/ml)	(µg/ml)
T Ser	Asp	Lys	Ser	Glu	2-4	0,007-0,25
Leu					128-256	0,25
Leu			Arg		>2000	1
Leu			Ile	Val	512	2
Leu			Arg		>2000	4
Leu		Glu		Lys	>2000	4
Leu	Tyr			Lys	>2000	8
Leu	Asn			Lys	>2000	8
Leu	Asn		Ile		>2000	8
Leu	Asn		Arg		>2000	16
Leu	Asn		Ile		>2000	16
Leu	Tyr			Lys	>2000	32
Leu	Asn		Ile		>2000	32
Leu	Asn		Ile		>2000	64
Leu	Asn		Ile	Val	>2000	64
Leu	Tyr		Ile	Lys	>2000	128


Résistances croisées entre toutes les quinolones, à des niveaux variables suivant la molécule (Q1G > FQ) et la mutation

Protection de la cible : exemples les tétracyclines Protection du ribosome par la protéine Tet(M) dont le gène est porté par un transposon (*Tn916*).

Protection du ribosome => relargage de l'ATB

Souvent, cumul de mécanismes génétiques ± biochimiques → Bactéries MultiRésistantes (BMR)

- niveau de résistance variable
- plusieurs mécanismes de résistances possibles pour un même ATB
- résistance croisée ou non entre ATB de même famille ou de familles différentes.

Nécessité:

- d'explorer la sensibilité des bactéries aux ATB (antibiogramme)
- d'avoir une utilisation rationnelle des ATB
- surveiller l'émergence des souches résistantes
- recherche de nouveaux agents antibactériens cribler des substances naturelles bloquer les mécanismes de résistance connus identifier de nouvelles cibles bactériennes