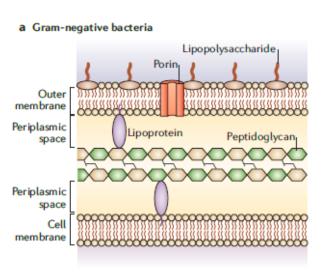
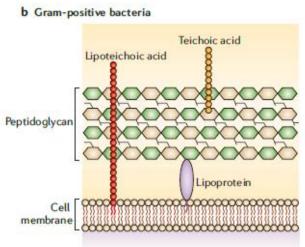
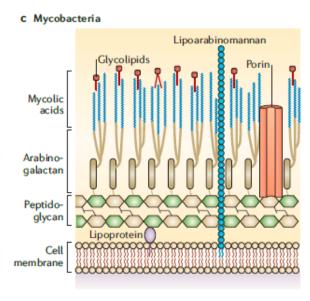
Mycobacterium tuberculosis et émergence de la résistance aux antibiotiques


UER Microbiologie Générale 2


Olivia Peuchant


2023-2024

Caractères bactériologiques

- → Ordre des Actinomycetales
 - 1 seul genre Mycobacterium
- → Caractères bactériologiques
 - Paroi : acides mycoliques
 - Bacilles acido-alcoolo-résistants (BAAR)
 - Coloration de Ziehl Neelsen

Mycobactéries du complexe tuberculosis

- M. tuberculosis
- M. africanum
- M. canetti

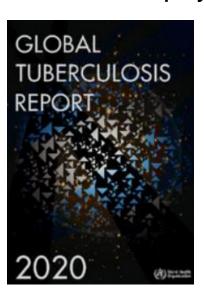
Réservoir exclusivement humain

- M. bovis
- M. bovis BCG
- M. microti
- M. pinnipedii
- M. caprae

Réservoir animal, rarement transmissible à l'homme

- → Au niveau mondial (rapport OMS 2020)
- 10 millions de nouveaux cas en 2019 8,6% VIH+
- 1,2 millions de décès en 2019 chez VIH –
 208 000 décès chez VIH +

létalité > 50% dans certains pays africains



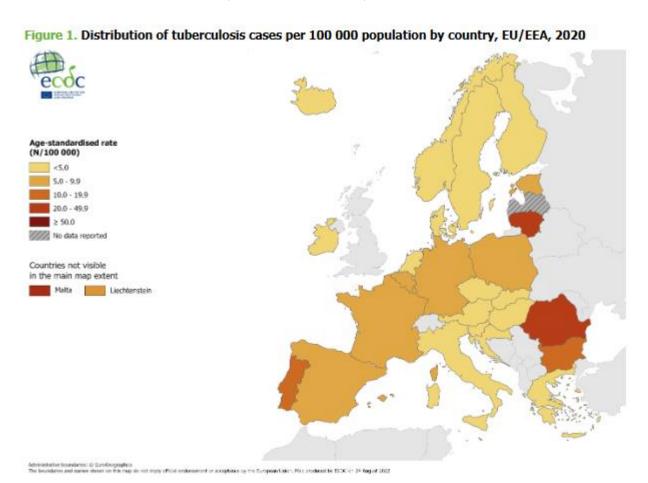
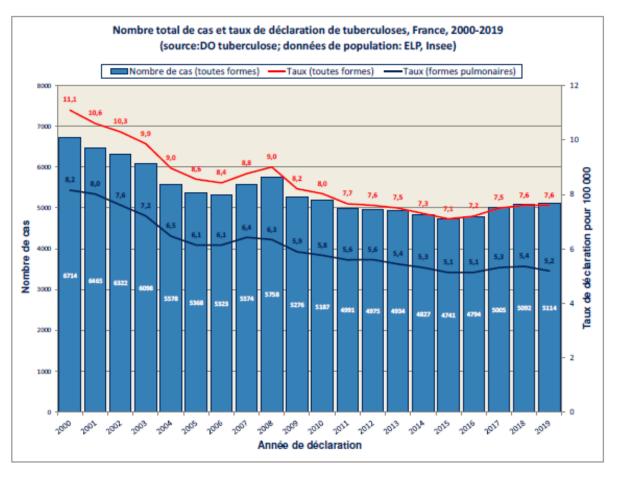


FIG. 4.3
Estimated TB incidence in 2019, for countries with at least 100 000 incident cases

8 pays = 2/3 des cas mondiaux (<u>Inde, Chine, Indonésie</u>, Philippines, Pakistan, Nigeria, Bangladesh et Afrique du Sud)

→ TB notifications, EU/EEA, 2020



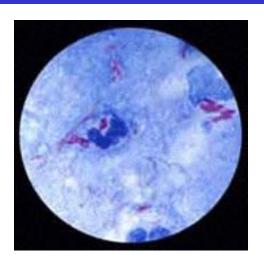
33 148 TB cases notified in 29 EU/EEA countries Notification rate of 7.3 per 100 000 population

→ En France

- › Maladie à déclaration obligatoire (DO)
- Données SPF 2019

Tuberculose maladie

- → Localisation pulmonaire (70 à 80% des cas)
 - Source de la transmission
 - Toux, fièvre, altération de l'état général, amaigrissement, sueurs nocturnes
 - Signes radiologiques: nodules isolés ou multiples, infiltrats, cavernes


→ Localisations extra-pulmonaires

- Ganglionnaires
- Ostéo-articulaires (Mal de Pott)
- Plus rares mais graves : méningites, miliaires
 - Généralement pauvres en bacilles

Figure 3 : Adénopathie cervicale volumineuse (J. Mazza-Staldera, 2012)

Diagnostic bactériologique

- → Examen direct
 - > Coloration de Ziehl Neelsen
 - > Sensibilité
 50% pour les éch. d'origine pulmonaire
 < 40% pour les extra-pulmonaires

- > Spécificité : ne permet pas de différencier les ≠ espèces de mycobactéries
- > Avantages : rapide et peu coûteux
- > Aspect semi-quantitatif :

Nombre de bacilles obs	ervés	Réponse
	Ziehl-Neelsen (× 1 000)	
	Aucun	Absence de BAAR
	1 à 2 en 200 champs	Équivoque, à contrôler
	1 à 10 en 100 champs	Présence de BAAR (+)
	1 à 10 en 10 champs	Présence de BAAR (++)
	1 à 10 par champ	Présence de BAAR (+++)
	> 10 par champ	Présence de BAAR (++++)

BAAR : bacille acido-alcoolo-résistant.

Diagnostic bactériologique

→ Culture

- > Culture en milieu solide
 - Milieu de Löwenstein-Jensen, milieu de Coletsos
 - culture en 21 à 30 jours, colonie beige en choux fleur

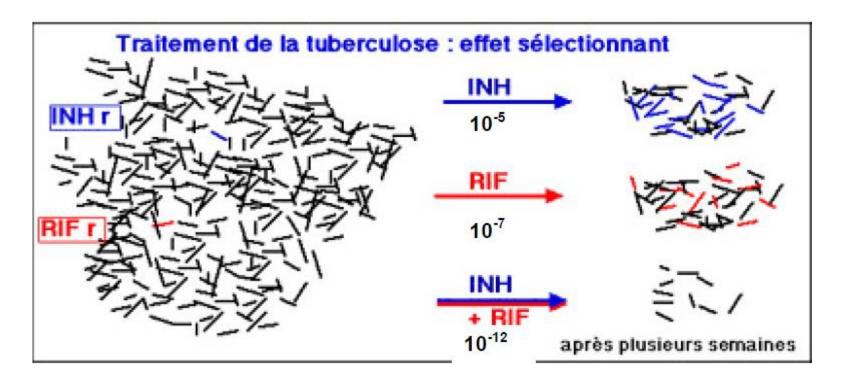
> Culture en milieu liquide

- automatisée ou manuelle
- culture en 5 à 15 jours

Milieu MGIT. Tubes positifs avec fluorescence rouge du ménisque et du culot due à la réduction du sel de Ruthénium.

Diagnostic bactériologique

- → Amplification génique
 - A partir de l'échantillon
 - > Nombreux kits commercialisés (PCR en temps réel +++)


Tuberculose	Sensibilité	Spécificité
Respiratoire M+	98%	98%
Respiratoire M-	72%	96%
Extra-respiratoire (M-)	30%	98%

Moins sensible que la culture!

Un résultat négatif n'exclut pas un diagnostic de tuberculose

Indication principale :
 échantillons pulmonaires M+ ↔ identification du complexe tuberculosis

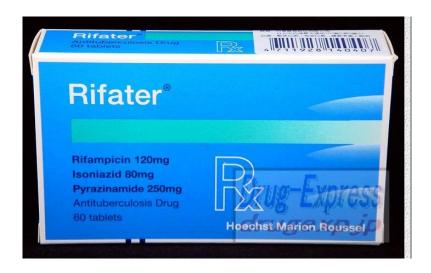
Traitement - Bases microbiologiques

Antibiotique	Concentration	Fréquence de mutants
pyrazinamide	100mg/L	10-5
isoniazide	0,2mg/L	10-6
streptomycine	2mg/L	10-6
rifampicine	1mg/L	10-8
bedaquiline	0,5mg/L	10-8
linézolide	8mg/L	10-9

Traitement

- > Isoniazide : activité bactéricide initiale
- > Rifampicine : activité stérilisante et bactéricide
- > Pyrazinamide : activité stérilisante
- > Ethambutol : Activité bactéricide faible, « protège » la

rifampicine en cas de résistance primaire à l'isoniazide


	caverne	caséum	Zones acides (macrophages, nécrose récente)
Isoniazide	+++	0	0
Rifampicine	++	+++	++
Ethambutol	+	0	0
Pyrazinamide	+/-	0	+++

Principes du traitement

→ Traitement curatif de la tuberculose

- INH + RIF + ETH + PZA : 2 mois

- INH + RIF: 4 mois

Diagnostic des résistances chez *M.tuberculosis*

Etude de la sensibilité aux antibiotiques

- → ATB pour toute nouvelle découverte de tuberculose pour toute souche isolée après 3 mois de traitement
- > Antibiotiques de première ligne

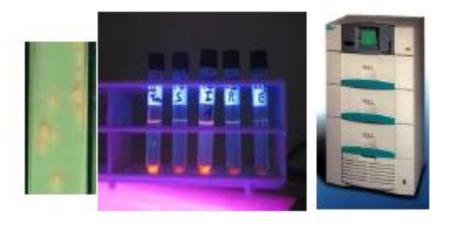
<u>Isoniazide</u> : INH <u>Rifampicine</u> : RIF Ethambutol : EMB Pyrazinamide : PZA

> Antibiotiques de deuxième intention

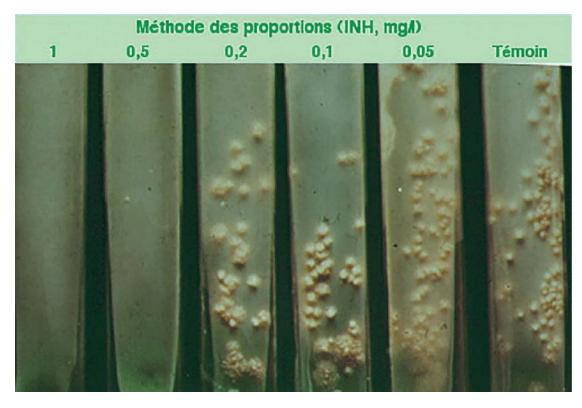
Streptomycine Amikacine Kanamycine
Cyclosérine Thiocétazone PAS
Capréomycine
Ethionamide
Linézolide
Ofloxacine Moxifloxacine Levofloxacine

Résistance : définitions

- → Résistance primaire : patient est contaminé par une souche R
- → Résistance secondaire : sélection de mutants R sous ttt


- MDR : multidrug resistance
 Souche résistante à la rifampicine et à l'isoniazide
- > Pré-XDR
 Souche MDR + résistance aux fluoroquinolones
- XDR : extensive drug resistance
 Souche MDR + résistance aux fluoroquinolones et à la bédaquiline ou au linézolide

Méthodes phénotypiques


Méthode des proportions (Canetti, Rist et Grosset)

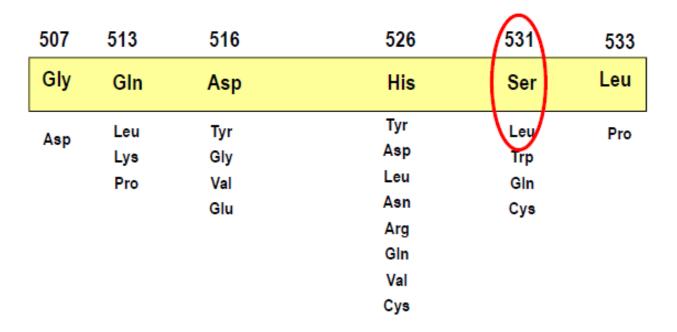
- → Méthode de référence
- → Tolérance d'un % de R (proportion critique) dans la population pour déterminer si la souche est sensible ou résistante.
 - → proportion critique varie de 1% à 10% selon l'AB

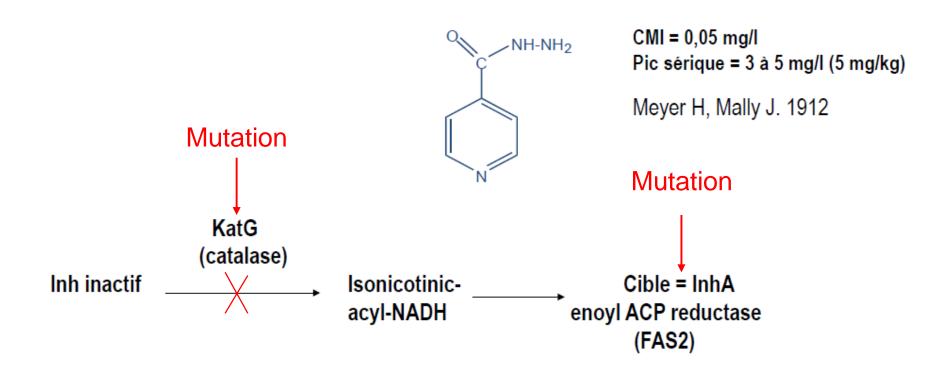
Limite : lenteur de croissance de *M. tuberculosis*

Intérêt des tests génotypiques : études des gènes codant des protéines impliquées dans la résistance

Milieux solides LJ Lecture précoce à 21 jours lecture définitive à 42 jours

Milieux liquides MGIT ou Versatrek Résultats en 10-15 jours


Diagnostic moléculaire de la résistance

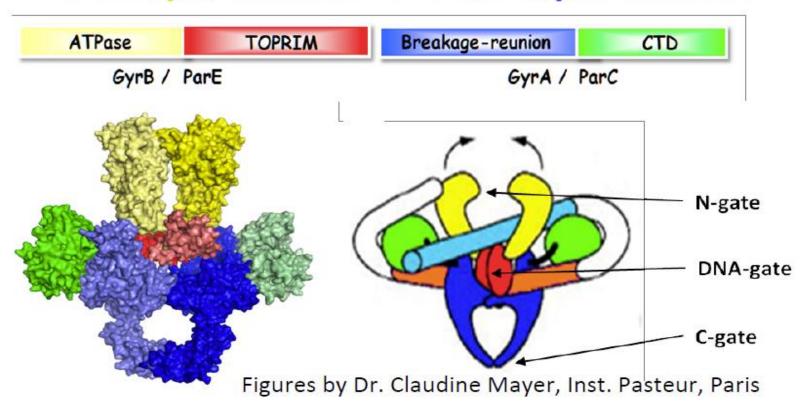

Antibiotiques	Gène principal	Complément	
Rifampicine	гроВ		
Isoniazide	<i>kat</i> G , promoteur <i>inhA, inhA</i>		
Pyrazinamide	pncA (tout le gène)	pyrazinamidase	
Ethambutol	<i>emb</i> B (codon 306)	Zone intergénique <i>emb</i> C/A	
Ethionamide	promoteur <i>inhA, eth</i> A	e <i>th</i> R	
Streptomycine	<i>rps</i> L (43,88), <i>rr</i> s région 530	gidB	
Kana, amikacine	rrs région 1401 et 1490	eis	
Capréomycine	rrs région 1401 et 1490	tlyA	
Fluoroquinolones	<i>gyr</i> A (codon 88 à 94)	<i>gyr</i> B	
Linézolide	rrl		
Bédaquiline	atpE	Rv0678	

Rifampicine : mécanisme de résistance

- → 95 % des souches portent mutations ponctuelles dans la région rpoB codant la sous-unité beta de l'ARN polymérase, comprise entre les codons 507 et 533
- Diminution de l'affinité de l'ARN polymérase pour la rifampicine

Isoniazide

⇒Inhibition des acides mycoliques à longues chaines (FASII) = inhibition synthèse de la paroi


Analyse des gènes de la résistance aux antituberculeux : RESISTOME

Antibiotiques	Gène principal Complément		
Rifampicine	гроВ		
Isoniazide	<i>kat</i> G , promoteur <i>inhA, inhA</i>		
Pyrazinamido	nncA (tout le gène)	nyrazinamidaso	
Ethami	Etham Ethion Strepto Kana, : Ethion Official Détection d'une souche MDR (R rifampicine et R isoniazide)		
Strepto			
Kana,			
Capréd			
Fluoro			
Linézolide	rrl		
Bédaquiline	atpE	Rv0678	

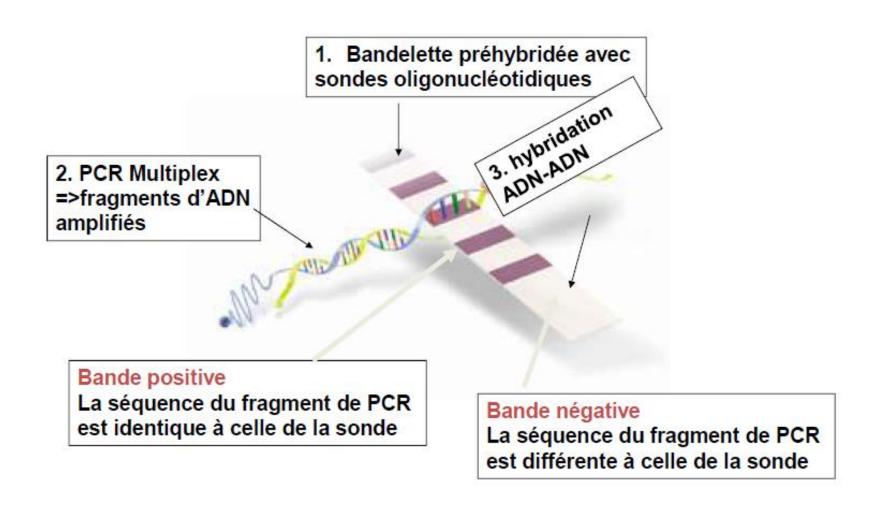
FQ: mécanisme de résistance

The Fluoroquinolone Target is the DNA Gyrase

Gyrase Structure
Two GyrB subunits and two GyrA subunits

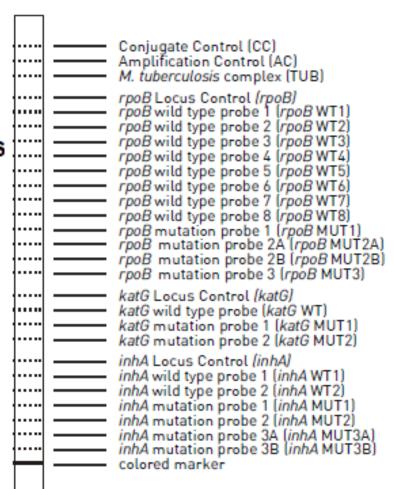
Analyse des gènes de la résistance aux antituberculeux : RESISTOME

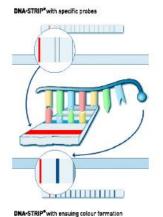
Antibiotiques	Gène principal	Complément	
Rifampicine	гроВ		
Isoniazide	katG , promoteur inhA, inhA		
Pyrazinamide	pncA (tout le gène)	pyrazinamidase	
Ethambutol	embB (codon 306)	Zone intergénique <i>emb</i> C/A	
Ethionamide	promoteur inhA, ethA	ethR	
Streptomycine	<i>rps</i> L (43,88), <i>rr</i> s région 530	gidB	
Kana, amikacine	rrs région 1401 et 1490	eis	
Capréomycine	rrs région 1401 et 1490	tlyA	
Fluoroquinolones	<i>gyr</i> A (codon 88 à 94)	gyrB	
Liná			

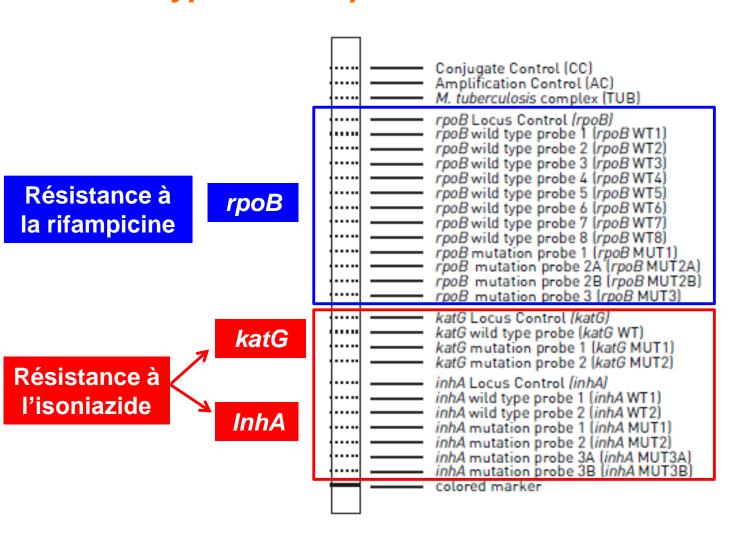

Liné

Béd

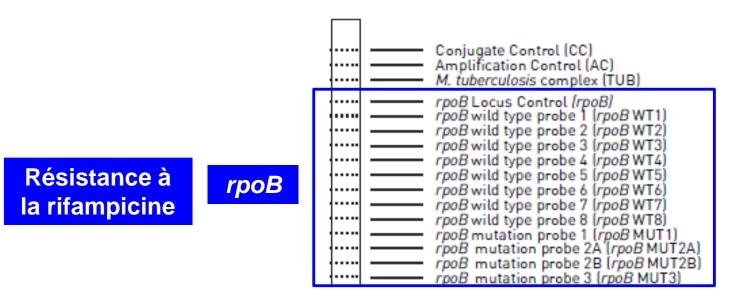
Détection d'une souche pré-XDR (R rifampicine + R isoniazide + R FQ)

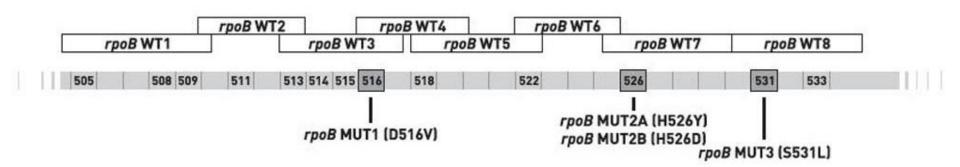

Tests de biologie moléculaire


- → Mise en évidence de mutations dans les gènes qui confèrent la résistance à l'antibiotique
- → Amplification du gène (ou d'une fraction) et étude des mutations sur les amplifiats (hybridation sur sondes spécifiques ou séquençage)
- → Leur développement dépend de plusieurs facteurs:
 - Connaissance des mécanismes de résistance
- Pertinence médicale : impact de la résistance sur le succès du traitement
 - > Nombre de gènes impliqués dans la résistance
 - › Difficultés de l'antibiogramme phénotypique


→ GenoType MTBDR*plus* (Hain Lifesciences)

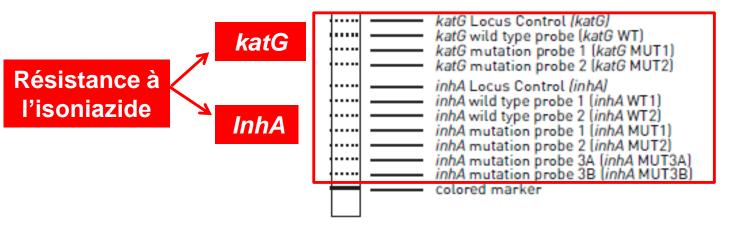
Sondes d'oligonucléotides complémentaires aux séquences d'ADN





→ GenoType MTBDR plus: détection MDR

→ GenoType MTBDRplus (Hain Lifesciences)


→ GenoType MTBDR plus (Hain Lifesciences)

> katG

manquante(s)	Codon analysé	Sonde mutation	Mutation
katG WT	315	katG MUT1	S315T1
		katG MUT2	S315T2

» promoteur du gène inhA

Sonde(s) type sauvage manquante(s)	Position analysée d'acide nucléique	Sonde mutation	Mutation
inhA WT1	-15	inhA MUT1	C15T
	-16	inhA MUT2	A16G
inhA WT2	-8	inhA MUT3A	T8C
	-	inhA MUT3B	T8A

→ GenoType MTBDRs/ V2.0 : détection pré-XDR

> FQ: gènes gyrA et gyrB

> Aminosides: rrs et eis CC AC TUB Control gyv.4 gyr.4 WT1 (85-90) gyr.4 WT2 (89-93) gyr.4 WT3 (92-97) gyr.4 MUT1 (A90V) gyr.4 MUT2 (\$91P) gyrA g17.4 MUT3A (D94A) Résistance aux 217.4 MUT3B (D94N/Y) fluoroquinoles gyr.4 MUT3C (D94G) gyr.4 MUT3D (D94H) Control gyrB gyrB g17B WT1 (536-541) gyrB MUT1 (N538D) gyrB MUT2 (E540V) Control ers rrs WT1 (1401-1402) rrs WT2 (1484) rrs Résistance aux rrs MUT1 (A1401G) rrs MUT2 (G1484T) aminosides / peptides Control eis cycliques eis WT1 (G-37) eis els WT2 (C-14, C-12, G-10) eis WT3 (C-2) eis MUT1 (C-14T) CM

→ Avantages

- › Diagnostic rapide
- Souches, échantillons pulmonaires
- Taux de réussite du test: 100% culture

80% échantillons M+

<50% échantillons M-

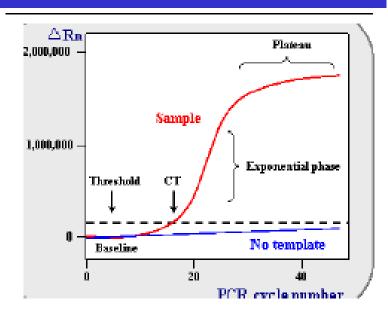
→ Limites

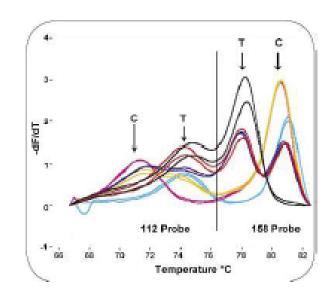
Ne <u>détectent pas toutes</u> les mutations associées à la résistance aux antibiotiques testés

Exemple de rendu de résultats:

Mutation dans le gène *gyrA*: Absence, en faveur d'une sensibilité aux FQ.

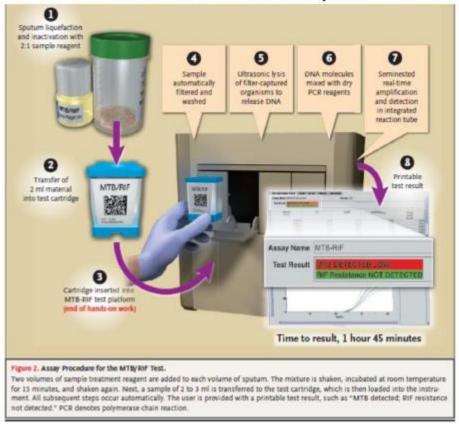
Antibiogramme indispensable pour donner la sensibilité d'une souche


Méthode 2 : PCR en temps réel


\rightarrow PCR

→ Détection de mutations pendant l'amplification (sondes, température de fusion, HRMA)

→ Trousses


- Magicplex MDR-TB-Real-Time Detection (Seegene)
- > Roche Light Cycler
- > BD Max
- > Technique Maison

Méthode 2 : PCR en temps réel

Gene Xpert * MTB/RIF Cepheid (USA) gène rpoB => résistance à la rifampicine méthode facilement praticable

Résultat en 2 heures après réception au laboratoire

Boehme CC et al. NEJM 2010

La détection d'une résistance à la rifampicine est hautement prédictive d'une souche MDR

Méthode 2 : PCR en temps réel

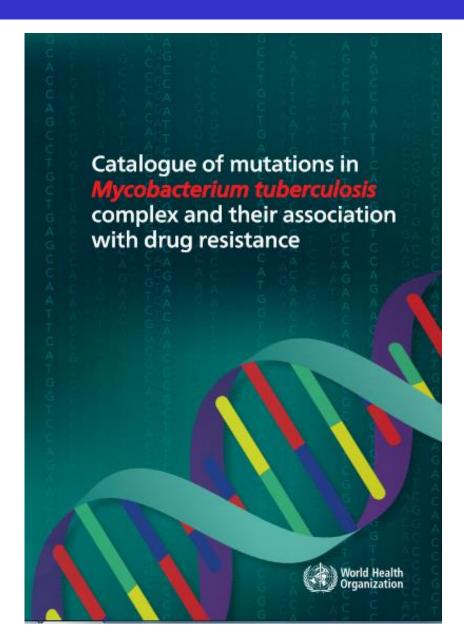
Cassette Xpert MTB/XDR

Médicament	Cible génétique	Régions du codon	Nucléotide interrogé	
	Promoteur du gène inhA	S.O.	-1 à -32 intergénique	
Isoniazide	katG fabG1	311–319 199–210	939–957 597–630	
	Région intergénique oxyR-ahpC	S.O.	-5 à -50 intergénique (ou -47 à -92) ^{a,b}	
Éthionamide	Promoteur du gène inhA	S.O. 87–95	-1 à -32 intergénique 261–285	
Fluoroquinolones	gyrA gyrB	531–544 (ou 493–505) ^{a,c}	1596–1632	
Amikacine,	rrs	S.O.	1396–1417	
kanamycine, capréomycine	Promoteur du gène eis	S.O.	-6 à -42 intergénique	

Méthode 3 : séquençage génome complet

Whole genome sequencing of *Mycobacterium tuberculosis* for detection of drug resistance: a systematic review

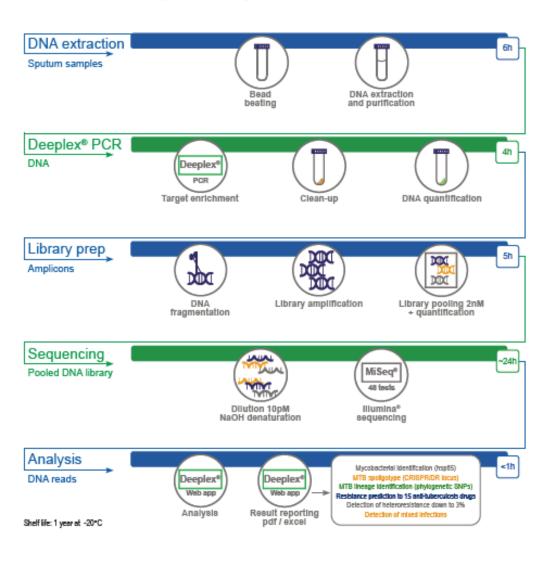
Table 1
Drugs tested in the reports [4—712.14.22—35], genes associated with drug resistance and whole genome sequencing performance characteristics^a

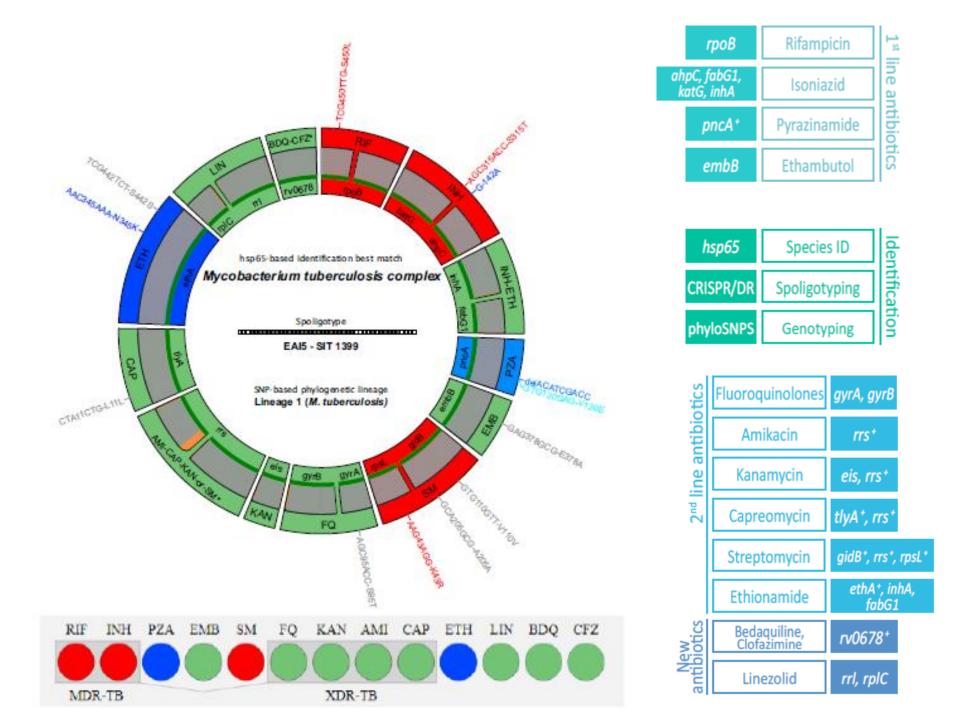

Drug	No of studies No of s	No of strains	rains Genes and other relevant Mycobacterium tuberculosis genome regions	Sensitivity, % (range)		Specificity, % (range)	
				Low	High	Low	High
Rifampicin	19	6286	rpoB, rpoA, rpoC	89,2	100.0	66.7	100.0
Isoniazid	19	5800	katG, inhA, oxyR-ahpC, fpbC, Rv1592C, Rv1772, Rv2242, fabD fabG1, kasA, accD, oxyR, ndh, fadE24, nat, kasA, mabA, p_inhA, accD6, efpA	90,0	100,0	83,3	100,0
Ethambutol	17	6059	embA, embB, embC, embR, iniA, iniB, iniC, Rv3124, manB, PPE49, rmlD, manB	71,4	100.0	15,4	95,8
Pyrazinamide	13	6130	pncA, p_pncA, rpsA, panD	43,2	100.0	66,7	100,0
Streptomycin	16	3953	rpsL, rrs, gidB	57.1	100.0	40.0	100,0
Amikacin ^b	8	1471	rrs, eis, gidB, tlyA	80,0	100.0	50.0	100,0
Capreomycin ^b	8	1553	rrs, eis, gidB, tlyA	60.7	100.0	13,7	100,0
Kanamycin ^b	7	1289	rıs, eis, tlyA	75.0	100.0	0	100,0
Injectable drugs ^d	4	518	rrs, eis, gidB, tlyA	37.0	100.0	50.0	100,0
Cipro floxac in	1	300	gyrA, gyrB	100,0	100.0	98,9	98,9
Ofloxacin ^c	6	1564	gyrA, gyrB	80.0	100.0	80.0	100,0
Moxifloxacin ^c	3	1318	gyrA, gyrB	60,0	90,9	68.7	100,0
Levofloxacin ^c	-	_	gyrA, gyrB	_	_	_	_
Gat ifloxacin ^c	-	_	gyrA, gyrB	-	_	_	_
Fluoroquinolones ^e	9	504	gyrA, gyrB	89,2	100.0	100.0	100.0
Ethionamide	8	867	ethA, ethR, p_inhA, inhA, fabG1	16,7	100,0	50.0	100,0
Prot hionam ide	3	502	p_ethA, ethA	40.0	100.0	29.4	80.0
Rifabutin	1	2	rpoC	100,0	100.0	_	_
Para-aminosalicylic acid ^f	1	11	thyA, folC, ribB	75.0	75.0	100.0	100,0
Trimethoprim/sulfamethoxazole	1	2	dfrA	_	_	100,0	100,0
Minocycline	1	2	whiB7	100,0	100.0	100.0	100.0
Linezolid	2	5	Rrl, rplC	_	_	100,0	100,0
Bedaquiline	_	_	Rv0678	_	_	_	_
Clofazimine	_	_	Rv0678	_	_	_	_

A Not all appear upon tocted in all studies

→ Performances très hétérogènes, besoin de standardisation

Papaventsis, CMI, 2017


Méthode 3 : séquençage génome complet



Ν	Autation catalogue	11
	Reading the tables	11
	An illustrative example	13
	Rifampicin	15
	Isoniazid	20
	Ethambutol	22
	Pyrazinamide	25
	Levofloxacin and moxifloxacin	36
	Bedaquiline and clofazimine	39
	Linezolid	41
	Delamanid	42
	Amikacin	43
	Streptomycin	49
	Ethionamide	48

Méthode 3 : séquençage génome complet

Deeplex® Myc-TB workflow

	Smear microscopy	Xpert MTB/RIF	Phenotyping	WGS (nanotechnology)
Sensitivity	Limit of detection 10 ⁵ cfu/ml	 Limit of detection 10² cfu/ml 	Limit of detection 10 cfu/ml	Limit of detection falling
Turnaround time	Same day	Same day	• Weeks	Promise of same day
Clinical information	 First line treatment given if acid fast bacilli seen Second line treatment given on epidemiological grounds 	First line treatment given on detection of Mtbc DNA Second line treatment offered if rpoB mutation detected	Treatment individualised	Treatment individualised
Cost considerations	Low cost per smear	 Subsidised to ~ \$10 in priority high-burden countries 	 High capital investment costs for laboratory and staff training costs 	Potentially no need for a laboratory or specialist staff
Skills base required	Operator dependent	Operator independent	Operator dependent	Operator independent

Fig. 2. Comparison of currently available diagnostic modalities to nanotechology-based whole-genome sequencing.

Recommandations (HCSP, 2015)

- →Nouveau patient échantillon M+ ou culture + (échantillon M-):
 - > Test moléculaire pour détection complexe tuberculosis

<u>et</u>

> recherche de mutations conférant la résistance à la rifampicine (rpoB), ± isoniazide.

→ Dès détection de cas MDR/XDR

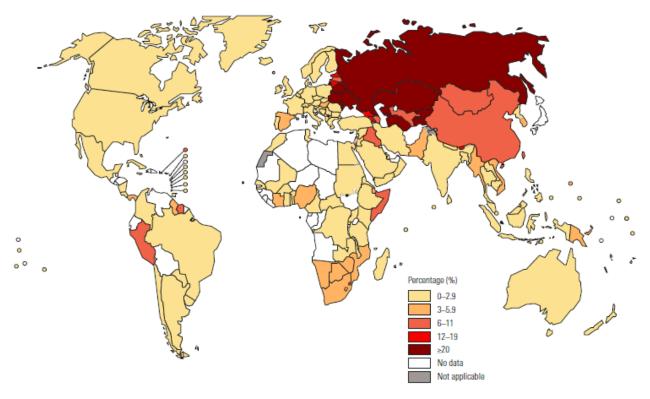
Envoi de l'échantillon / souche au CNR:

Tests phénotypiques de sensibilité pour tous les antituberculeux existants (1ère et 2^{nde} ligne)

<u>et</u>

Détection moléculaire de tous les gènes connus pour être impliqués dans la résistance aux antituberculeux (résistome)

⇒ Traitement adapté


Mutations ≠ Résistance

- Bernard, AAC 2015
 - Etude prospective des mutations gyrA et gyrB impliquées ou pas dans la résistance aux fluoroquinolones chez M. tuberculosis
 - 605 souches reçues au CNR entre 2007 et 2012
 - Mutations *gyrA* : 78% associées à résistance
 - Mutations *gyrB* : 36% associées à résistance

Epidémiologie MDR et XDR

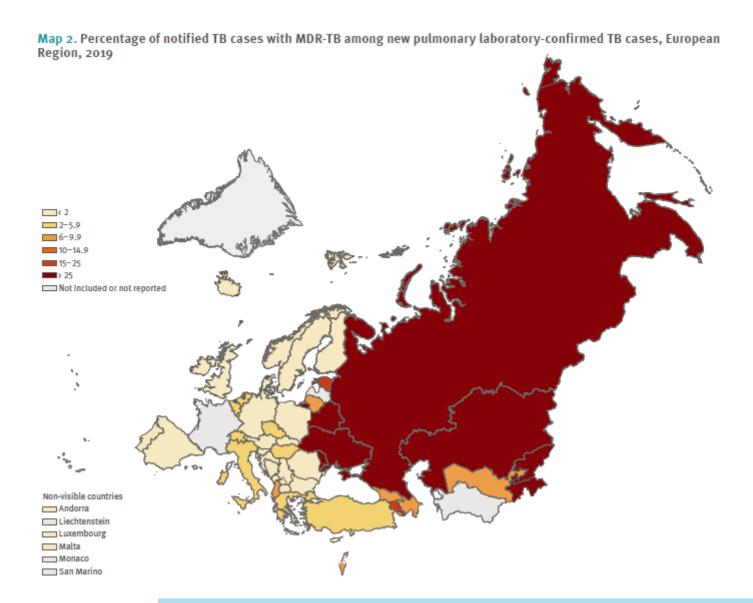
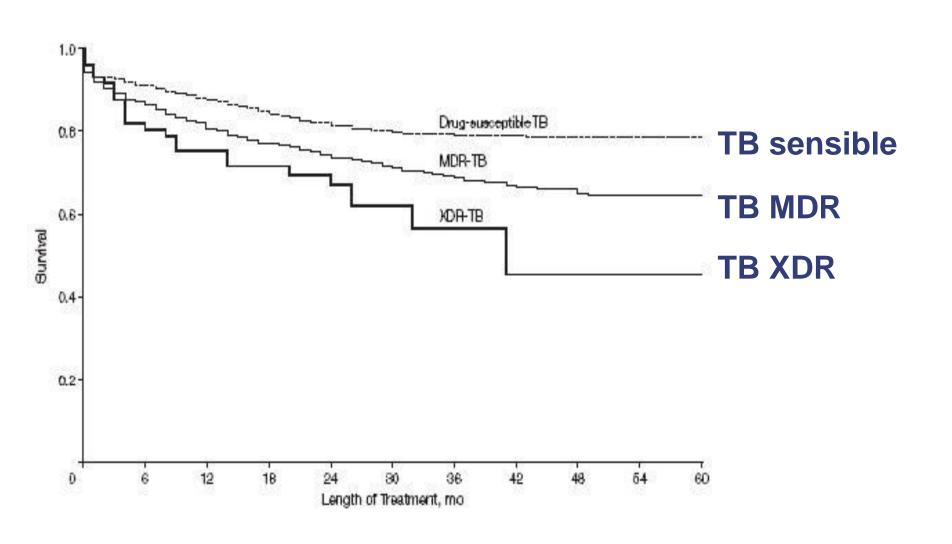
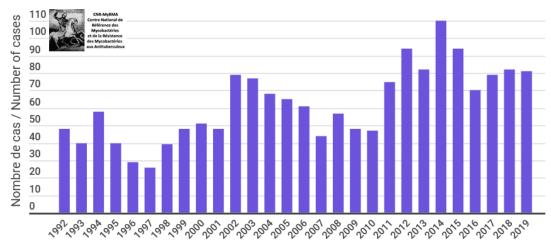

- → 558 000 nouveaux cas de MDR/ TB Rifam R; 250 000 décès
- → 50% diagnostiqués en Chine, Inde et Russie
- → Environ 8,5% des patients MDR sont XDR

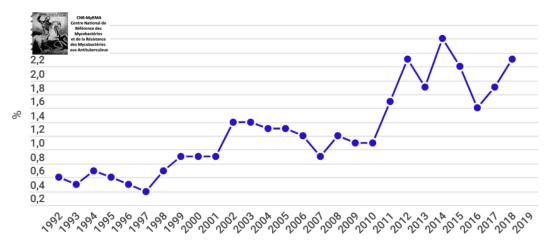
FIG. 4.30
Percentage of new TB cases with MDR/RR-TB^a


Percentages are based on the most recent data point for countries with representative data from 2005 to 2020. Model-based estimates for countries without data are not shown. MDR-TB is a subset of RR-TB.

Multidrug-resistant TB (MDR TB), EU/EEA, 2019


999 MDR TB cases notified in 30 EU/EEA countries

Pronostic des cas MDR et XDR



Tuberculose MDR en France

Evolution - Time trend

Nombre annuel de cas de MDR/ Annual number of MDR cases 2018 à confirmer / to be confirmed

% annuel de cas de TB MDR / % of MDR cases

Traitement des TB MDR/XDR

Table 2.1. Grouping of medicines recommended for use in longer MDR-TB regimens¹

Groups & steps	Medicine	
Group A: Include all three medicines	levofloxacin <i>OR</i> moxifloxacin	Lfx Mfx
	bedaquiline ^{2,3}	Bdq
	linezolid ⁴	Lzd
Group B:	clofazimine	Cfz
Add one or both medicines	cycloserine <i>OR</i> terizidone	Cs Trd
Group C:	ethambutol	Е
Add to complete the regimen and when medicines from Groups A and B cannot be used	delamanid ^{3,5}	Dlm
meanance nom croups rrand 2 cannot be used	pyrazinamide ⁶	Z
	imipenem-cilastatin <i>OR</i> meropenem ⁷	Ipm–Cln Mpm
	amikacin (<i>OR</i> streptomycin) ⁸	Am (S)
	ethionamide <i>OR</i> prothionamide ⁹	Eto Pto
	p-aminosalicylic acid ⁹	PAS

M. tuberculosis : ce qu'il faut retenir

- ✓ Problème majeur de santé publique
- ✓ Transmission aérienne, contagiosité
- √ Tuberculose pulmonaire dans 70% des cas
- ✓ Emergence de souches résistantes aux antituberculeux
- ✓ Maladie à déclaration obligatoire