Révisions

Exercice 1. On considère $E = \mathcal{C}_c(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions continues à support compact sur \mathbb{R} . Pour $f \in E$, on définit

$$||f||_1 = \int_{\mathbb{R}} |f(t)|dt, ||f||_2 = \left(\int_{\mathbb{R}} |f(t)|^2 dt\right)^{\frac{1}{2}}, ||f||_{\infty} = \sup_{\mathbb{R}} |f(t)|.$$

Monter que ce sont bien des normes sur E. Montrer qu'elles ne sont pas comparables. Qu'en est-il lorsque l'on remplace \mathbb{R} par I = [0, 1].?

Exercice 2. Soit $E = \mathcal{C}([0,2],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$. On considère l'application linéaire $T: E \to \mathbb{R}$ définie par

$$T(f) = \int_0^1 f(u)du - \int_1^2 f(u)du.$$

Montrer que ||T|| = 2 mais que cette norme n'est pas atteinte.

Exercice 3. Soit (X, d) un espace métrique complet et $(x_n)_{n\geq 0}$ une suite de X.

- 1) Montrer que si $\sum_{n\geq 0} d(x_n, x_{n+1}) < +\infty$, alors $(x_n)_n$ est de Cauchy.
- 2) La réciproque est-elle vraie?
- 3) Montrer que si $(x_n)_n$ est de Cauchy, on peut extraire une sous-suite $(x_{n_k})_{k\geq 0}$ telle que $\sum_{n\geq 0} d(x_{n_k},x_{n_{k+1}}) < +\infty$.
- 4) En déduire qu' un espace vectoriel normé est complet si et seulement si toute série absolument convergente est convergente.

Exercice 4. 1) Montrer que $C([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$ est complet.

2) Montrer que $\mathcal{C}([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_1$ n'est pas complet.

Exercice 5. 1) Montrer que $C^1([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$ n'est pas complet.

2) Montrer que $C^1([0,1],\mathbb{R})$ muni de la norme $N(f) = ||f||_{\infty} + ||f'||_{\infty}$ est complet.

Exercice 6. On note $\ell_1(\mathbb{N})$ l'espace des suites $u = (u_n)_{n \in \mathbb{N}}$ telles que $||u||_1 := \sum_{n \in \mathbb{N}} |u_n| < \infty$. Montrer que $(\ell_1(\mathbb{N}), ||.||_1)$ est un espace de Banach.

Exercice 7. On note $h^1(\mathbb{N})$ l'ensemble des suites $u \in \ell^2(\mathbb{N})$ telles que $\sum_{n\in\mathbb{N}} n^2 |u_n|^2 < \infty$. Montrer que

$$\langle u, v \rangle_{h^1} = \sum_{n \in \mathbb{N}} n^2 u_n \overline{v_n}$$

définit un produit scalaire sur pour lequel $h^1(\mathbb{N})$ est un espace de Hilbert.

Exercice 8. Soit E un espace de Banach et u un endomorphisme continu de E.

- 1) On suppose que $||u||_{E\to E} < 1$. Montrer que Id-u est inversible.
- 2) En déduire que GL(E) est ouvert.

Exercice 9. (Théorème de représentation de Riesz) Soit H un espace de Hilbert. Montrer que pour toute forme linéaire continue ℓ sur H, il existe un vecteur y (unique) tel que $\ell(\cdot) = \langle \cdot, y \rangle$.

Exercice 10. 1) Proposer une suite de fonctions continues $(f_n)_n$ sur [0,1] qui converge simplement vers une fonction continue f sur [0,1] mais telle que

$$\int_0^1 f_n(t)dt \text{ ne converge pas vers } \int_0^1 f(t)dt.$$

2) Qu'en est-il si on suppose que $(f_n)_n$ converge uniformément vers 0?

Exercice 11. Soit $I_n = \int_0^\infty e^{-t^n} dt$. Justifier que cette intégrale est bien définie et que la suite (I_n) admet une une limite que l'on calculera lorsque $n \to \infty$

Exercice 12. Montrer que $\int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$.

Exercice 13. (Transformée de Fourier de la Gaussienne). On définit pour $\xi \in \mathbb{R}$,

$$\phi(\xi) = \int_{\mathbb{R}} e^{-\frac{x^2}{2}} e^{-ix\xi} dx.$$

- 1) Montrer que ϕ est bien définie et que ϕ est continue sur \mathbb{R} .
- 2) Montrer que ϕ est dérivable, puis par intégration par parties, montrer ϕ vérifie une équation différentielle du premier ordre.
 - 3) Résoudre cette équation différentielle puis donner la valeur de $\phi(\xi)$.

Exercice 14. (Coordonnées polaires dans \mathbb{R}^3) Soient $U=\{(r,\varphi,\theta),\ 0< r<\infty,\ -\frac{\pi}{2}<\varphi<\frac{\pi}{2},\ 0<\theta<2\pi$ et $V=\mathbb{R}^3\setminus\{(x,0,z),\ x\geq 0,\ z\in\mathbb{R}\}$ et soit $\phi:U\to V$ définie par

$$\Phi(r,\varphi,\theta) = (r\cos\theta\cos\varphi, r\sin\theta\cos\varphi, r\sin\varphi)$$

- 1) Montrer que Φ est un C^1 diffeomorphisme et que $J\Phi(r,\varphi,\theta)=r^2\cos\varphi$.
- 2) Pour $\alpha \in \mathbb{R}$ on définit

$$f_{\alpha}(x, y, z) = (x^2 + y^2 + z^2)^{\alpha/2}$$

sur $\mathbb{R}^3\setminus\{0\}$. Montrer que f_α est intégrable sur B(0,1) ssi $\alpha>-3$ et que f_α est intégrable sur $\mathbb{R}^3\setminus B(0,1)$ ssi $\alpha<-3$. 3) Généralisation à $\mathbb{R}^d,\ d\geq 3$?